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Abstract: Convolutional neural network (CNN)-based computer vision systems have been increas-
ingly applied in animal farming to improve animal management, but current knowledge, practices,
limitations, and solutions of the applications remain to be expanded and explored. The objective of
this study is to systematically review applications of CNN-based computer vision systems on animal
farming in terms of the five deep learning computer vision tasks: image classification, object detec-
tion, semantic/instance segmentation, pose estimation, and tracking. Cattle, sheep/goats, pigs, and
poultry were the major farm animal species of concern. In this research, preparations for system de-
velopment, including camera settings, inclusion of variations for data recordings, choices of graphics
processing units, image preprocessing, and data labeling were summarized. CNN architectures were
reviewed based on the computer vision tasks in animal farming. Strategies of algorithm development
included distribution of development data, data augmentation, hyperparameter tuning, and selection
of evaluation metrics. Judgment of model performance and performance based on architectures were
discussed. Besides practices in optimizing CNN-based computer vision systems, system applications
were also organized based on year, country, animal species, and purposes. Finally, recommendations
on future research were provided to develop and improve CNN-based computer vision systems for
improved welfare, environment, engineering, genetics, and management of farm animals.

Keywords: deep learning; convolutional neural network; computer vision system; animal farming

1. Introduction

Food security is one of the biggest challenges in the world. The world population
is projected to be 9.2 billion in 2050 [1]. As livestock and poultry contribute to a large
proportion (~30% globally) of daily protein intake through products like meat, milk,
egg, and offal [2], animal production is predicted to increase accordingly to feed the
growing human population. Based on the prediction by Yitbarek [3], 2.6 billion cattle,
2.9 billion sheep and goats, 1.1 billion pigs, and 37.0 billion poultry will be produced in
2050. As production is intensified to meet the increased demands, producers are confronted
with increasing pressure to provide quality care for increasing number of animals per
management unit [4]. This will become even more challenging with predicted labor
shortages for farm jobs in the future [5]. Without quality care, some early signs of animal
abnormalities may not be detected timely. Consequently, productivity and health of animals
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and economic benefits of farmers may be compromised [6]. Supportive technologies for
animal farming are therefore needed for data collection and analysis and decision-making.
Precision livestock farming (PLF) is the development and utilization of technologies to
assist animal production and address challenges of farm stewardship.

The term “PLF” was proposed in the 1st European Conference on Precision Livestock
Farming [7]. Since then, the concept has widely spread in animal production, and PLF-
related technologies have been increasingly developed. Tools adopting the PLF concept
feature continuous and real-time monitoring and/or big data collection and analysis
that serve to assist producers in management decisions and provide early detection and
prevention of disease and production inefficiencies [8]. PLF tools also offer objective
measures of animal behaviors and phenotypes as opposed to subjective measures done by
human observers [9,10], thus avoiding human observation bias. These tools can help to
provide evidence-based strategies to improve facility design and farm management [11].
As these precision tools offer many benefits to advance animal production, efforts have
been dedicated to developing different types of PLF tools. Among them, computer vision
systems are ones of the popular tools utilized in animal sector.

The advantages of computer vision systems lie in non-invasive and low-cost animal
monitoring. As such, these systems allow for information extraction with minimal external
interferences (e.g., human adjustment of sensors) at an affordable cost [12]. The main
components of a computer vision system include cameras, recording units, processing
units, and models (Figure 1). In an application of a computer vision system, animals (e.g.,
cattle, sheep, pig, poultry, etc.) are monitored by cameras installed at fixed locations, such
as ceilings and passageways, or onto mobile devices like rail systems, ground robots, and
drones. Recording units (e.g., network video recorder or digital video recorder) acquire
images or videos at different views (top, side, or front view) and various types (e.g., RGB,
depth, thermal, etc.). Recordings are saved and transferred to processing units for further
analysis. Processing units are computers or cloud computing servers [e.g., Amazon Web
Servers, Azure of Microsoft, etc.]. In some real-time applications, recording and processing
units may be integrated as the same units. Models in processing units are used to extract
information of interest and determine the quality of results, thus being the core components
in computer vision systems.
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Figure 1. Schematic drawing of a computer vision system for monitoring animals.

Conventionally, processing models are created using image processing methods, ma-
chine learning algorithms, or combinations of the two. Image processing methods extract
features from images via image enhancement, color space operation, texture/edge detec-
tion, morphological operation, filtering, etc. Challenges in processing images and videos
collected from animal environments are associated with inconsistent illuminations and
backgrounds, variable animal shapes and sizes, similar appearances among animals, animal
occlusion and overlapping, and low resolutions [13]. These challenges considerably affect
the performance of image processing methods and result in poor algorithm generalization
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for measuring animals from different environments. Machine learning-based techniques
generally consist of feature extractors that transform raw data (i.e., pixel values of an
image) into feature vectors and learning subsystems that regress or classify patterns in the
extracted features. These techniques generally improve the generalizability but still cannot
handle complex animal housing environments. In addition, constructing feature extractors
requires laborious adjustment and considerable technical expertise [14], which limits wide
applications of machine learning-based computer vision systems in animal farming.

Deep learning techniques, further developed from conventional machine learning,
are representation-learning methods and can discover features (or data representation)
automatically from raw data without extensive engineering knowledge on feature ex-
traction [14]. This advantage makes the methods generalized in processing images from
different animal farming environments. A commonly-used deep learning technique is the
convolutional neural network (CNN). CNNs are artificial neural networks that involve
a series of mathematical operations (e.g., convolution, initialization, pooling, activation,
etc.) and connection schemes (e.g., full connection, shortcut connection, plain stacking,
inception connection, etc.). The most significant factors that contribute to the huge boost
of deep learning techniques are the appearance of large, high-quality, publicly-available
datasets, along with the empowerment of graphics processing units (GPU), which enable
massive parallel computation and accelerate training and testing of deep learning mod-
els [15]. Additionally, the development of transfer learning (a technique that transfers
pretrained weights from large public datasets into customized applications) and appear-
ance of powerful frameworks (e.g., TensorFlow, PyTorch, Theano, etc.) break down barriers
between computer science and other sciences, including agriculture science, therefore
CNN techniques are increasingly adopted for PLF applications. However, the status quo
of CNN applications for animal sector has not been thoroughly reviewed, and questions
remain to be addressed regarding the selection, preparation, and optimization of CNN-
based computer vision systems. It is thus necessary to conduct a systematic investigation
on CNN-based computer vision systems for animal farming to better assist precision
management and future animal production.

