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A B S T R A C T

In adults, affective touch leads to widespread activation of cortical areas including posterior Superior Temporal
Sulcus (pSTS) and Inferior Frontal Gyrus (IFG). Using functional Near Infrared Spectroscopy (fNIRS), we asked
whether similar areas are activated in 5-month-old infants, by comparing affective to non-affective touch. We
contrasted a human touch stroke to strokes performed with a cold metallic spoon. The hypothesis that adult-like
activation of cortical areas would be seen only in response to the human touch stroke was not confirmed. Similar
patterns of activation were seen in both conditions. We conclude that either the posterior STS and IFG have not
yet developed selective responses to affective touch, or that additional social cues are needed to be able to
identify this type of touch.

1. Introduction

The sense of touch is crucial for development, and touch deprivation
early in life can be highly detrimental. Seminal studies with infant
rhesus monkeys demonstrated that the absence of tactile contact, spe-
cifically with a soft surrogate mother (made of cloth, in contrast to a
mother made of wire), led to impaired social interactions, reduced
exploration of new environments and increased psychological stress
(Harlow, 1958). For mice and rat pups the lack of a specific type of
tactile stimulation, maternal licking and grooming, slows down growth
and increases stress responses (for review see Meaney, 2001; Schanberg
and Field, 1987). In humans, illuminating research on the role of early
tactile contact took advantage of the periods of relative deprivation of
contact experienced by very preterm infants. Implementing touch as a
daily routine, in the form of massage therapy or skin-to skin contact,
showed strikingly long-lasting effects on both physical growth and
cognitive measures (Feldman et al., 2013; Field, 1998). A recent study
reported that the beneficial effects of Kangaroo Mother Care (i.e. con-
tinuous skin-to-skin contact between the mother and the infant paired
with exclusive breastfeeding) were still present at a twenty-year follow
up (Charpak et al., 2016). Despite striking parallels between human and
animal work, it is as yet un-known whether, in humans, beneficial ef-
fects are specific to certain kinds of touch, i.e. social vs. non-social
touch. For this specificity to occur, infants should be able to dis-
criminate social touch from the multitude of tactile experiences they

encounter, just like they discriminate other social signals such as faces
and voices, from the variety of visual and auditory stimulation they are
exposed to (e.g. Lloyd-Fox et al., 2009; Farroni et al., 2013; Grossmann
et al., 2010).

One way in which previous research assessed the discrimination of
social and non-social stimulation has been by observing social selective
responses in the infant brain. Functional Near Infrared Spectroscopy
(fNIRS) has been central to charting the development of specialization
to a variety of social stimuli, from early infancy. Notably, this research
indicated two areas as consistently engaged for the processing of social
stimuli, across modalities: the superior temporal and the inferior frontal
cortices. The superior temporal sulcus (STS) runs along the temporal
lobe and the banks of this sulcus have been associated with processing
faces, voices and biological motion in adults (Deen et al., 2015). Re-
cently, posterior areas around the sulcus have been described as a hub
for multisensory integration (Beauchamp et al., 2008, 2004; Dahl et al.,
2009), with the suggestion that the close proximity of the STS to all
sensory cortices has led to its recruitment for processing highly multi-
modal social information. Indeed, the STS and the inferior frontal
cortex show early specialization for social stimulation, across mod-
alities.

In the visual modality, the posterior STS-temporoparietal junction
area (pSTS-TPJ: includes the posterior middle and superior temporal
gyri, STS and TPJ) already shows social selectivity in newborn infants
(Farroni et al., 2013) and selective responses to a wide range of social
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visual stimuli (i.e. eye gaze shifts, “Peek-a-boo”, static faces) are con-
sistently reported in this area during early development (Grossmann
et al., 2008; Lloyd-Fox et al., 2009, 2011; Biondi et al., 2016; Otsuka
et al., 2007). Specialisation to social stimuli has also been observed in
some of these studies (Lloyd-Fox et al., 2009, 2011) in the inferior
frontal gyrus (IFG). In the auditory domain, while social selectivity has
also been reported, it may specialise later in development. Interestingly,
the pSTS-TPJ area exhibits non-vocal (i.e. water, bells, rattles) selective
responses during the first few months of life before shifting to se-
lectivity for human vocal sounds between 4 and 7 months of age over
more anterior STS regions (Blasi et al., 2011; Grossmann et al., 2010;
Lloyd-Fox et al., 2011, 2012, 2016), in line with the areas of vocal
selectivity seen in adults (Belin et al., 2000).

