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142 20 Prague 4, Czech Republic and 4Charles University, Medical Faculty Hospital in Pilsen, Dr. E. Beneše
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ABSTRACT

Quantitative real-time PCR (qPCR) is the method of
choice for specific and sensitive quantification of
nucleic acids. However, data validation is still a
major issue, partially due to the complex effect of
PCR inhibition on the results. If undetected PCR in-
hibition may severely impair the accuracy and
sensitivity of results. PCR inhibition is addressed
by prevention, detection and correction of PCR
results. Recently, a new family of computational
methods for the detection of PCR inhibition called
kinetics outlier detection (KOD) emerged. KOD
methods are based on comparison of one or a few
kinetic parameters describing a test reaction to
those describing a set of reference reactions.
Modern KOD can detect PCR inhibition reflected
by shift of the amplification curve by merely half a
cycle with specificity and sensitivity >90%. Based
solely on data analysis, these tools complement
measures to improve and control pre-analytics.
KOD methods do not require labor and materials,
do not affect the reaction accuracy and sensitivity
and they can be automated for fast and reliable
quantification. This review describes the back-
ground of KOD methods, their principles, assump-
tions, strengths and limitations. Finally, the review
provides recommendations how to use KOD and
how to evaluate its performance.

INTRODUCTION

Real-time polymerase chain reaction (PCR) is the method
of choice for sensitive detection and precise quantification
of minute amounts of targeted DNA sequence. When
combined with reverse transcription (RT) real-time
PCR is the preferred method also for the detection and
quantification of RNA. It is widely used in bio-medical

research and is at present the reference method for mo-
lecular diagnostics, water, food and feed testing, forensic
and most other testing of nucleic acids. Search in PubMed
generates >250 000 hits. At present, 25 years after the
breakthrough invention of PCR and 15 years after the
invention of real-time PCR, validation and standardiza-
tion of real-time PCR are hot topics (1) attracting the
attention of regulatory bodies such as the FDA (www
.fda.gov/downloads/RegulatoryInformation/Guidances/
ucm126957.pdf), EPA (http://www.epa.gov/microbes/qa_
qc_pcr10_04.pdf), ISO (2), and CLSI (http://www.clsi.org/
source/orders/free/mm16a.pdf) as well as multinational
projects (www.spidia.eu).

PCR kinetics and efficiency

PCR has been studied extensively (3–6); here a brief de-
scription follows. There is some confusion between PCR
efficiency and PCR kinetics in the literature. Here, we
follow the IUPAC definition of chemical yield, the
fraction of the amount of an element or chemical
compound following a specified chemical reaction
(http://goldbook.iupac.org/C01041.html) and define PCR
efficiency (E) as the fraction of double-stranded DNA
molecules that is copied at a given cycle. E is expressed
in percentage (%). For example, E=100% represents
perfect doubling of all DNA molecules, and 0% represents
no change in reaction product. Similarly, we follow the
IUPAC definition of macroscopic kinetics being the
behavior of bulk systems, e.g. in changes in concentrations
of reactants and products (http://goldbook.iupac.org/
M03677.html) and define PCR kinetics as the change in
concentration of DNA along several consecutive cycles,
often during the entire reaction. Since PCR efficiency
changes as the reaction develops, PCR kinetics is best
described by a function (7–10) (Figure 1).
The confusion between the two terms stems from the

common assumption that efficiency is constant until the
threshold level is reached. However, recently, Rutledge
and Stewart showed that this is not the case (11). At the
time the amplification signal is distinguishable from
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background, PCR efficiency is already 10–25% below its
maximum value (Figure 2).
The term PCR efficiency is widely used in the context of

standard curve made of a dilution series. The term relates
to the value calculated from the slope of a standard curve
and relies on the assumption that the amplification curves
in the dilution series are parallel at least until reaching the
threshold. Mathematically this value reflects the average
efficiency in the first cycles during which the reaction
moves from one DNA concentration to the next in the

dilution series, i.e., this average efficiency value reflects
the constant kinetics during the very early cycles.

The assumption of similar kinetics

The strength of PCR as diagnostic method stems from its
exponential amplification of a targeted sequence, which
enables the investigator to detect even a single DNA
molecule in less than 1 h. However, the exponential amp-
lification is also the technology’s Achilles Heel; almost all
quantitative approaches based on real-time PCR (qPCR)
compare the number of amplification cycles required to
reach a threshold signal level when a target sequence is
amplified in two reactions, or two groups of reactions.
This is equivalent to measuring the distance between the
two amplification curves. Hence, for proper quantification
these methods assume similar amplification kinetics up to
the threshold among compared reactions of the same
sequence. If the assumption is not valid, substantial error
into quantification can be introduced. Even a difference of
only 5% in PCR efficiency will produce more than 100%
error, i.e. 2-fold difference in amplicon amount, after 30
cycles. Larger difference of 15% will produce an order of
magnitude error (>1000%) after the same number of
cycles (13).

Note that relative quantification of gene expression with
the ��CT method (14) assumes similarity of amplification
kinetics between different sequences, the target and refer-
ence genes, as well as similar amplification kinetics among
the same sequence reactions.