Previous investigators have reviewed CNNs used for semantic segmentation [16],
image classification [17], and object detection [18] and provided information on de-
velopment of CNN-based computer vision systems for generic purposes, but none of
these reviews has focused on agriculture applications. Some papers focused on CNN-
based agriculture applications [19–21], but they were only related to plant production
instead of animal farming. Okinda et al. [13] discussed parts of CNN-based applications
in poultry farming, however, other species of farm animals were left out. Therefore,
the objective of this study was to investigate and review CNN-based computer vision
systems in animal farming. Specifically, Section 2 provides some general background
knowledge (e.g., definitions of farm animals, computer vision tasks, etc.) to assist in the
understanding of this research review. Section 3 summarizes preparations for collecting
and providing high-quality data for model development. Section 4 organizes CNN
architectures based on various computer vision tasks. Section 5 reviews strategies of
algorithm development in animal farming. Section 6 studies performance judgment and
performance based on architectures. Section 7 summarizes the applications by years,
countries, animal species, and purposes. Section 8 briefly discusses and foresees trends
of CNN-based computer vision systems in animal farming. Section 9 concludes the
major findings of this research review.

2. Study Background

In this section, we provide some background knowledge that is missed in Section 1
but deemed critical for understanding this research.
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2.1. Definition of Farm Animals

Although “poultry” is sometimes defined as a subgroup under “livestock”, it is treated
separately from “livestock” in this study according to the definition by the Food and
Agriculture Organization of the United States [22]. Livestock are domesticated mammal
animals (e.g., cattle, pig, sheep, etc.), and poultry are domesticated oviparous animals (e.g.,
broiler, laying hen, turkey, etc.). The investigated farm animals are as follows since they
are major contributors for human daily food products.

• Cattle: a common type of large, domesticated, ruminant animals. In this case, they
include dairy cows farmed for milk and beef cattle farmed for meat.

• Pig: a common type of large, domesticated, even-toed animals. In this case, they are
sow farmed for reproducing piglets, piglet (a baby or young pig before it is weaned),
and swine (alternatively termed pig) farmed for meat.

• Ovine: a common type of large, domesticated, ruminant animals. In this case, they
are sheep (grazer) farmed for meat, fiber (wool), and sometimes milk, lamb (a young
sheep), and goat (browser) farmed for meat, milk, and sometimes fiber (wool).

• Poultry: a common type of small, domesticated, oviparous animals. In this case,
they are broiler farmed for meat, laying hen farmed for eggs, breeder farmed for
reproducing fertilized eggs, and pullet (a young hen).

This review mainly focuses on monitoring the whole or parts of live animals in farms,
since we intended to provide insights into animal farming process control. Other studies
related to animal products (e.g., floor egg) or animal carcasses were not considered in
this study.

2.2. History of Artificial Neural Networks for Convolutional Neural Networks in Evaluating
Images/Videos

Development of artificial neural networks for CNNs or deep learning has a long
history (Figure 2). In 1958, Rosenblatt [23] created the first perceptron that contained one
hidden layer, activation function, and binary outputs to mimic how a brain perceived
information outside. However, due to primitive computing equipment and an inability to
accommodate solutions to non-linear problems, the development of machine learning did
not appreciably advance. In 1974, Webos introduced backpropagation into a multi-layer
perceptron in his PhD dissertation to address non-linearities [24], which made significant
progress in neural network development. Rumelhart et al. [25] continued to research
backpropagation theory and proposed critical concepts, such as gradient descent and
representation learning. Fukushima and Miyake [26] further generated the Neocognitron
Network that was regarded as the ancestor of CNNs.
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computer vision. DBN is deep brief network, GPU is graphics processing unit, DBM is Deep Boltzmann Machine, CNN
is convolutional neural network, LeNet is a CNN architecture proposed by Yann LeCun, AlexNet is a CNN architecture
designed by Alex Krizhevsky, VGGNet is Visual Geometry Group CNN, GoogLeNet is improved LeNet from Google,
ResNet is residual network, faster R-CNN is faster region-based CNN, DenseNet is densely CNN, and mask R-CNN is
mask region-based CNN. The CNN architectures after 2012 are not limited in this figure, and the selected ones are deemed
influential and have at least 8000 citations in Google Scholar.
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LeCun et al. [27] were the first to design a modern CNN architecture (LeNet) to
identify handwritten digits in zip codes, and the network was reading 10–20% of all the
checks in the US. That started the era of CNNs in computer visions. However, very deep
neural networks suffered from the problems of gradients vanishing or exploding and could
only be applied in some simple and organized conditions. Meanwhile, machine learning
classifiers (e.g., support vector machine) outperformed CNN with regard to computational
efficiency and ability to deal with complex problems [28]. To overcome the drawback of
CNNs, Geoffrey E. Hinton, known as one of the godfathers of deep learning, insisted on the
research and proposed an efficient learning algorithm (deep brief network) to train deep
networks layer by layer [29]. The same research team also constructed the Deep Boltzmann
Machine [30]. These ushered the “age of deep learning”. Additionally, Raina et al. [31]
pioneered the use of graphics processing units (GPU) to increase the training speed of
networks, which was 72.6 times faster at maximum than central processing unit (CPU) only.
In the same year, the largest, publicly-available, annotated dataset, ImageNet, was created
to encourage CNN development in computer vision [32]. With these well-developed
conditions, Krizhevsky et al. [33] trained a deep CNN (AlexNet) to classify the 1.2 million
high-resolution images in the 2012 ImageNet Classification Challenge and significantly
improved the top-5 classification accuracy from 74.2% to 84.7%.

Since then, artificial intelligence has entered its golden age. Excellent architectures for
image classification from 2014 to 2017 were developed, such as Visual Geometry Group
CNN (VGGNet) [34], improved LeNet from Google (Google, LLC, Mountain View, CA,
USA) abbreviated as GoogLeNet [35], Residual Network (ResNet) and its variants [36],
faster region-based CNN (faster R-CNN) [37], mask region-based CNN (mask R-CNN) [38],
and Densely CNN (DenseNet) [39]. These CNNs dramatically improved algorithm perfor-
mance in computer vision because of efficient mathematical operations (e.g., 3 × 3 kernel)
and refined connection schemes (e.g., Inception modules, Shortcut connection, and Dense
block, etc.). With these improvements, CNN can even outperform humans to classify
millions of images [40].