Despite some consistency in social responsivity across modalities in
recent research, this short review highlights obvious differences in de-
velopmental trajectories of cortical specialisation. pSTS-TPJ selective
responses to visual social stimuli emerge shortly after birth. In contrast,
adult-like selectivity to the human voice develops over the first months
of life in anterior parts of the STS region, close to auditory sensory
cortices. Furthermore, regions around the pSTS show selective activa-
tion to non-human sounds over this same period before subsiding, to be
replaced by more general responses to auditory stimulation at later
ages.

In contrast to the abundant evidence from the visual and auditory
domains, only a few studies to date have investigated social selectivity
in the tactile domain. Work on social touch has been heavily influenced
by the discovery of a particular type of non-myelinated fiber in the
hairy human skin - C-Tactile fibers (CT) (Vallbo et al., 1999; Johansson
and Vallbo, 1979) - which optimally respond to caress-like touch, i.e. to
slow velocity (3–10 cm/s) stroking, with a soft textured instrument (be
it a hand or brush), at average skin temperature (Ackerley et al., 2014;
Olausson et al., 2010). It was therefore proposed that the CT system
encodes affective properties of social touch. Henceforth’ affective touch'
will refer to a tactile stimulation optimal for eliciting CT fibers acti-
vation. Two studies investigating touch in infancy used a two-channel
NIRS system to record responses over the anterior prefrontal cortex. In a
study of newborns, an increased bilateral prefrontal response was
measured when 3 cm/s strokes were applied with cotton to the forearm
or when plastic was applied to the cheek, as compared to stimulation
with wood, a rougher material (Saito, 2009). In contrast, a study of 3, 6
and 10 month olds, measuring prefrontal responses to stroking of the
palm of the hand, only observed significantly increased responses to
velvet (relative to stroking with wood) at 10 months of age (Kida and
Shinohara, 2013). A recent study which also used fNIRS, but measured
activation over the left somatosensory and right posterior temporal
cortices, found no discriminatory response between affective and non-
affective touches (slow brush stroking vs. static touch applied with a
block of wood) in these regions in 7 month old infants (Miguel et al.,
2017). However, a recent study with 2-month old infants, which con-
trasted the speed of stroking, showed increased temporal lobe responses
to slow compared to fast stroking in the left middle temporal gyrus
extending into STS (Jönsson et al., 2017).

Therefore, the pattern of responses observed from previous research
using different textured stimuli, or tactile stimuli applied at different
speeds, has not illuminated a clear developmental pathway of specia-
lisation. In contrast, fNIRS and fMRI studies of affective touch in
adulthood found consistent patterns of activation in IFG and pSTS
(Bennett et al., 2014; Gordon et al., 2013; Voos et al., 2013), but see
(Davidovic et al., 2016). Furthermore, a study that looked at the de-
velopment of these responses from childhood to adulthood found that a
region of the middle temporal gyrus (MTG) extending into the pSTS was
activated by affective touch as early as 5 years of age, with frontal areas
only consistently activated in adulthood (Bjornsdotter et al., 2014).

Given the limited evidence from early development, we set out to
clarify the involvement of STS and IFG in social selectivity to touch
during early infancy. We aimed to build on previous work in two ways.

First, in some studies (Saito, 2009; Kida and Shinohara, 2013) mea-
surements were restricted to a confined region of the anterior prefrontal
cortex, or to only the right (Miguel et al., 2017) or the left STS region
(Jönsson et al., 2017), which means that inferior frontal and posterior-
temporal responses in infants have not been extensively investigated.
Second, tactile stimulation in Kida and Shinohara, (2013) was delivered
to the palm of the hand, a region that lacks CT fibers (Johansson and
Vallbo, 1979; Johnson et al., 2000, Vallbo et al., 1999; Wessberg et al.,
2003; Löken et al., 2009). Third, the presentation of touch during these
studies was usually concurrent with the infant being embraced or held
by their caregiver, with the caregiver and the experimenter adminis-
tering the touch stimulus within their field of view (i.e. Jönsson et al.,
2017). Therefore, in the present study, we delivered stimuli to the
upper arm and recorded responses from the inferior frontal and the
posterior temporal cortex over both hemispheres. Since we were in-
terested in characterizing the response to the affective touch in isolation
of other social cues, we ensured that the infants did not see who was
performing the simulation. Furthermore, infants were placed in an in-
fant carrier, on parents’ lap and parents were asked to refrain from
touching the infant during the study.