The error introduced by violating the requirement of
similar kinetics among reactions of the same sequence is
much larger than the error introduced by violating the
requirement for equal kinetics of target and reference
genes. While the second error propagates only during
the cycles between the curves, i.e. the error is not
affected by the absolute values of Cq but by the distance
between the curves, the first error propagates during the
entire reaction, from cycle 0 to Cq. Hence, the higher the
Cq, the larger the error introduced by dissimilar kinetics
among reactions of the same sequence. A typical 10%
difference in kinetics will result in an error of few tens
percents in the second case and an error of hundreds
percents in the first case. Violation of the requirement
for similar kinetics between compared sequences is easily
solved by analyzing the data with Pfaffl’s equation (15).
For detailed example of the differences in error due to
violation of the two assumptions, see the Supplementary
Data.

While quantification errors of tens to several hundred
percent may be of little practical importance when changes
in quantities are measured by orders of magnitude and
primary trends are studied, it may have serious implica-
tion in all other cases. Such error may make the difference
between up- or down-regulation, affect medical and vet-
erinary decisions, determine approval or disapproval of
food and water for use, change qualification or disquali-
fication of genetically modified products, distort alloca-
tion of rare forensic sample to different forensic tests
and harm many other important decisions, which are
based on the measured levels. In these cases, it is critical

Figure 2. PCR kinetics from (11). The efficiency estimated at the lower
part of the amplification curve, i.e. the left side of the x axis, is impre-
cise due to the low signal-to-noise ratio. Circles indicate precise estima-
tion of efficiency. For the same reason, the threshold for quantification
is set above the reaction fluorescence level (vertical dashed line), where
efficiency already decreased by �25%. These data are from SYBR
Green reactions, given the lower signal-to-noise ratio of probes the
dashed line is expected to be shifted to the right when probe is used.
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Figure 1. Schematic representation of PCR product accumulation
(open circle) and PCR efficiency (cross mark) during the reaction. As
long as all reagents are in excess and little amount of double-stranded
DNA is in the tube, the PCR progresses with seemingly constant
high-efficiency, segment A. As reagents are depleted and product is
accumulated, the efficiency decreases at increasing rate, segment B
(12). When too little reagents are available, or too much
double-stranded DNA is in the tube, the efficiency of the reaction
gets practically to zero, segment C.
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to verify that the assumption of similar kinetics among
reactions of the same sequence indeed fulfilled. The most
common cause that this assumption is not fulfilled is PCR
inhibition.

PCR inhibition

PCR inhibition is a well-recognized problem that can be
caused by diverse substances via several mechanisms
(16–19). For example, PCR mixtures based on the
widely used Taq DNA polymerase are totally inhibited
in the presence of 0.004% (v/v) human blood (20). The
PCR inhibitors originate either from the test sample
matrix or from sample preparation prior to PCR or
from both (17,21). Examples of inhibiting substances
present in original samples include bile salts and
complex polysaccharides in feces; collagen in food
samples; heme, immunoglobulin G (IgG) and lactoferrin
in blood; humic substances in soil; melanin and myoglobin
in tissue; polysaccharides in plants; proteinases and
calcium ions in milk; indigo dye in denim and urea in
urine (17). Fatty tissues are in general very problematic.

Components from sampling and extraction that inhibit
PCR include chelators such as EDTA, which complexes
Mg2+ rendering it unavailable for the polymerase.
Interestingly, trace amounts of phenol inhibit Taq poly-
merase, while Tth polymerase maintains both DNA- and
RNA-dependent DNA polymerase activity in the presence
of 5% (v/v) phenol (20). Excess of KCl, NaCl and other
salts, ionic detergents such as sodium deoxycholate,
sarkosyl and sodium dodecyl sulfate (SDS) also inhibit
PCR (22), as well as alcohols such as ethanol and isopro-
panol (23).

For expression analysis, it has been shown that active
reverse transcriptase brought over from the RT reaction
can have inhibitory effect on the PCR (24) and stimulate
primer–dimer formation (25). The effect is profound
during the first cycles and declines as the reverse tran-
scriptase denatures by the applied heat and as the DNA
accumulates. Apparent PCR efficiencies of >100% occa-
sionally reported (25,26) and may be obtained when
standard curves are constructed based on serial dilution
of cDNA, which also dilutes the contaminating reverse
transcriptase (27).

Wilson (17) classifies PCR inhibitors into three
categories: failure of lysis of biological material, poor
lysis of cell and capture of nucleic acids, and inhibitors.
Taq inhibitors may be classified into three sub-categories
based on mechanism: (i) binding of the inhibitor to the
polymerase; (ii) interaction of the inhibitor with the DNA
and (iii) interaction with the polymerase during primer
extension (19). Some inhibitors may interfere via more
than one mechanism (17,19).