2.3. Computer Vision Tasks

Current public datasets are mainly for six computer vision tasks or challenges: image
classification, object detection, semantic segmentation, instance segmentation, pose esti-
mation, and tracking (Figure 3), so that researchers can develop corresponding models to
conduct the tasks and tackle the challenges. As semantic segmentation and instance seg-
mentation have many similarities, they were combined as semantic/instance segmentation,
resulting in the major five computer vision tasks in this study. Image classification is to
classify an image as a whole, such as five hens in an image (Figure 3a) [17]. Object detection
is to detect and locate individual objects of concern and enclose them with bounding boxes
(Figure 3b) [18]. Semantic segmentation is to segment objects of concern from a background
(Figure 3c) [16]. Instance segmentation is to detect and segment object instances marked
as different colors (Figure 3d) [16]. As semantic/instance segmentation assigns a label to
each pixel of an image, it is also categorized as a dense prediction task. Pose estimation is
to abstract individual objects into key points and skeletons and estimate poses based on
them (Figure 3e) [15]. Tracking is to track objects in continuous frames based on changes of
geometric features of these objects, and typically object activity trajectories are extracted
(Figure 3f) [15]. In this research summary, even though some applications may involve
multiple computer vision tasks during intermediate processes, they were categorized only
based on ultimate outputs.



Sensors 2021, 21, 1492 6 of 44
Sensors 2021, 21, 1492 6 of 42 
 

 

 
Figure 3. Example illustrations of six computer vision tasks. The semantic and instance segmentations were combined as 
semantic/instance segmentation due to many similarities, resulting in the major five computer vision tasks throughout the 
study. 

2.4. “Convolutional Neural Network-based” Architecture 
The “CNN-based” means the architecture contains at least one layer of convolution 

for processing images (Figure 4a,b). In fact, the investigated applications may include 
other advanced deep learning techniques in computer vision, such as long short-term 
memory (LSTM) and generative adversarial network (GAN). 

 
Figure 4. Example illustrations of (a) a convolutional neural network and (b) a convolution with 
kernel size of 3 × 3, stride of 1, and no padding. 

  

Figure 3. Example illustrations of six computer vision tasks. The semantic and instance segmentations
were combined as semantic/instance segmentation due to many similarities, resulting in the major
five computer vision tasks throughout the study.

2.4. “Convolutional Neural Network-Based” Architecture

The “CNN-based” means the architecture contains at least one layer of convolution
for processing images (Figure 4a,b). In fact, the investigated applications may include other
advanced deep learning techniques in computer vision, such as long short-term memory
(LSTM) and generative adversarial network (GAN).
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kernel size of 3 × 3, stride of 1, and no padding.

2.5. Literature Search Term and Search Strategy

For this investigation, the literature was collected from six resources: Elsevier Sci-
enceDirect, IEEE Xplore Digital Library, Springer Link, ASABE Technical Library, MDPI
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Database, and Google Scholar. The keywords for the retrieval included “deep learning”,
“CNN”, “convolutional neural network”, “computer vision”, “livestock”, “poultry”, “cow”,
“cattle”, “sheep”, “goat”, “pig”, “laying hen”, “broiler”, and “turkey”. By 28 October, 2020,
a total of 105 references were found and summarized in this study. It should be noted that
there can be missing information or multiple settings in specific references, therefore, the
sum of number of reviewed items in Figures 5–12 could not exactly be 105.
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Table 2. Available labeling tools for different computer vision tasks. 

Computer Vision Task Tool Source Reference 

Object detection 

LabelImg GitHub [133] (Windows version) [71,91,134], etc. 
Image Labeler MathWorks [135] [131] 
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Tracking 
KLT tracker GitHub [144] [88] 
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Video Labeler MathWorks [146] [68] 
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PASCAL visual object class. COCO is common objects in context. “Transfer learning” means
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learning. Other datasets are motion analysis and re-identification set (MARS) and action recognition
dataset (UCF101).
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MOTP 
∑ 𝑑,∑ 𝑐  

Evaluation of location of tracking objects over time. t is time index of frames; i 
is index of tracked objects; d is distance between target and ground truth; and c 

is number of ground truth 
[88] 

OTP 
∑ 𝐵𝑜𝑥𝑒𝑠 ,∑ 𝐵𝑜𝑥𝑒𝑠 ,  

Evaluation of tracking objects in minimum tracking units (MTU). 𝐵𝑜𝑥𝑒𝑠 ,  
is the number of bounding boxes in the first frame of the ith MTU; 𝐵𝑜𝑥𝑒𝑠 ,  

is the number of bounding boxes in the last frame of the ith MTU. 
[72] 

Overlap over 
time 

— Evaluation of length of objects that are continuously tracked [75] 

Note: AP is average precision; AUC is area under curve; COCO is common objects in context; FP is false positive; FN is 
false negative; IOU is intersection over union; MCC is Matthews correlation coefficient; MOTA is multi-object tracker 
accuracy; MOTP is multi-object tracker precision; OTP is object tracking precision; PDJ is percentage of detected joints; 
PCKh is percentage of correct key points according to head size; RMSE is root mean square error; TP is true positive; and 
TN is true negative. “—” indicates missing information. 

Existent metrics sometimes may not depict the performance of interest in some ap-
plications, and researchers need to combine multiple metrics. Seo et al. [89] integrated 
average precision and processing speed to comprehensively evaluate the models based 
on the tradeoff of these two metrics. They also combined these two metrics with device 
price and judged which models were more computationally and economically efficient. 
Fang et al. [75] proposed a mixed tracking metric by combining overlapping area, failed 
detection, and object size. 

6. Performance 
6.1. Performance Judgment 

Model performance should be updated until it meets the expected acceptance crite-
rion. Maximum values of evaluation metrics in the 105 publications are summarized in 
Figure 11. These generic metrics included accuracy, specificity, recall, precision, average 
precision, mean average precision, F1 score, and intersection over union. They were se-
lected because they are commonly representative as described in Table 8. One publication 
can have multiple evaluation metrics, and one evaluation metric can have multiple values. 
Maximum values were selected since they significantly influenced whether model perfor-
mance was acceptable and whether the model was chosen. Most researchers accepted per-
formance of over 90%. The maximum value can be as high as 100% [69] and as low as 34.7% 
[92]. Extremely high performance may be caused by overfitting, and extremely low per-
formance may be resulted from underfitting or lightweight models. Therefore, these need 
to be double-checked, and models need to be developed with improved strategies.  