We contrasted responses to affective and non-affective touch,
compared to a no tactile stimulation baseline. The affective touch was
delivered by a human hand at CT-targeted velocity. We contrasted this
with a non-affective stimulus, which was performed at the same speed
but with a metal spoon; this was designed to differ from the social af-
fective touch in temperature, the spoon being at room temperature.
Recent research had shown that CT firing and pleasantness ratings
decreased when tactile stimulation was applied at 18 °C (room tem-
perature) compared to human skin temperature (32 °C; Ackerley et al.,
2014). It was suggested that temperature may be one of the key prop-
erties of human touch, ensuring thermoregulation early in life when
infants themselves poorly regulate their body temperature (Morrison,
2016a). In this way, we sought to tease apart the relative contribution
that this factor may have on the social affective response previously
observed by manipulating the form of touch in other dimensions.
Therefore, we hypothesised that affective touch as delivered through
stroking with the hand would lead to increased activation in the pSTS-
TPJ region and in IFG, relative to the control stimulation. We chose to
investigate these responses at a similar age (5–6 months) to when
previous research has shown socially selective responses in the visual
and auditory domains. Stronger activation for affective versus non-af-
fective touch in these areas, would allow us to infer that cortical spe-
cialization to the affective components of touch is also present in early
infancy.

2. Methods

2.1. Participants

Twenty-one five-month-old infants participated in this study (8 fe-
male, mean age=160.19 days, SD=13.91). A further 8 infants par-
ticipated but were excluded from the study owing to an insufficient
number of valid trials based on behavioural coding (4) or a high level of
rejected data due to motion artifact (4). All infants were born full term
(37–42 weeks’ gestation) and with normal birth weight (> 2500 g).
This attrition rate is within the standard range for infant fNIRS studies
(see review by Lloyd-Fox et al., 2010). All parents gave written in-
formed consent before the study and the ethics committee at Birkbeck,
University of London, approved the study design.

2.2. Stimuli and design

Each stimulus trial was 10 s long (Fig. 1a). The affective touch
condition consisted of a gentle stroke, in the velocity range of 3–10 cm/
s, performed by the experimenter on the baby’s upper arm, with re-
peated stroking applied horizontally from the inner arm across to the
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outer arm. To time the presentation of the stimuli, the experimenter
listened to audio cues played in headphones which indicated the be-
ginning and the end of each trial. Each stimulus trial consisted on
average of 5 strokes (1 stroke every two seconds), given that the upper
arm of the infants in our sample had a length of 10 cm and we ad-
ministered a stroke velocity which allowed us to cover this length of
skin in 2 s. Since infants’ unpredictable movements can induce altera-
tions to this speed (if they move their arm during stimulation) the
stroke could vary in speed. Offline coding confirmed that the range of
3–10 cm/s (which is the range in which CT fibers are reported to fire
optimally), was not exceeded for any participant as the maximum
number of strokes in 10 s was never larger than 6. If the experimenter
was halfway through a stroke when the end of the trial was signaled she
would complete it, which could add an additional one-two seconds to
the duration of the stimulation. In the non-affective touch condition,
the arm was stroked by using the back of a spoon at the same speed.
Following each 10 s trial there was a period of no-touch baseline which
lasted 10 s. Half of the participants received stimulation on the right
arm, the other half on the left arm. The order of presentation of the
stimuli (hand/spoon) was counterbalanced across participants, with
half of the participants receiving the hand stimulation on the first trial,
and half the spoon stimulation, with trials alternating in an ABAB se-
quence thereafter. During the procedure participants watched a colorful
screensaver accompanied by music, to avoid them orienting to the
tactile stimulation.