No matter the cause inhibition should be considered.
There is a common saying that a wise person avoids
problems that a clever person knows how to solve. Near
the PCR bench the wise person carefully removes inhibi-
tors from the sample before quantification. When a large
set of similar samples is analyzed, extraction and purifica-
tion methods may be customized and optimized for repro-
ducibility. However, when samples vary in their

composition as often is the case with food, soil, seed,
feces, fatty samples, bacterial samples, forensic samples
and samples containing mixtures of tissues and cells
types reproducibly removing all inhibitors from the
samples may be a challenging task.
PCR inhibition and the errors it may introduce into

nucleic acid quantification are approached by three com-
plementary ways. First, the degree of inhibition is reduced,
optimally prevented experimentally. This includes exten-
sive purification, adding agents that reduce inhibition and
interference such as T4 gene 32 protein (28,29) and
dsDNA-specific nuclease, using DNA polymerases that
are less prone to inhibition (30,31) and polymerases with
higher capacity of synthesizing through GC-rich se-
quences (32) and diluting the sample (33). Second, detect-
ing PCR inhibition includes experimental approaches
based on internal amplification controls (IAC) (34–37)
and computational methods based on kinetics outlier de-
tection (KOD). Thirdly, computational methods can be
used to reduce the errors imposed by the inhibition,
among them ‘assumption-free’ quantification methods
that do not assume similar kinetics of the compared reac-
tions (8,9,38,39) and methods that correct the measured
results (40,41).
First in this article, we discuss what would be the ideal

solution for PCR inhibition: assumption-free methods.
Then, we treat the most common approach at present for
detection of PCR inhibition, the IAC. Then, the error cor-
rection methods are discussed and finally we describe the
KOD methods. Each method is examined and evaluated
both by evidence from the literature and according to the
strength of the assumptions upon which it relies.

‘ASSUMPTION FREE’ QUANTIFICATION METHODS

If inhibition is not eliminated in advance during sample
preparation, the ideal solution for PCR inhibition would
be to use a quantification method that does not rely on
similar reaction kinetics, but determines reaction-specific
kinetics that are used to calculate the initial number of
target molecules. Such methods have been developed.
They are based on nonlinear regression (NLR) to fit par-
ameters in an equation assumed to describe the
reaction-specific kinetics, to the measured fluorescence
signal. The equation is then used to calculate the
number of molecules at cycle 0 by extrapolation. For
details of the different NLR methods, the reader is
referred to recent reviews on the topic (7,42–44).
Although intensive efforts have been invested in the devel-
opment of assumption-free methods in the last decade
(5,6,8–11,13,38,45), independent studies show that for
quantification of non-inhibited reactions the NLR
methods do not outperform conventional cycle of quanti-
fication (Cq) method, i.e. methods that do assume kinetics
similarity among reactions of the same sequence.
Goll et al. evaluated the quantification error of 11 NLR

methods in a comprehensive study and compared it to the
quantification error obtained when using the conventional
Cq method (7). They report that the best NLR model yield
quantitative results with an intra-assay variation of 58%
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versus 24% for the Cq-derived molecule numbers. Similar
result was obtained by Guescini et al. (40) who tested
Rutledge’s new method (9). These findings support the
conclusions of Yann et al. (43), Nordgard et al. (42) and
Peirson et al. (46) who present evidence that reaction-
specific kinetics and efficiency estimated from individual
amplification curves primarily increase the random error
of qPCR and should not be used instead of classical
methods.
Several factors may contribute to the imprecision of

NLR methods. Major limitation is our poor understand-
ing of the complex mechanism of real-time PCR. The
changing ratio between DNA and the dye or probe
during the reaction affects their binding (47,48). The
higher the ratio between the dye or probe and the DNA,
the higher the binding rate and stronger the emitted signal.
Unfortunately, the exact behavior depends on various
factors, which are difficult to model and predict precisely
in practice. Another source of error is the modeling of
background (49). When background is not well modeled
by the fitted equation, it may introduce error to the fit and
to all resulting calculations (13,49) (Figure 3).
The precision that can be achieved with NLR methods

depends on the qPCR instrument. Some of the early plat-
forms (e.g. AB7700 and Roche Lightcycler 1.0–2.0) had
more sensitive optics and measured signal changes over a
3–4 log units, which is not the case for some of the newer
and cheaper instruments. Using linear scale data may
seem to fit the model very well, but the sum of squares
of the regression is biased by the higher fluorescent
readings. It is, therefore, better to fit data in the logarith-
mic scale. This creates ambiguity in the reporting of the
estimated error. It would be good for the field to define a
precision measure similar to the standard deviation of Cq.
Such an error measurement will need to combine both the
quality of the fit and the Cq, as efficiency exponentially
affects the measured quantity.
Perhaps the most conspicuous obstacle on the way to

panacea NLR is the poor reproducibility of PCR at the

detectable region. Although the signal-to-noise ratio of
fluorescence emitted from SYBR Green in real-time
PCR conditions is relatively high, about two to three
orders of magnitude, when DNA amount in the tube
reaches the detectable region, PCR efficiency rapidly de-
creases with every cycle (phase B, in Figure 1). At this
stage, the reproducibility of the reaction and our under-
standing of its are too low for precise modeling of the
process.

Since qPCR is mainly about quantification of minute
amounts of nucleic acids, in most cases the detectable
signal arrives above cycle 20, which leads to a long ex-
trapolation down to cycle 0. Thus, currently, reasonably
precise estimation of initial quantities using NLR methods
seems possible only when several replicates for each
reaction are performed. Chemistries and instrumentation
that will produce and support signal acquisition with
higher signal-to-noise ratio will enable detection of DNA
at lower amounts of DNA, when the reaction is more re-
producible and would be modeled more accurately and
precisely.