 
Figure 11. Frequency of value of evaluation metrics in the 105 publications. Metrics include, but 
are not limited to, accuracy, specificity, recall, precision, average precision, mean average preci-
sion, F1 score, and intersection over union. Number near a round bracket is not included in spe-
cific ranges while number near square bracket is. 

  

Figure 11. Frequency of value of evaluation metrics in the 105 publications. Metrics include, but are
not limited to, accuracy, specificity, recall, precision, average precision, mean average precision, F1
score, and intersection over union. Number near a round bracket is not included in specific ranges
while number near square bracket is.
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7.1. Number of Publications Based on Years  
The first publication of CNN-based computer vision systems in animal farming ap-

peared in 2015 (Figure 12a) [249], which coincided with the onset of rapid growth of mod-
ern CNNs in computer science as indicated in Figure 2. Next, 2016 and 2017 yielded little 
development. However, the number of publications grew tremendously in 2018, main-
tained at the same level in 2019, and doubled by October 2020. It is expected that there 
will be more relevant applications ongoing. A delay in the use of CNN techniques in ani-
mal farming has been observed. Despite open-source deep learning frameworks and 
codes, direct adoption of CNN techniques into animal farming is still technically challeng-
ing for agricultural engineers and animal scientists. Relevant educational and training 
programs are expected to improve the situation, so that domain experts can gain adequate 
knowledge and skills of CNN techniques to solve emerging problems in animal produc-
tion.  

7.2. Number of Publications Based on Countries  
China has applied CNN techniques in animal farming much more than other coun-

tries (Figure 12b). According to the 2020 report from USDA Foreign Agricultural Service 
[251], China had 91380000 cattle ranking number 4 in the world, 310410000 pigs ranking 
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3. Preparations

The preparations contain camera setups, inclusion of variations in data recording, GPU
selection, image preprocessing, and data labeling, since these were deemed to significantly
affect data quality and efficiency of system development.

3.1. Camera Setups

In this section, sampling rate, resolution, camera view, image type, and distance
between camera and surface of interest with regard to setting up cameras are discussed.

3.1.1. Sampling Rate

A sampling rate determines the number of frames collected in one second (fps)
(Figure 5a). High sampling rates serve to reduce blurred images of target animals
and capture prompt movement among frames but may lead to recording unnecessary
files and wasting storage space [41,42]. The most commonly-used sampling rates were
20–30 fps, since these can accommodate movement capture of farm animals in most
situations [41]. The lowest sampling rate was 0.03 fps [43]. In that study, a portable
camera was used, and images were saved into a 32-GB SD card. The low sampling rate
can help to reduce memory usage and extend recording duration. The highest sampling
rate reached 50 fps [44], since the authors intended to continuously record the movement
of the entire body of each cow to make precise predictions of lameness status.



Sensors 2021, 21, 1492 11 of 44

3.1.2. Resolution

Resolution refers to the number of pixels in an image (Figure 5b). High resolutions
can ensure an elevated level of details in images of target animals but it can increase
the file size and storage space needed [45]. The 1080P (1920 × 1080 pixels) and 720P
(1280 × 720 pixels) resolutions were common in the literature, likely due to the preset
parameters and capabilities found in current video recorders. It should be noted that even
though higher resolution images are more detailed, higher resolutions did not necessarily
result in better detection performance. Shao et al. [45] tested the image resolutions of
416 × 416, 736 × 736, 768 × 768, 800 × 800, 832 × 832, and 1184 × 1184 pixels. The results
indicated that the resolution of 768× 768 pixels achieved the highest detection performance.

3.1.3. Camera View

A camera view is determined by parts of interest of target animals (Figure 5c). Al-
though capturing the top parts of animals with a camera right above them (top view) can
capture many pose details of animals and be favorable for behavior recognition thus being
widely adopted [46], other camera views were also necessary for specific applications.
Tilting cameras on top can provide a perspective view and include animals on far sides [47].
As for some large farm animals (e.g., cattle), their ventral parts typically had larger surface
area and more diverse coating patterns than their dorsal parts. Therefore, a side view was
favorable for individual cattle recognition based on their coating pattern [48]. A front view
was required for face recognition of farm animals [49], and rear-view images were used to
evaluate the body conditions of farm animals based on their features of rear parts [50].

3.1.4. Image Type

Types of images used in the 105 publications included RGB (red, green, and blue),
depth, RGB + depth, and thermal (Figure 5d). The RGB images were the most prevalent.
Most of the applications transferred CNN architectures pretrained from other publicly-
available datasets. RGB images were built and annotated in these datasets, and using RGB
images may improve the efficiency of transfer learning [51]. Including depth information
may further improve the detection performance. Zhu et al. [52] paired RGB and depth
images and input them simultaneously into a detector. The combination of these two types
of images outperformed the use of RGB imaging or depth imaging singly. Infrared thermal
imaging took advantage of temperature differences between background and target objects,
and it achieved high detection performance for some animal parts (e.g., eyes and udders of
cows) with relatively high temperature [53]. However, in many cases, thermal images are
not suitable for analysis given the variability in emissivity due to environmental conditions
and user errors in adjusting for varying emissivity on targets.

3.1.5. Distance between Camera and Surface of Interest

Distances between a camera and surface of interest determine how many pixels
represent target objects (Figure 5e). Generally, a closer distance resulted in more pixels
and details representing farm animals, although cameras with closer distances to target
animals may be more likely to be damaged or contaminated by them [54]. The distances
of 1-5 m were mostly utilized, which were fitted to dimensions of modern animal houses
and simultaneously advantageous on capturing most details of target animals. For those
applications requiring clear and obvious features of target objects (e.g., faces of animals),
close distances (e.g., 0.5 m) were preferred [55]. An unmanned aerial vehicle (UAV) was
utilized to count animals at long range distances (e.g., 80 m away from animals), which
minimized the interference of detection [56]. It should be highlighted that UAVs generate
wind and sound at short ranges, which may lead to stress for animals [57]. As such, gradual
changes in distances at which images are captured should be considered.
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3.2. Inclusion of Variations in Data Recording

Current CNN architectures have massive structures relative to connection schemes,
parameters, etc. Sufficient variations in image contents should be fed into CNN architec-
tures to increase the robustness and performance in unseen situations. A common strategy
of including variations involved a continuous temporal recording of images (e.g., sections
of a day, days, months, and seasons) (Figure 6). Farm animals are dynamic and time-
varying [58], and sizes, number of animals, and individuals can be different in a recording
area across a timeline, which creates variations for model development. Additionally,
temporal acquisition of outdoor images also introduced variations of background [54].
Animal confinement facilities and facility arrangements vary across farms and production
systems [59,60], therefore, moving cameras or placing multiple cameras in different loca-
tions within the same farm/facility can also capture various backgrounds contributing to
data diversity [61,62]. Recording images under different lighting conditions (e.g., shadow,
sunlight, low/medium/high light intensities, etc.) can also supply diverse data [54]. Ad-
ditionally, adjusting cameras is another strategy of including variations and may change
shapes, sizes, and poses of target animals in recorded images, such as moving cameras
around target animals [63], adjusting distances between cameras and target animals [55],
modifying heights and tilting angles of cameras [64], etc.