2.3. Apparatus

Infants wore custom-built CBCD NIRS headgear (http://cbcd.bbk.
ac.uk/node/165) consisting of two source-detector arrays containing a
total of 26 channels (source-detector separations: 20mm). The arrays
were placed over both hemispheres and covered the inferior frontal -
temporal lobes (see Fig. 1b). Data was collected with the UCL NIRS
system (NTS2; Everdell et al., 2005). This system used 2 continuous
wavelengths of source light at 770 and 850 nm. Before the infants
began the study, measurements of their head circumference, ear to ear

lateral semi circumference, and nasion to inion were taken, and the
location of the channels and arrays relative to these anatomical land-
marks were recorded (Lloyd-Fox et al., 2014). Measurements from this
group of infants showed that the average head circumference was
43.16 cm (SD=1.81).

2.4. Procedure

The infants were held on their parent’s lap, secured in a baby car-
rier, and facing outwards towards a 117-cm plasma screen. We chose to
use the baby carrier in order to reduce the amount of tactile contact
between the parent and the baby, thus isolating the touch delivered by
the experimenter. The parent was asked to place their hands on the
carrier rather than their infant, and refrain from interacting during the
stimuli presentation unless the infant became fussy or sought their at-
tention. The experimenter stood behind the parent and the infant, and
delivered the tactile stimulations on the baby’s arm, being careful to
remain out of the baby’s sight. Events (trial onset and offset) were
marked on-line by a second experimenter observing the first experi-
menter on a computer monitor. The experiment ended when the infants
became fussy. Each session was recorded using a video camera placed
just below the screen, and infant behaviour was coded offline.

2.5. Data processing and analysis

The fNIRS system measured changes in the amount of light that was
emitted from the sources, and detected by neighbouring detectors.
These changes in light attenuation were used to calculate changes in
oxy– (HbO2) and deoxy–haemoglobin (HHb) chromophore concentra-
tion (μMol) which are haemodynamic indicators of neural activity
(Obrig and Villringer, 2003). Prior to conversion to concentration data,
the attenuation measurements for each infant were analysed and
channels were rejected from further analysis based on the quality of the
intensity signals, using artifact detection algorithms (Lloyd-Fox et al.,
2010, 2009). In line with previous work, channels were excluded if the
coefficient of variation of the attenuation exceeded 10% or if the

Fig. 1. a) Experimental design: the stroking was performed using a spoon or a hand; experimental and baseline periods were 10 s long. b) A schematic showing the
location of the channels relative to the 10–20 coordinates.

L. Pirazzoli, et al. Developmental Cognitive Neuroscience 35 (2019) 28–35

30

http://cbcd.bbk.ac.uk/node/165
http://cbcd.bbk.ac.uk/node/165


normalized power was larger than 50% with respect to the total power
(Lloyd-Fox et al., 2009). The attenuation signal was low-pass filtered
using a cut-off frequency of 1.7 Hz. Following this, the data was seg-
mented into blocks of 24 s of data consisting of 4 s of the baseline prior
to the onset of the tactile stimulation, 10 s of tactile stimulation, plus
the following 10 s’ baseline. Each block of attenuation data was de-
trended with a linear fit between the average of the first and the
average of the last 4 s to remove drifts in the signal. The attenuation
data was then converted into changes in concentration (μMol) in HbO2

and HHb using the modified Beer–Lambert law (Delpy et al., 1988) and
assuming a differential path length factor for infancy (5.13; based on
Duncan et al., 1995). Following this, trials were assessed both with
motion detection algorithms and offline coding of infant behaviour.
Trials were firstly removed if during the 4 s’ baseline prior to the onset
of the stimulus trial there were concentration changes greater than +/-
3 μMol, and if during the stimulus trial itself changes exceeded +/- 5
μMol (these thresholds were set at different levels to take into account
changes in haemoglobin levels caused by activation during stimula-
tion). In addition, experimental trials were removed following offline
coding of infant behaviour. A trial was removed if: a) the infant moved
to a degree that it prevented the experimenter from completing a suf-
ficient number of strokes b) the infant turned to look either at the
parent or the experimenter c) the parent interfered by either talking to
or touching the infant. Not looking at the screen did not constitute a
criterion for exclusion. Across the whole group, we rejected individual
data on only three occasions because of an infant’s movement, and on
one occasion because of parent interference. Further details of the
number of presented and valid trials, for those infants included in
analysis, can be found in Table 1. For each infant, a channel was in-
cluded in the statistical analysis if it contained at least three valid ar-
tifact-free trials per condition. It follows that at the group level not all
infants contributed data to each channel. In addition, to include an
infant in the final dataset a minimum of two thirds of the channels
within the arrays were required to have valid data (i.e. not rejected
during artifact detection algorithms).