If ‘assumption-free’ quantification methods can hardly
be used then conventional methods that do assume
kinetics similarity should be used and kinetics similarity
should be verified. The rest of this paper describes the
most common tools for kinetics validation.

IAC

Validation of PCR kinetics in RNA quantification

RNA quantification with RT–qPCR is a multi-step process
that each proceeds with limited efficiency and introduces
variability, which makes absolute quantification virtually
impossible unless known amount of RNA is spiked to the
sample and used to validate and normalize the result.
Therefore, the common use of RT–qPCR is for relative
quantification, where fold of change in RNA amount
between samples is calculated. Relative quantification by
qPCR is based on normalizing the measured expression of
genes of interest with the expression of one or several ref-
erence genes that are minimally affected by treatment.

In this process, it is assumed that the measured amounts
of the target and reference genes’ transcripts are influenced
equally by changes in the steps involved in the quantifica-
tion, including extraction, purification, transportation,
storage, RT, etc. The yields in these steps do not have to
be the same for the gene of interest and the reference gene,
because their expression ratio is typically compared
among samples, but their relative yields in the experimen-
tal steps should stay the same.

However, despite all their advantages, reference genes
are not suitable for correction of errors due to PCR in-
hibition in relative quantification. PCR inhibition is not
only often sample specific, but also sequence dependent.
That is, two sequences quantified from the same sample
may be inhibited to different levels (19,50–53) and the
error in quantification of one sequence will not compen-
sate for the error in the other sequence. Several possible
explanations have been proposed for the differential
inhibition. During denaturation, where DNA is in

Figure 3. Effect of improper background subtraction on the shape of
the amplification curve (49). Data points from a sample with properly
modelled and subtracted background (filled circles) fall on what looks
like a straight line in the exponential phase of the amplification curve,
while under background subtracted (stars) and over background sub-
tracted amplification curves (triangles, inset only) form concave and
convex shapes, respectively. This not only affects the results of quanti-
fication due to Cq shift at the lower part of the curve, but also directly
affects the efficiency estimated from the amplification curve.
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single-stranded form it may form secondary structures
that interact with inhibitors (19), or even directly
interact with the primer region to decrease the reaction
kinetics (54). Since secondary structure of DNA depends
both on the sequence and the ionic composition, PCR is
also sensitive to ionic composition including the amounts
of K+ and Mg2+ ions. Substances present in the sample
that bind any of these ions, such as genomic DNA, may
differentially affect the kinetics of PCRs.

Regardless of the inhibition source and mechanism, it
should be detected, and not by reference genes. One way
to estimate PCR efficiency is by serial dilution of a sample
and calculating the efficiency from the slope of the dilu-
tions curve (50). This has been adapted by Roche under
the name E-method (http://www.roche-applied-science
.com/PROD_INF/BIOCHEMI/no4_06/pdf/16.pdf).
Drawback is that it is laborious and costly, since a sample
must be analyzed multiple times, and is not applicable on
samples with small number of molecules, since they
cannot be diluted. Also, interfering substances will be
diluted as well and PCR efficiency will change.

Identification of PCR inhibition with IAC

IAC is a non-target DNA or RNA spiked to a test sample
at known amount and co-amplified with the target
sequence. Following the amplification, the Cq of the
IAC is compared to the Cq of the same amount of IAC
quantified without the test sample. A difference between
the Cqs indicates inhibition. It was adopted 7 years ago
for detection of PCR inhibition in DNA quantification by
the European Standardization Committee (CEN) and the
International Organization for Standardization (ISO) (2).

Various approaches to the design and use of IAC have
been presented (16,36,37,55). Hoorfar (36) classifies IACs
into two categories based on their competitiveness with
the target sequence. Competitive IAC shares primer set
with the target sequence. The concentration of the IAC
has to be carefully adjusted to the (unknown) quantity of
the target sequence in the samples; too many IAC mol-
ecules and the IAC will consume the primers of the target
and will itself inhibit the target sequence amplification; too
little of IAC and the target sequence will consume the
primers and inhibit the IAC amplification. If added at
sub-optimal concentration, IAC may severely affect the
accuracy and sensitivity of the quantification (16,34,56)
and the control will not correctly reflect the presence of
inhibitors. If properly optimized, the advantage of com-
petitive IAC is that it will have very similar kinetics as the
target sequence and the sensitivity to inhibitors of the two
PCRs will also be similar. Competitive IAC is recom-
mended by the United States Environmental Protection
Agency in its quality control guidance for PCR (http://
www.epa.gov/microbes/qa_qc_pcr10_04.pdf) and
required by ISO 22174(2).

Non-competitive IAC is amplified with a different set of
primers from the target. The final amount of non-
competitive IAC amplicon produced is limited by
primers’ concentrations and does not deplete resources
needed by the other reaction. Hence, the amount of IAC
added is not critical for proper amplification of the target.