3.3. Selection of Graphics Processing Units

Graphics processing units assist in massive parallel computation for CNN model
training and testing and are deemed as core hardware for developing models. Other
influential factors, such as processor, random-access memory (RAM), and operation
systems, were not considered in this case since they did not affect computation of CNN
as significantly as GPU did. To provide brief comparisons among different GPU cards,
we also retrieved their specifications from versus (https://versus.com/en, accessed
on 31 October 2020), Nvidia (https://www.nvidia.com/en-us/, accessed on 31 Octo-
ber 2020), and Amazon (https://www.amazon.com/, accessed on 31 October 2020)
and compared them in Table 1. Computer unified device architecture (CUDA) cores
are responsible for processing all data that are fed into CNN architectures, and higher
number of CUDA cores is more favorable for parallel computing. Floating point perfor-
mance (FPP) reflects speed of processing floating points, and a larger FPP means a faster
processing speed. Maximum memory bandwidth (MMB) is the theoretical maximum
amount of data that the bus can handle at any given time and determines how quickly a
GPU can access and utilize its framebuffer.

Table 1. Specifications and approximate price of GPU cards and corresponding references.

GPU # of CUDA Cores FPP (TFLOPS) MMB (GB/s) Approximate Price ($) Reference

NVIDIA GeForce GTX Series

970 1664 3.4 224 157 [65,66]
980 TI 2816 5.6 337 250 [52,67,68]
1050 640 1.7 112 140 [69,70]

1050 TI 768 2.0 112 157 [71–73]
1060 1280 3.9 121 160 [60,74,75]
1070 1920 5.8 256 300 [76,77]

1070 TI 2432 8.2 256 256 [78]
1080 2560 8.2 320 380 [79,80]

1080 TI 3584 10.6 484 748 [81–83], etc.
1660 TI 1536 5.4 288 290 [84]

TITAN X 3072 6.1 337 1150 [45,59]

NVIDIA GeForce RTX Series

2080 4352 10.6 448 1092 [85–87], etc.
2080 TI 4352 14.2 616 1099 [42,88,89], etc.
TITAN 4608 16.3 672 2499 [47,90]

https://versus.com/en
https://www.nvidia.com/en-us/
https://www.amazon.com/
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Table 1. Cont.

GPU # of CUDA Cores FPP (TFLOPS) MMB (GB/s) Approximate Price ($) Reference

NVIDIA Tesla Series

C2075 448 1.0 144 332 [43]
K20 2496 3.5 208 200 [91]
K40 2880 4.3 288 435 [92,93]
K80 4992 5.6 480 200 [94,95]
P100 3584 9.3 732 5899 [96–98]

NVIDIA Quadro Series

P2000 1024 2.3 140 569 [99]
P5000 2560 8.9 288 800 [53]

NVIDIA Jetson Series

NANO 128 0.4 26 100 [89]
TK1 192 0.5 6 60 [100]
TX2 256 1.3 60 400 [89]

Others

NVIDIA TITAN
XP 3840 12.2 548 1467 [101–103]

Cloud server — — — — [54,104]

CPU only — — — — [64,105,106],
etc.

Note: GPU is graphics processing unit; CPU is central processing unit; CUDA is computer unified device architecture; FPP is floating-point
performance; TFLOPS is tera floating point operation per second; and MMB is maximum memory bandwidth. “—” indicates missing
information.

Among all GPU products in Table 1, the NVIDIA GeForce GTX 1080 TI GPU was
mostly used in developing computer vision systems for animal farming due to its affordable
price and decent specifications. Although the NVIDIA company developed GeForce RTX
30 series for faster deep learning training and inference, due to their high price, the GeForce
GTX 10 series and GeForce RTX 20 series may still be popular, balancing specifications and
price. NVIDIA Tesla series (except for NVIDIA Tesla P100) were inexpensive and utilized
in previous research [43], but they retired after May, 2020. NVIDIA Quadro series were
also used previously but may not be recommended, because their price was close to that of
NVIDIA GeForce GTX 1080 TI while number of CUDA cores, FPP, and MMB were lower
than the latter. NVIDIA Jetson series may not outperform other GPUs with regard to the
specifications listed in Table 1, but they were cheap, lightweight, and suitable to be installed
onto UAVs or robots [89], which can help to inspect animals dynamically. Some research
trained and tested some lightweight CNN architectures using CPU only [64,105–107],
which is not recommended because training process was extremely slow and researchers
may spend long time receiving feedback and making decision modifications [108]. If local
machines are not available, researchers can rent cloud servers (e.g., Google Colab) for
model development [54,104]. However, privacy concerns may limit their use in analysis of
confidential data.

3.4. Image Preprocessing

Processing images can improve image quality and suitability before model devel-
opment [89]. In this section, the preprocessing solutions include selection of key frames,
balance of datasets, adjustment of image channels, image cropping, image enhancement,
image restoration, and image segmentation [109]. Although some research also defined im-
age resizing [76] and data augmentation [110] as image preprocessing, they were included
either in CNN architectures or in model training processes, thus not being discussed in
this section.
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3.4.1. Selection of Key Frames

As mentioned in Section 3.2, most applications adopted continuous monitoring. Al-
though such a strategy can record as many variations as possible, it may result in excessive
files for model development and decrease development efficiency. General solutions are to
manually remove invalid files and retain informative data for the development. Examples
of invalid files include blurred images, images without targets or only with parts of targets,
and images without diverse changes [11,51,80,90,107]. Some image processing algorithms
were available to compare the differences between adjacent frames or between background
frames and frames to be tested and capable of automatically ruling out unnecessary files.
These included, but were not limited to, Adaptive Gaussian Mixture Model [111], Structural
Similarity Index Model [49,70], Image Subtraction [54], K-Mean Clustering [97], Absolute
Histogram Difference-Based Approach [112], and Dynamic Delaunay Graph Clustering
Algorithm [65].