Valid trials for each experimental condition (affective touch, non-
affective touch) were averaged together for each infant, and a time
course of the mean change in HbO2 and HHb concentration changes
was compiled for each channel. A baseline of 1 s of data pre-stimulus
onset was subtracted from the signal. Two time windows were selected
for analysis, between 1 and 5 s and between 5 and 9 s post-stimulus
onset. These periods of time were selected to include the range of
maximum concentration changes observed across infants for HbO2 and
HHb. Either a significant increase in HbO2 concentration from baseline
or a significant decrease in HHb is commonly accepted as an indicator
of cortical activation in infant work (Lloyd-Fox et al., 2010).

A preliminary channel-by-channel analysis was run to identify those
channels that responded to touch, irrespective of condition. This was
achieved by comparing the response to the experimental trials to the
pre-stimulus signal across all infants, using the valid data for each

channel. Statistical comparisons (two tailed t-tests) were performed, to
compare the maximum signal change during the specified experimental
trial time windows, with the averaged pre-stimulus signal (4 s pre-
onset). To account for errors due to multiple comparisons, p-values
were corrected using a MATLAB false discovery rate (FDR) function
(Benajmini and Hochberg, 1995).

Channels that survived FDR corrections together with the homo-
logous channel in the opposite hemisphere were analysed using linear
mixed models (LMM) to account for side of stimulation and hemi-
spheric effects. For each pair of channels, a linear mixed model was run,
with hemisphere (right, left), stimulus (hand, spoon) and time-window
(1–5 s, 5–9 s) as repeated measures factors, and side of stimulation
(right, left) as between-subjects factor. We chose to use the LMM ap-
proach because of missing values occurring due to subjects not con-
tributing data to some of the channels. LMMs use maximum likelihood
estimation to handle missing values as compared to standard factorial
analysis, where any subject not contributing data to all channels would
be excluded from the analysis.

3. Results

In an initial channel-by-channel analysis of the fNIRS data, t-tests
compared the averaged hemodynamic peak changes in HbO2 and HHb
(during the time windows of activation described in the methods)
evoked by the hand and spoon conditions to a baseline consisting of the
4 s preceding the stimulus, in which no touch was applied. Here we
report only the channels that showed significant increases in HbO2;
HHb results can be found in the supplementary materials (SOM, Fig. 1).
The hand condition revealed significant increases in HbO2 in three
channels (ch. 3, 9, 10) in the left hemisphere, in the first time-window
post stimulus onset (1–5 s), while the spoon condition revealed sig-
nificant increases in HbO2 in four channels (ch. 5, 9, 20, 14) bilaterally
in the second time-window post stimulus onset (5–9 s) (see Fig. 2). All
channels reported here survived FDR corrections (see Table 2 for a
complete list of channels). It is worth noting that whilst no channels
survived FDR corrections for the hand condition in the second time-
window (from 5 to 9 s), six channels showed an uncorrected significant
(p < 0.05) increase in response to the hand relative to baseline, in-
cluding channel 3 and 9 (see Table 2).

We used the standardized scalp surface map of fNIRS channel co-
ordinates within the frontal and temporal lobes specific to 4–7 months
old infants (Lloyd-Fox et al., 2014), to identify the most likely cortical
regions generating the observed effects in the FDR corrected channels.
Channels in which hand elicited a response (versus baseline) are posi-
tioned approximately over regions of the left IFG (ch.3) and left pSTS-
TPJ (ch. 9, 10), while spoon touch elicited a bilateral response over-
laying regions of the right IFG (ch. 14), bilateral pSTS-TPJ (ch. 9, 20)
and left precentral gyrus (ch. 5).

To investigate hemispheric differences between the two conditions,
each of the channels showing significant HbO2 response to either sti-
muli was paired with the homologous channel in the opposite hemi-
sphere, resulting in four pairs: pair1(ch. 14 and 3), pair2 (ch. 20 and 9),
pair3(ch. 15 and 5), pair4 (ch. 22 and 10), and analysed using LMMs.