But the same dissimilarity of sequences between the target
and the non-competitive IAC that makes it so easy to use
and popular (55) might cause it not to properly reflect
sequence-dependent inhibition. This could be the reason
why the United States Environmental Protection Agency
recommends in its quality control guidance for PCR (49),
and ISO 22174 requires the IAC to be amplified by the
same primers set. Dedicated qPCR data analysis software
such as GenEx include an option to correct Cqs of targets
based on the differential Cq measured on an IAC (www.
multid.se).
Whatever type of IAC is used, spiking the sample with

IAC earlier than the PCR might not indicate PCR inhib-
ition, but rather the loss of material during the steps the
IAC passed, e.g. during extraction and purification of
nucleic acids. It is then not possible to separate effects
from losses and degradation during pre-analytics and
PCR inhibition on a shift of Cq. Since the correction for
loss of material is linear, while the effect of PCR inhibition
accumulates exponentially and is Cq dependent, the shift
in Cq of an IAC added during pre-analytics cannot be
used to correct the result of quantification. To control
for loss of material during pre-analytics as well as for
PCR inhibition two IACs are needed: one added during
pre-analytics and one added for the qPCR. Still, in spite of
the obvious value of IACs for QC of qPCR, they are still
not used in most qPCR publications at present.

COMPENSATION FOR PCR INHIBITION

The search for accurate and precise quantification led to
the development of methods to compensate for errors in
quantification due to PCR inhibition. The first one,
dedicated to real-time PCR, was published by Meijerink
et al. (41). It is based on multiplex amplification of two
genes present in different copy numbers in the human
genome (beta-actin and albumin). Normally, the two
PCR systems are amplified with the same kinetics.
Hence, in the absence of inhibition a constant distance
between the amplification curves of the two genes that
corresponds to the difference in copy numbers is
expected. A larger distance between the two amplification
curves indicates PCR inhibition. Using a mathematical
model, the Cq values can be corrected based on the
measured difference. This method assumes that PCR in-
hibition is not sequence dependent. While this assumption
may be correct for some cases, it does not always hold
(19,50–53). In addition, the method is only applicable
for DNA quantification and it is species specific.
‘Cy0’ is another method for error correction in cases of

slight inhibition recently published by Guescini et al. (40).
Here, a reaction-specific parameter named ‘Cy0’ replaces
the Cq of each reaction. Cy0 is the intersection between
the abscissa and the tangent of the inflection point of the
curve obtained by the nonlinear regression of raw data
(Figure 4). Although Cy0 is a single parameter, as is the
regular Cq, it does account for some of the reaction
kinetic because it is calculated on the basis of the slope
of the inflection point of fluorescence data. The authors
compared the Cy0 method with three other quantification

Nucleic Acids Research, 2012, Vol. 40, No. 4 1399

http://www.roche-applied-science.com/PROD_INF/BIOCHEMI/no4_06/pdf/16.pdf
http://www.roche-applied-science.com/PROD_INF/BIOCHEMI/no4_06/pdf/16.pdf
http://www.epa.gov/microbes/qa_qc_pcr10_04.pdf
http://www.epa.gov/microbes/qa_qc_pcr10_04.pdf
www.multid.se
www.multid.se


methods: maximum second derivative, fixed threshold and
NLR and found that quantification based on Cy0 on
SYBR data is the most accurate when the assays are
slightly inhibited. This holds promise and it will be inter-
esting to learn how the method performs on probe data,
where the inflection point is lower, how it performs with
different kinds of inhibitors, and its robustness for
sub-optimal background subtraction. The Cy0 method is
freely available at www.cy0method.org.
Another approach to avoid quantification errors due to

PCR inhibition was proposed by Gallup and Ackermann
(33). First, a small amount of template is collected from all
test samples and pooled. Then, the pooled sample is
serially diluted and Cq is plotted versus the dilution
factor, similarly to a standard curve. Since the slope of
this curve describes PCR efficiency at the very early
cycles, the optimal dilution for inhibition removal can be
identified from the shape of the curve and applied to all
test samples.
While the concept is highly robust since virtually any

inhibitor can be diluted out so its effect vanishes, in
practice this requires large amounts of DNA. The
authors recommend dilutions by two to six orders of mag-
nitude, which drastically reduce the sensitivity of quanti-
fication. In addition, the method assumes that all samples
are inhibited to the same degree reflected by the pooled
sample, which is not practical for analysis of samples
where variable inhibition is expected, such as with food,
water, forensic, clinical, soil and many other types of
samples. Gallup’s method is implemented in Prexcel
software available at http://www.gene-quantification.de/
download.html#gallup.

KOD

Pre KOD methods

The ability to identify inhibited PCRs by analyzing their
reaction kinetics attracted already the attention of the de-
velopers of the first NLR method (39). However, the

authors didn’t elaborate on the statistical details and
only suggested a general approach for quality check
based on a single estimated efficiency value.

The idea of using an ‘efficiency threshold’ below which a
reaction is disqualified was introduced by then Corbett
Research, a real-time PCR instrument manufacturer that
recently was acquired by Qiagen. Although attractive
because of its simplicity, it is difficult to justify an effi-
ciency threshold value, at least if an outlier concept shall
be used since the selection criterion should be based on
similarity in kinetics rather than just having high effi-
ciency. Reactions from the same sequence that are
equally inhibited can readily be accurately quantified.
Further, using a single parameter, such as an estimated
value of the efficiency, the method is sensitive to noise
and only strongly inhibited reactions could be confiden-
tially detected. After some years, Corbett Research deleted
this functionality from their software.