3.4.2. Class Balance in Dataset

Imbalanced datasets contain disproportionate amount of data among classes and
may result in biased models which infer classes with small-proportion training data less
accurately [107,113]. The class imbalance can be produced during recording of different
occurrence frequencies of target objects (e.g., animal behaviors, animals) [111,113]. A com-
mon way to correct the imbalance is to manually and randomly balance the amount of data
in classes [47,54,114]. Alvarez et al. [108] complemented confidence of inference of minority
class via increasing class weights for them. Zhu et al. [52] set a larger frame interval for
sampling images containing high-frequency behaviors. Another alternative method was to
synthesize and augment images for minority classes during training [57]. Details of data
augmentation are discussed later in Section 5.2.

3.4.3. Adjustment of Image Channels

An RGB image contains three channels and reflects abundant features in color spaces.
However, lighting conditions in farms are complex and diverse, and color-space patterns
learned from development datasets may not be matched to those in real applications,
which may lead to poor generalization performance [115]. One solution was to convert
RGB images (three channels) into grayscale images (one channel) [48,55,70,88,116], so
that attention of models can be diverted from object colors to learning patterns of objects.
Additionally, hue, saturation, and value (HSV) imaging was not as sensitive to illumination
changes as RGB imaging and may be advantageous on detecting characteristics of colorful
target objects [114].

3.4.4. Image Cropping

In an image, representations of background are sometimes much more than those
of target objects, and models may learn many features of no interest and ignore primary
interest [57]. One strategy to improve efficiency is to crop an image into regions of interest
before processing. The cropping can be based on a whole body of an animal [80,117,118],
parts (e.g., face, trunk) of an animal [55,107], or areas around facilities (e.g., enrichment,
feeder, and drinker) [86,114,119]. As for some large images, cropping them into small
and regular pieces of images can reduce computational resources and improve processing
speed [56,64,106,120].

3.4.5. Image Enhancement

Image enhancement highlights spatial or frequency features of images as a whole, so
that the models can concentrate on these patterns. Direct methods for image enhancement
in frequency domain are to map predefined filters onto images with frequency transforma-
tions and retain features of interest. These include, but are not limited to, high/low pass
filters to sharpen/blurred areas (e.g., edges) with sharp intensity changes in an image [108]
and bilateral filters to preserve sharp edges [53]. As for enhancement in spatial domain,
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manipulations in histograms are commonly used to improve brightness and contrast of
an image. Examples include histogram equalization [73,121], adaptive histogram equal-
ization [52,67], and contrast limited adaptive histogram equalization [70,89,122]. Other
intensity transformation methods (e.g., adaptive segmented stretching, adaptive nonlinear
S-curve transform, and weighted fusion) were also used to enhance the intensities or
intensity changes in images [53].

3.4.6. Image Restoration

Target objects in an image can be disproportional regarding sizes and/or shapes
because of projective distortion caused by various projection distances between objects and
cameras with a flat lens [123]. To correct the distortion and uniform objects in an image,
some standard references (e.g., straight line, marker, and checkerboard) can be annotated in
images [79,107,124,125], and then different transformation models (e.g., isometry, similarity,
affine, and projective) can be applied to make the whole images match the respective
references [123]. In addition, some restoration models can be applied to remove the noises
processed during data acquisition, encoding, and transmission and to improve image
quality [126]. Median filtering that averages intensities based on neighboring pixels was
used in general [52,110,122], and other models that included two-dimensional gamma
function-based image adaptive correction algorithm and several layers of neural networks
were also available for the denoising [63,126,127]. Some images contain natural noises
that are hard to be denoised. Adding known noises (with predefined mean and variance)
including Gaussian, salt, and pepper noises may improve the denoising efficiency [63,126].
As for depth sensing, uneven lighting conditions and object surfaces, dirt, or dust may result
in holes within an object in an image [115,128]. The restoring strategies were interpolation
(e.g., spatiotemporal interpolation algorithms) [73,128], interception (e.g., image center
interception) [110], filtering (e.g., median filtering) [110,122], and morphological operation
(e.g., closing) [122].

3.4.7. Image Segmentation

In some applications (e.g., cow body condition scoring based on edge shapes of cow
body [101]), background may contain unnecessary features for inference and decrease de-
tection efficiencies. Image segmentation is conducted to filter out background and preserve
features of interest. Some common segmentation models are Canny algorithm [101,108], Otsu
thresholding [73], and phase congruency algorithm [115].

3.5. Data Labeling

Current CNNs in computer vision are mostly supervised learning techniques. Labels
that are input into model training influence what patterns models learn from an image.
For some applications of animal species recognition, professional labeling knowledge
in animals may not be required since labelers only needed to distinguish animals from
their respective backgrounds [59]. However, as for behavior recognition, animal scientists
were generally required to assist in behavior labeling, because labels of animal behaviors
should be judged accurately by professional knowledge [102]. A sole well-trained labeler
was typically responsible for completion of all labeling, because labels may be influenced
by judgment bias from different individuals [129]. However, multiple labelers involved
can serve to expedite the labeling process. Under that circumstance, a standard protocol
containing clear definitions of labels should be built so that labelers can follow a uniform
approach. Mutual reviews among labelers may also be required to minimize the subjective
errors [51]. Additionally, to supply models with completed and accurate features of
target objects, animals at edges of images were labeled if over 50% of their bodies were
visible [120], or images were removed from development datasets if only small parts of
animal bodies were presented [107].