For pair1 (IFG) we found a main effect of hemisphere (F(1,
20.951)= 4.926, p=0.037), with greater activation in the left
(M= .640, SE= .137) compared to the right hemisphere (M= .360,
SE= .102), and a significant interaction between hemisphere and sti-
mulus (F(1, 21.182)= 5.199, p= .033). Post-hoc t-test revealed that
the hand elicited a response in the left but not in the right hemisphere
(t= 2.068, p= .053) while there were no hemispheric differences for
the response to the spoon, (t= .383, p= .706) (for the time courses of
these channels see Fig. 3, left panel). Neither of the other two factors
included in the analysis, time-window and side of stimulation, did yield
to significant effects (time-window: F(1, 74.797)= .001, p= .889; side
of stimulation: F(1,24.498)= .016, p= .91).

For pair2 (pSTS-TPJ), we found a significant interaction between

Table 1
Participants’ information. The number of valid trials refers to the number of
trials included in the analysis after off-line coding of the infant’s behavior
during the study. The first number refers to the mean value across the group
and the bracketed number refers to the standard deviation.

experiment 1

n 21
age (days) 160.19(13.91)
female/male 8:13
head circumference (cm) 43.16(1.81)
number of trials completed 10.87 (1.90)
valid trials 10.61 (2.01)
valid trials in affective touch condition 5.23 (1.09)
valid trials in non-affective touch condition 5.38 (0.97)
number of rejected channels per infant 0
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hemisphere and stimulus (F(1, 34.994)= 6.639, p= .014) with both
stimuli eliciting responses in both hemispheres but the hand activated
the right hemisphere to a lesser degree than the left. However, this
hemispheric difference, which can be observed in Fig. 3 (right panel),
did not reach statistical significance (t= 1.46, p= .160). Also in this
analysis, neither time-window (F(1, 52.270)= 1.242, p= .270) nor
side of stimulation (F(1, 20.901)= .471, p= .5) yielded to significant
effects.

Analysis of the remaining two pairs yielded no main effects nor
significant interactions (p > .2).

4. Discussion

The aim of the present study was to investigate the development of
responses to affective touch in regions of the frontal and temporal
cortex in infancy: specifically, we aimed to investigate whether infants
exhibited selective cortical responses to the processing of affective
components of tactile stimulation by five months of age. Using fNIRS,
we focussed on two regions of the cortex known to be selective to visual
and auditory social stimuli in infancy - and that have been shown to
activate in recent affective touch studies in infancy and adulthood

(Gordon et al., 2013; Jönsson et al., 2017; Voos et al., 2013; for a recent
meta-analysis see Morrison, 2016a,b) - the inferior frontal and posterior
superior temporal cortex.

Our choice of stimulus contrast was informed by research sug-
gesting CT-fibers, present in human hairy skin, mediate the perception
of affective touch. We hypothesised that the human hand (affective
touch stimulus) will generate increased responses in regions of the
pSTS-TPJ and IFG, compared to stroking with a metallic spoon, a sti-
mulus with sub-optimal temperature (Ackerley et al., 2014). Contrary
to our prediction, we found that both the hand and the spoon stimu-
lation elicited a significant cortical response relative to baseline over
these regions.

Exploratory analyses (channel-by-channel t-tests) revealed differ-
ences in the latency of the peak response, with only the response to the
hand differing from baseline in the early time window; however this
was not a significant factor in the main linear mixed model analyses.
Rather, an interaction between hemisphere and stimulus was observed.
The non-affective stimulus (spoon) elicited IFG and pSTS-TPJ responses
bilaterally, while responses to the hand were left lateralized in the in-
ferior frontal (minimal responses observed over right IFG) and posterior
temporal regions (with a reduced response observed over right pSTS-

Fig. 2. A schematic view of the NIRS arrays showing HbO2 responses to the hand (top panel) and to the spoon (bottom panel). Channels marked in bright orange
revealed a significant response in the 1–5 s time-window to the hand versus baseline. Channels marked in pale green revealed a significant response in the 5–9 s time-
window to the spoon versus baseline.
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TPJ). Note that this hemispheric difference was not a main driver of the
results as it was found to have borderline significance. This more lo-
calized response to the hand, if replicated, could indicate that at this
age specialization and localization of cortical processing of affective
touch are ongoing.