Contrary to the ‘efficiency threshold’ concept, Massart
et al. (57) directly test the assumption of similar kinetics,
i.e. the similarity of the slopes of two sets of compared
amplification curves. For this purpose, they use six repli-
cates in each set and fit linear equation to five log-
transformed data points. It is based on well-established
method for comparison of slopes often used in analytical
chemistry, e.g. when testing similarity of calibration curves
(58). Although the authors indicate the optimal number of
fitted data points and the minimal number of replicates
required for reliable testing, they don’t measure the quan-
tification error detected with these settings. While the logic
of the method is sound, the need for at least six replicates
may be laborious and expensive for many users.

The KOD concept

KOD is a family of statistical methods designed to identify
real-time PCRs with dissimilar kinetics. KOD methods are
based on comparison of one, or more, parameters
describing the kinetics of a test reaction to kinetic param-
eters describing a set of reference reactions that preferably
has been validated by independent means. The first paper
implementing this concept was published by Peirson et al.
(46) and the term KOD was coined 3 months later in an
independent study (49).

Univariate KOD

The first KOD methods (46,49,59,60) assumed that the
exponential phase, with its constant efficiency continues
at least up to the threshold, where Cq is determined.
Thus, a single parameter, the efficiency at the early
cycles, could be used to validate similarity of the kinetics
of compared reactions.

In the first KOD method, deviant amplification effi-
ciency was identified by comparing the variance of the
reference set with that of each individual reaction essen-
tially identifying outliers based on leave-one-out valid-
ation (46). In this method, all reactions make the
reference set, regardless of their quality. Hence, reactions
with the most divergent kinetics are identified and
disqualified independent of the degree of divergent.
Thus, quantification error and the method’s performance

Figure 4. Example of the Cy0 method (64). Curve fitting of Richards
function to amplification data generates values for the kinetic param-
eters from which the inflection point (solid black rhombus) and the
slope of the curve can be derived. The quantitative entity Cy0 (solid
black dot) shows the cross point between the x axis and the tangent
crossing the inflection point of amplification curve.
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cannot be characterized and quantified. This method was
implemented in a Microsoft XL application called DART
and is available at http://www.gene-quantification.de/
download.html#dart.

In the second KOD paper, the authors presented a
somewhat different approach (49). The estimated effi-
ciency of a reaction that deviated by more than±1.96
standard deviations (SD) (the approximate value of the
97.5 percentile point of the normal distribution) from
the mean efficiency of all reactions in the reference set
was classified kinetic outlier. While the mean efficiency is
calculated from a reference set from the same run, the SD
is calculated from a large set of independent reference
runs. Using an external estimate for the SD behind the
exclusion criteria makes the method more robust since
SD calculated from a single reference set varies with
every slight change in settings of the efficiency estimation
procedure. The authors discuss the reference set compos-
ition and consider the possibility of basing the reference
set on only reactions used in the standard curve and not
on all the test reactions. A variant of this method was
thoroughly tested by Elias et al. (61) who used Liu and
Saint’s method to estimate PCR efficiency (8). The authors
concluded that the KOD method provides a sensitive and
statistically powerful strategy to identify inhibited
reactions.

Later work by Chervoneva et al. (59) pointed out that
the second KOD method, which is intended to retain 95%
of samples with efficiencies comparable to those in the
reference set, the acceptance interval included the
desired 95% coverage only if the mean and standard de-
viation used in the computations are true parameters
describing the efficiency distribution in the underlying
reference population. However, the employed estimates
of the mean and standard deviation are calculated from
the reference set without any adjustment for the error of
estimation and, consequently, the second KOD method
is not a valid statistical procedure. In particular, if the
reference set is small, the second KOD method may erro-
neously reject reactions with efficiencies that would be
consistent with those of the infinite reference
setpopulation (59).

Chervoneva et al. suggested an improved, third, KOD
method (59). Here, reaction-specific efficiency is estimated
by fitting an exponential growth model to the fluorescence
data in the early detectable cycles of the reaction. Next,
reactions within the reference set having outlying effi-
ciency are eliminated using the box plot outlier detection
rule (62). Estimates of amplification efficiencies of the
trimmed outlier-free reference set are then employed to
define tolerance intervals that are subsequently used to
eliminate kinetic outliers from test reactions. The
authors demonstrate superior performance of their
method relative to the second KOD method.

The fourth KOD method published by Bar and Muszta
(60) is designed for relative quantification, and is particu-
larly suitable for trend studies where many reactions are
compared with each other, such as time series and dose–
response experiments. In such experiments, the kinetics of
all compared reactions should be similar. Here, the
variance of efficiency, estimated from the set of

compared reactions, is tested for similarity to the
variance of a reference set. If the variance of the test re-
actions is similar to that of the reference set, the set of test
reactions are comparable. If the variances differ reactions
with extreme kinetics are designated outliers using a cor-
rected version of the second KOD method that considers
the size of the reference set.