Appropriate labeling tools can increase conveniences in producing labels and be spe-
cific for different computer vision tasks. Available labeling tools for different computer
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vision tasks are presented in Table 2. Labels of image classification are classes linked
with images, and the labeling is done via human observation. No labeling tool for image
classification was found in the 105 references. As for object detection, LabelImg is the most
widely-used image labeling tool and can provide labels in Pascal Visual Object Classes for-
mat. Other tools (such as Image Labeler and Video Annotator Tool from Irvine, California)
for object detection can also provide label information of bounding boxes of target objects
along with class names [130,131]. Tools for semantic/instance segmentation can assign at-
tributes to each pixel. These included Graphic [92], Supervisely [104], LabelMe [64,90,112],
and VGG Image Annotator [46,51]. Labels of pose estimation generally consist of a series
of key points, and available tools for pose estimation were DeepPoseKit [97] and DeepLab-
Cut [132]. Tracking labels involve assigned IDs or classes for target objects through contin-
uous frames, and the tools for tracking were Kanade-Lucas-Tomasi tracker [88], Interact
Software [72], and Video Labeler [68]. It should be noted that references of the aforemen-
tioned tools only indicate sources of label tool applications in animal farming rather than
developer sources, which can be found in Table 2.

Table 2. Available labeling tools for different computer vision tasks.

Computer Vision Task Tool Source Reference

Object detection

LabelImg GitHub [133] (Windows version) [71,91,134], etc.
Image Labeler MathWorks [135] [131]

Sloth GitHub [136] [113]
VATIC Columbia Engineering [137] [130]

Semantic/instance segmentation

Graphic Apple Store [138] [92]
Supervisely SUPERVISELY [139] [104]

LabelMe GitHub [140] [64,90,112]
VIA Oxford [141] [46,51]

Pose estimation
DeepPoseKit GitHub [142] [97]
DeepLabCut Mathis Lab [143] [132]

Tracking
KLT tracker GitHub [144] [88]

Interact Software Mangold [145] [72]
Video Labeler MathWorks [146] [68]

Note: VATIC is Video Annotation Tool from Irvine, California; VIA is VGG Image Annotator; and KLT is Kanade-Lucas-Tomasi.

Another key factor to be considered is the number of labeled images. Inadequate
number of labeled images may not be able to feed models with sufficient variations and
result in poor generalization performance, while excessively labeled images may take
more time to label and obtain feedbacks during training. A rough rule of thumb is that a
supervised deep learning algorithm generally achieves good performance with around
5000 labeled instances per category [147], while 1000–5000 labeled images were generally
considered in the 105 references (Figure 7). The least number was 33 [50], and the largest
number was 2270250 [84]. Large numbers of labeled images were used for tracking, in
which continuous frames were involved. If there were high number of instances existing in
one image, a smaller amount of images was also acceptable on the grounds that sufficient
variations may occur in these images and be suitable for model development [96]. Another
strategy to expand smaller number of labeled images was to augment images during
training [71]. Details of data augmentation are introduced in Section 5.2.

4. Convolutional Neural Network Architectures

Convolutional neural networks include a family of representation-learning techniques.
Bottom layers of the networks extract simple features (e.g., edges, corners, and lines), and
top layers of the networks infer advanced concepts (e.g., cattle, pig, and chicken) based on
extracted features. In this section, different CNN architectures used in animal farming are
summarized and organized in terms of different computer vision tasks. It should be noted
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that CNN architectures are not limited as listed in the following section. There are other
more advanced network architectures that have not been applied in animal farming.

4.1. Architectures for Image Classification

Architectures for image classification are responsible for predicting classes of images
and are the most abundant among the five computer vision tasks. Early researchers
explored the CNN with shallow networks and feed-forward connections (e.g., LeNet [27]
and AlexNet [33]). These networks may not work well in generalization for some complex
problems. To improve the performance, several convolutional layers were stacked together
to form very deep networks (e.g., VGGNet [34]), but it introduced the problems of high
computation cost and feature vanishing in backpropagation of model training. Several
novel ideas were proposed to improve the computational efficiency. For example, directly
mapping bounding boxes onto each predefined grid and regressing these boxes to predict
classes (You only look once, YOLO [148]); expanding networks in width rather than in depth
(GoogLeNet [35]); and separating depth-wise convolutions to reduce depth of feature maps
(MobileNet [149]). To reduce feature vanishing, different types of shortcut connections
were created. For instance, directly delivering feature maps to next layers (ResNet50 [36]) or
to every other layer in a feed-forward fashion (Densely connected network, DenseNet [39]).
Building deep CNNs still required engineering knowledge, which may be addressed by
stacking small convolutional cells trained in small datasets [150].

The ResNet50 [69,76,120,151] and VGG16 [49,76,101,107,120,151] were the most popu-
lar architectures used in animal farming (Table 3). The former may be an optimal model
balancing detection accuracy and processing speed thus being widely used. The latter
was one of the early accurate models and widely recognized in dealing with large image
datasets. Sometimes, single networks may not be able to classify images from complex
environments of animal farming, and combinations of multiple models are necessary. The
combinations had three categories. The first one was to combine multiple CNNs, such
as YOLO + AlexNet [151], YOLO V2 + ResNet50 [98], and YOLO V3 + (AlexNet, VGG16,
VGG19, ResNet18, ResNet34, DenseNet121) [126]; the second one was to combine CNNs
with regular machine learning models, such as fully connected network (FCN) + sup-
port vector machine (SVM) [68], Mask region-based CNN (mask R-CNN) + kernel ex-
treme learning machine (KELM) [90], Tiny YOLO V2 + SVM [121], VGG16 + SVM [49],
YOLO + AlexNet + SVM [74], and YOLO V3 + [SVM, K-nearest neighbor (KNN), de-
cision tree classifier (DTC)] [152]; and the third one was to combine CNNs with other
deep learning techniques, such as [Convolutional 3 dimension (C3D), VGG16, ResNet50,
DenseNet169, EfficientNet] + long short-term memory (LSTM) [84], Inception V3 + bidi-
rectional LSTM (BiLSTM) [41], and Inception V3 + LSTM [153], YOLO V3 + LSTM [152].
In all these combinations, CNN typically played roles of feature extractors in the first
stage, and then other models utilized these features to make classifications. Because of
excellent performance, the abovementioned CNNs were designed as feature extractors and
embedded into architectures in the rest of computer vision tasks.

Table 3. Convolutional neural network architectures for image classification.

Model Highlight Source (Framework) Reference

Early versions of CNN

AlexNet [33] Classification error of 15.3%
in ImageNet GitHub [154] (TensorFlow) [55,76,131]

LeNet5 [27] First proposal of modern CNN GitHub [155] (PyTorch) [156]

Inception family

Inception V1/GoogLeNet [35] Increasing width of networks, low
computational cost GitHub [157] (PyTorch) [66,76]
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Table 3. Cont.