The only other two studies to date that measured posterior temporal
cortex activation to affective and non-affective touch support our
findings. In line with our results, they reported differential activation to

affective versus non-affective touch in the left (Jönsson et al., 2017) but
not the right hemisphere (Miguel et al., 2017). However, it is hard to
draw firm conclusions regarding lateralization from these findings as
both studies restricted measurement to one hemisphere. Also, direct
comparison of hand and spoon stimulation in our study, did not reveal
statistically significance differences in either hemisphere. Thus, al-
though some trend differences were observed between the two stimuli,
they remain to be confirmed.

Table 2
Significant activations from baseline in Hand and Spoon conditions. * indicates that the response survived the false discovery rate (FDR) correction.

Hand > Baseline Spoon > Baseline

Ch HbO2/HHb TW t p df d Ch HbO2/HHb TW t p df d
1 HbO2 1-5 2.45 0.025 18 0.53 3 HbO2 1-5 2.13 0.048 18 0.46
3* HbO2 1-5 3.07 0.007 18 0.67 3 HbO2 5-9 2.17 0.044 18 0.47
3 HbO2 5-9 2.32 0.032 19 0.51 5 HbO2 1-5 3.08 0.006 18 0.67
5 HbO2 1-5 2.33 0.031 19 0.51 5* HbO2 5-9 3.74 0.002 18 0.82
5 HbO2 5-9 3.53 0.002 19 0.77 9 HbO2 1-5 2.74 0.013 20 0.60
9* HbO2 1-5 3.42 0.003 19 0.75 9* HbO2 5-9 4.09 0.001 20 0.89
9 HbO2 5-9 2.67 0.015 19 0.58 11 HbO2 5-9 2.69 0.014 19 0.59
10* HbO2 1-5 3.62 0.002 20 0.79 12 HbO2 5-9 2.29 0.033 20 0.47
11 HbO2 5-9 2.18 0.041 20 0.48 14 HbO2 1-5 2.45 0.023 20 0.67
15 HbO2 1-5 2.38 0.028 20 0.52 14* HbO2 5-9 3 0.007 20 0.82
16 HbO2 5-9 2.09 0.05 20 0.46 15 HbO2 5-9 2.38 0.027 20 0.60
19 HbO2 5-9 2.09 0.049 20 0.46 20 HbO2 1-5 2.83 0.01 20 0.89
20 HbO2 1-5 2.74 0.013 20 0.60 20* HbO2 5-9 3.7 0.001 20 0.59
22 HbO2 1-5 2.31 0.032 20 0.50 21 HbO2 5-9 2.83 0.01 20 0.50
14 HHb 1-5 −2.4 0.026 20 −0.52 26 HbO2 1-5 2.13 0.046 20 0.54
14 HHb 5-9 −3.3 0.004 20 −0.72 3* HHb 5-9 −3.01 0.008 18 0.66
15 HHb 5-9 −2.65 0.016 20 −0.58 9 HHb 5-9 −2.33 0.03 20 0.52
21 HHb 5-9 −2.36 0.028 20 −0.52 10* HHb 5-9 −4.07 0.001 20 0.62

11 HHb 5-9 −2.26 0.036 19 0.81
12 HHb 5-9 −2.4 0.026 20 0.62
14* HHb 5-9 −4.73 < 0.001 20 0.46
15* HHb 5-9 −3.26 0.004 20 −0.66
16* HHb 5-9 −2.65 0.015 20 −0.51
19 HHb 5-9 −2.23 0.038 20 −0.89
21* HHb 5-9 −3.09 0.006 20 −0.49
22* HHb 5-9 −2.92 0.008 20 −0.52
23 HHb 5-9 −2.42 0.025 20 −1.03
24* HHb 5-9 −2.85 0.01 19 −0.58