Multivariate KOD

The early KOD methods (first to fourth) are based on a
single parameter estimate of the reaction kinetics to
describe reaction kinetics and compare between a test
reaction and a reference set. It is further assumed that
PCR kinetics is constant at least up to a threshold level.
Rutledge and Stewart (11) pointed out that this assump-
tion is rarely tested and probably often it is not fulfilled,
which makes these methods useful mainly for the detec-
tion of severe inhibition (Fig. 2).
A later version of KOD called, Multivariate KOD

(MKOD), was introduced by Tichopad et al. and Sisti
et al. (63,64). MKOD is based on pattern recognition prin-
ciples. The amplification curve is described with N� 2
discrete geometrical measures (e.g. derivative maxima, in-
flexion point, height, etc.) describing features of the amp-
lification curve regardless of the formal mode of the
amplification. This set of geometrical measures defines a
unique ‘kinetic finger print’ to each amplification curve.
Next, kinetically outlying reactions are excluded from ref-
erence set, establishing exact exclusion margins for
kinetics parameters of retained references. Then, test reac-
tions with kinetics parameters outside the exclusion
margins are identified by multivariate statistics such as
the Mahalanobis distance or the Z-score for the geometric
measures (65).
The two MKOD methods of Tichopad et al. and Sisti

et al. have common principles but they differ in several
aspects. Tichopad et al. characterize an amplification
curve by the y coordinates of its first and second derivative
maxima and then identify outliers, while Sisti et al. use the
y coordinate of the inflection point, the tangent to the
inflection point and the maximal signal. Although low
maximal signal is a strong indicator of PCR inhibition,
it may also be prone to variation that is not necessarily
associated with quantification error. In fact, this is the one
reason instrument manufacturers recommend selecting
threshold for Cq readout above the noise, but still close
to the baseline where the signal is low and reproducibility
higher (14). Sisti et al. considered this, but found that the
maximal signal has significant impact on the variance-
covariance matrix and improves the performance of the
method.
Further, Tichopad et al. model the response curve with

four-parameters symmetric equation, while Sisti et al. fit
five-parameters asymmetric equation. The difference may
be relevant for probe-based amplification curves, which
often are asymmetric. However, since Tichopad et al. fit
the lower part of the amplification curve only (six points
below the inflection point and only two points above it),
the asymmetry of the amplification curves has little effect
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on the method’s performance. The asymmetric fit,
however, is highly relevant for Sisti et al.’s method, since
the entire amplification curve is modeled.
The fact that the two groups after extensive testing end

up with similar results using different parameters and
number of parameters implies that fine differences in the
methods’ performance may result from differences in the
analyzed data. For certain data, one method may perform
better, while the other method may suit more in other
cases. To find out which method performs best requires
a comprehensive study on data confounded by many dif-
ferent factors that affect the shape of amplification curves.
This may include data generated using different detection
chemistries, buffer compositions, presence of various in-
hibitors, cycling conditions, etc.
Not being limited to any particular amplification model

and being free from wrong assumption of exponential
amplification up to the threshold, the advantage of
MKOD over the univariate KODs is superior sensitivity
and specificity in the identification of outlier amplifica-
tions (63,64). The MKOD method of Tichopad et al.
was implemented in Kineret software and is available at
www.labonnet.com.

Composition of the reference set

Being based on ‘test reaction versus reference set’ com-
parison, the performance of all KOD methods is directly
derived from the composition of the reference set. The
higher the similarity among the reference set reactions,
the smaller the differences in kinetics the methods will
detect. Therefore, the selection of the reference set
should consider several parameters.

(i) Dynamic range. PCR replicates are highly reprodu-
cible and generate amplification curves that are very
similar in shape. Hence, a reference set consisting of
replicates based on a single concentration are likely
to result in many false positive alerts, i.e. kinetics
outliers without relevant quantification error.
Hence, the reference set should span and thus
reflect the test reactions to account for the
random variability in kinetics as well as the system-
atic variability associated with starting concentra-
tion within the expected range.

(ii) Number of reactions. Developers of KOD report
that a reference set of 10–15 reactions is usually
enough to estimate the kinetic parameters with suf-
ficient precision (51,63).

(iii) Composition. The composition of the reference set is
driven by the requirement for similar kinetics.
Optimum composition of the reference set depends
on whether a standard curve is used or not.
(a) If quantification is based on a standard curve,

the kinetics of test reactions shall be similar to
that of the standard curve reactions (66). The
reference set shall then be based on the
standard curve reactions. Noteworthy, when
using a diluted sample to construct the
standard curve, the investigator should take
care of not using an inhibited sample since the di-
lution of the sample will necessarily dilute the

inhibitor and will result in amplification curves
with different kinetics, which will reduce the sen-
sitivity of the method. A standard curve made of
an inhibited sample is identified by its nonlinear
shape, expressed in low R2.

(b) When quantifying without a standard curve (15),
the test reactions are compared to each other and
make up an internal reference set.