Fig. 3. Grand averages of haemodynamic time courses within channels that showed significant responses, and are centered within two key areas known to respond to
affective touch: IFG (Ch. 3 left and Ch. 14 right) and pSTS-TPJ (Ch. 9 left and Ch. 20 right). Error bars represent standard error.
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What could explain the differences between our findings and those
of Jönsson and colleagues? One difference lies in the nature of the
contrast investigated, as Jönsson and colleagues compared slow and
fast velocity stroking. It is possible that while cortical specialization to
touch velocity is already evident shortly after birth, sensitivity to
human body temperature may take more time to develop. Texture,
another critical aspect of affective touch, also shows protracted cortical
specialisation. Kida and Shinohara (2013) showed increased responses
to pleasant touch, over the anterior prefrontal cortex in 10-month-olds,
but not in 3 and 6 months-old infants. In the auditory domain as well,
selective responses to voice stimuli develop between 4–7 months of age,
with non-voice selective responses still present in some infants at 7
months (Grossmann et al., 2010; Blasi et al., 2011; Lloyd-Fox et al.,
2012). Moreover, late specialisation of the temporal lobe has already
been reported for other aspects of social perception, such as increased
specificity for biological motion in the STS and face selectivity in the
ventral visual cortex (e.g Carter and Pelphrey, 2006; Scherf et al.,
2007).

What may contribute to these differential patterns of social specia-
lization seen within, and across, different sensory modalities? One ex-
planation is that during early development infants are more likely to
show cortical specialisation to social stimuli in the presence of multi-
modal stimulation. In the study by Jönsson and colleagues, the infants
were held in their parents arms and concurrent visual cues were present
as they were able to observe the person and their stroking action. This
contrasts with the experimental setup of the current study, where we
intentionally removed other cues so as to investigate the unique con-
tribtion that temperature has, in the processing of affective touch. In
previous fNIRS research investigating temporal lobe activation to
communicative cues in a similar live setting, we found higher activation
when a combination of visual and auditory ostensive singals were used
(Lloyd-Fox et al., 2015). One possibility is that specialization to in-
dividual components of social stimuli develops slowly and is facilitated
by exposure to multi-modal input. Auditory or tactile stimuli might
need to be experienced in conjunction with their visual manifestation
(i.e. someone talking to or caressing the child), for enhanced responses
to be evident in pSTS, a region described as a multi-modal hub. It may
also be that, at least as specialization develops in childhood, the pre-
sence of multi-modal information is necessary for selective responses to
be observed in experimental situations. Selective responses have been
observed in adults to isolated presentation of affective touch (Gordon
et al., 2013; Voos et al., 2013). However, it is prescient that this re-
sponse is highly sensitive to top-down cognitive factors (e.g. who is
providing the touch; for a review see Ellingsen et al., 2016).

4.1. Limitations

An inherent limitation to using fNIRS is the fact that we could only
measure responses to touch from the surface of the cortex. Therefore we
don’t know whether the posterior insula, a subcortical region involved
in processing affective touch in children, adolescents and adults,
(Bjornsdotter et al., 2014; Olausson et al., 2010) is selective to affective
touch in 5-months-old infants. In infancy, insular activation in response
to slow stroking was recently reported both in newborns using fMRI
(Tuulari et al., 2017) and in 2-month-old infants using diffuse optical
tomography (DOT) (Jönsson et al., 2017). Therefore, it’s possible that a
discriminatory response was present at the depth of the insula, but that
the technique used for the present study did not allow us to measure it.

Another limitation concerns the degree of control we had over the
delivery of the tactile stimulation. Notably, pressure applied through
the hand during the affective touch condition might have been different
from pressure applied with the spoon. Even though we strived to
maintain pressure as consistent as possible across stimuli via gentle
application and by checking for deeper skin indentation as a con-
sequence of more pressure, slight differences may have still occurred.
Pressure is easy to control when applying stimulation mechanically

(Löken et al., 2009; Olausson et al., 2002), but much more difficult to
control when using naturalistic stimulation, such as when using the
prototypical affective touch stroking with the human hand. We note,
however, that increased pressure was previously shown to elicit
stronger responses in the somatosensory system, but not in areas that
encoded the pleasantness of the stimuli (Francis et al., 1999).

5. Conclusion

We aimed to identify a neural signature of affective touch (defined
here as CT-targeted touch) in 5-month-old infants, by contrasting it
with a non-CT-optimal tactile stimulus, differing in temperature.
However, in contrast with our hypothesis, we found no increased re-
sponses for affective versus non-affective touch in pSTS-TPJ or IFG
regions. Further studies will aim to clarify whether selectivity of cor-
tical responses emerges later in development, or whether a multi-modal
social context is required in order to elicit differential responses at this
young age.
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