The material from which the standard curve is prepared
shall be relevant to the quantified samples. The exact
protocol depends on the quantification target, DNA or
RNA, but except for this fact the composition of the
standard curve has been the subject of a long dispute in
the qPCR community. Some investigators pick one repre-
sentative sample (67), and some use linearized plasmid
DNA carrying the cloned target sequence, or purified
PCR products. Others use, for RT-PCR, synthetic,
usually in vitro transcribed, RNA or total RNA/mRNA
containing the target sequence (55,66). Others pool small
amounts of all test samples and use the resulting mixture
to construct the standard curve (33). Whatever source is
used, using KOD (KODing) the test reactions with the
standard curve as a reference set, each investigator can
easily check the kinetics similarity between the standard
curve reactions and the test reactions, and find the best
composition of the standard curve for their own
requirements.

Taking all the test reactions as reference set will auto-
matically disqualify the reactions with the most extreme
kinetics, regardless of quantification error. This implica-
tion of KOD emphasizes the need to estimate the quanti-
fication error actually detected using KOD.

Evaluating KOD performance

Application of KOD supplies the investigator with prob-
abilistic result about the similarity of kinetics between
test and reference reactions, but it says nothing about
the magnitude of the quantification error associated
with the detected dissimilarity. To overcome this limita-
tion, the developers of KOD methods characterized the
methods performance by a simple experiment described
below. They demonstrated that proper application of
KOD can under certain condition detect quantification
errors of less than half amplification cycle, with sensitivity
and specificity >90% (63,64). However, since the perform-
ance of KOD depends on the relevance and quality of the
reference set, the performance of KOD should be
determined by each investigator in their own lab
conditions.

An investigator who starts ‘KODing’ their data
can obtain a good idea about the method’s performance
on their data, including the detected error, sensitivity
and specificity by repeating the developers’ simple
characterization experiment. Briefly, a standard curve is
constructed based on some 10–15 reactions covering
4–6 log concentrations, which serves as a reference set
(Figure 5). The same standard curve is then repeated in
the same run in the presence of increasing level of PCR
inhibitor, which is expected to shift the Cqs to the
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right. This shift is readily translated into fold of quantifi-
cation error as

Error ¼ E shift of Cq,

where 1�E� 2 is the PCR efficiency calculated from the
slope of the dilution series. Note, Error=E60=1 means
no error.

KOD developers have used several well-characterized
PCR inhibitors in their papers. However, PCR inhibition
in biological samples may differ by its mechanism and
effect on quantification from the clean inhibitor. Using
one of their inhibited samples, or pooled sample, as inhibi-
tor for the characterization experiment, the characteriza-
tion experiments will be more relevant to the investigator’s
particular data. The inhibitors in the inhibited sample do
not have to be chemically characterized, but the sample
should contain much less DNA of the detected sequence
than the lowest concentration in the standard curve (of the
characterization experiment) so it won’t affect the Cq of

the standard curve. Such sample can be prepared by
DNase treatment followed by inactivation of the enzyme.

Error calibrator

The characterization experiment described above gives
the investigator general term of the method performance
over broad dynamic range, but since the performance of
KOD is derived from the reference set, which changes
from run to run, the characterization experiment will
not tell about the detected error in a particular run. To
obtain an empirical estimation of the detected error in a
particular run, the investigator should include reactions
from one concentration from the characterization experi-
ment, i.e. three to six PCR replicates containing DNA
concentration representing the major body of the reac-
tions, with one replicate containing no inhibitor and the
rest containing increasing level of inhibitor. The Cq of the
inhibited replicates will be shifted differentially, according
to their inhibitor concentration. The replicates with

Figure 5. Upper figure from (63): the blue curves are 15 reference reactions and the red curves are 15 reactions produced from the same DNA stocks
as the reference with 2.0 ng tannic acid added per 15 ml reaction mix. Lower figure: two-dimensional 95% conEdence region produced by the reference
set in the upper figure. Both dimensions are normalized to mean=0 and SD=1. Left figure: before outliers’ exclusion from the reference set,
right figure, after exclusion, resulting in stronger outlier detection.
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shifted Cq that were detected supply an empirical evidence
to the detected error by the particular reference set of the
run. We name these inhibited replicates as ‘error
calibrators’.

CONCLUSION

KOD methods seem to be useful for detection of PCR in-
hibition in virology (68), bacteriology (69), gene expression
analysis (70), forensic testing (61), and essentially all other
qPCR applications were quality matters. Under optimal
conditions, interference causing as small as a half cycle
error in quantification can be detected using KOD with
high sensitivity and specificity with an empirical estimation
of the detected error. KOD analysis can be fully automated
and is recommended in several textbooks (51, 71,72). The
ability to objectively disqualify reactions based on aberrant
amplification is an important step toward standardizing
qPCR, which is a critical step needed for addressing regu-
latory requirements for evidence-based medicine (www.
fda.gov/downloads/RegulatoryInformation/Guidances/
ucm126957.pdf). The appearance of MKOD with its
superior performance, and the development of commercial
MKOD tool is a step toward broader adoption of MKOD.
A significant move in this direction was recently taken by
the European consortium SPIDIA (www.spidia.eu) that
aims to tackle the standardization and improvement of
pre-analytical procedures for in vitro diagnostics, which
used the MKOD implemented in the Kineret software
for the detection of PCR interference in a large European
ring trial.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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