Model Highlight Source (Framework) Reference

Inception V3 [158]
Inception module, factorized

convolution, aggressive
regularization

GitHub [159] (TensorFlow) [63,76,120]

Inception ResNet V2 [160] Combination of Inception module
and Residual connection GitHub [161] (TensorFlow) [69,120]

Xception [162] Extreme inception module,
depthwise separable convolution GitHub [163] (TensorFlow) [120]

MobileNet family

MobileNet [149] Depthwise separable convolution,
lightweight GitHub [159] (TensorFlow) [120]

MobileNet V2 [164] Inverted residual structure,
bottleneck block GitHub [165] (PyTorch) [120]

NASNet family

NASNet Mobile [150] Convolutional cell, learning
transformable architecture

GitHub [166] (TensorFlow) [120]
NASNet Large [150] GitHub [159] (TensorFlow) [120]

Shortcut connection networks

DenseNet121 [39] Each layer connected to every
other layer, feature reuse

GitHub [167] (Caffe, PyTorch,
TensorFlow, Theano, MXNet)

[120,151]
DenseNet169 [39] [120]
DenseNet201 [39] [69,76,120]

ResNet50 [36] Residual network, reduction of
feature vanishing in

deep networks
GitHub [168] (Caffe)

[69,76,151], etc.
ResNet101 [36] [120]
ResNet152 [36] [120]

VGGNet family

VGG16 [34] Increasing depth of networks GitHub [169] (TensorFlow)
[49,107,151], etc.

VGG19 [34] [120,131]

YOLO family

YOLO [148] Regression, fast network (45 fps) GitHub [170] (Darknet) [74]

DarkNet19 [171] Fast, accurate
YOLO-based network GitHub [172] (Chainer) [76]

Note: “Net” in model names is network, and number in model names is number of layers of network. AlexNet is network designed by
Alex Krizhevsky; CNN is convolutional neural network; DenseNet is densely connected convolutional network; GoogLeNet is network
designed by Google Company; LeNet is network designed by Yann LeCun; NASNet is neural architecture search network; ResNet is
residual network; VGG is visual geometry group; Xception is extreme inception network; and YOLO is you only look once.

4.2. Architectures for Object Detection

Object detection architectures are categorized as fast detection networks, region-based
networks, and shortcut connection networks (Table 4). The first category mainly consists of
single shot detector (SSD [173]) family and YOLO [148] family. The SSD is a feed-forward
network with a set of predefined bounding boxes at different ratios and aspects, multi-scale
feature maps, and bounding box adjustment. It can detect objects at a 59-fps speed but may
have low detection accuracy. Later the accuracy of the network was improved by adjusting
receptive fields based on different blocks of kernels (RFBNetSSD [174]). YOLO separates
images into a set of grids and associates class probabilities with spatially separated bound-
ing boxes. It can achieve general detection speed of 45 fps and extreme speed of 155 fps but,
like SSD, suffered from poor detection accuracy. The accuracy can be improved by adding
multi-scale feature maps and lightweight backbone and replacing fully connected (FC)
layers with convolutional layers (YOLO V2 [171]), using logistic regressors and classifiers
to predict bounding boxes and introducing residual blocks (YOLO V3 [175]), or utilizing ef-
ficient connection schemes and optimization strategies (e.g., weighted residual connections,
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cross stage partial connections, cross mini-batch normalization, self-adversarial training,
and mish activation for YOLO V4 [176]).

Table 4. Convolutional neural network architectures for object detection.

Model Highlight Source (Framework) Reference

Fast detection networks

RFBNetSSD [174] RFB, high-speed, single-stage,
eccentricity GitHub [177] (PyTorch) [44]

SSD [173] Default box, box adjustment,
multi-scale feature maps GitHub [178] (Caffe) [78,134,179], etc.

YOLO9000 [171] 9000 object categories, YOLO V2,
joint training GitHub [180] (Darknet) [105,128]

YOLO V2 [171] K-mean clustering, DarkNet-19,
multi-scale

GitHub [181] (TensorFlow) [45,89,100], etc.
Tiny YOLO V2 [175] GitHub [182] (TensorFlow) [89]

YOLO V3 [175] Logistic regression, logistic classifier,
DarkNet-53, skip-layer concatenation GitHub [183] (PyTorch) [85,99,102], etc.

YOLO V4 [176] WRC, CSP, CmBN, SAT,
Mish-activation GitHub [184] (Darknet) [71]

Region-based networks

R-CNN [185] 2000 region proposals, SVM classifier GitHub [186] (Caffe) [56,110]

Faster R-CNN [37] RPN, fast R-CNN,
sharing feature maps GitHub [187] (TensorFlow) [81,94,99], etc.

Mask R-CNN [38] Instance segmentation, faster R-CNN,
FCN, ROIAlign GitHub [188] (TensorFlow) [51,64,106]

R-FCN [189] Position-sensitive score map, average
voting, shared FCN GitHub [190] (MXNet) [60]

Shortcut connection networks

DenseNet [39] Each layer connected to every other
layer, feature reuse

GitHub [167] (Caffe, PyTorch,
TensorFlow, Theano, MXNet) [115]

ResNet50 [36] Residual network, reduction of
feature vanishing in deep networks GitHub [168] (Caffe) [191]

ResNeXt [192] Cardinality, same topology, residual
network, expanding network width GitHub [193] (Torch) [194]

Note: “Net” in model names is network, and number in model names is number of layers of network. CmBN is cross mini-batch
normalization; CSP is cross stage partial connection; ResNet is residual network; ResNext is residual network with next dimension; RFB is
receptive filed block; R-CNN is region-based convolutional neural network; R-FCN is region-based fully connected network; ROIAlign is
region of interest alignment; RPN is region proposal network; SAT is self-adversarial training; SSD is single shot multibox detector; SVM is
support vector machine; WRC is weighted residual connection; and YOLO is you only look once.

The second category is to initially propose a series of region proposals and then
use classifiers to classify these proposals. The first version of region-based network (R-
CNN [185]) proposed 2000 candidate region proposals directly from original images, which
consumed much computational resource and time (~0.02 fps). Instead of directly producing
proposals from images, fast R-CNN [195] first produced feature maps and then generated
2000 proposals from these maps, which can increase the processing speed to ~0.4 fps
but was still not optimal. Faster R-CNN [37] used region proposal network (RPN) to
generate proposals from feature maps and then used the proposals and same maps to
make a prediction, with which processing speed rose to 5 fps. Then the region-based
network improved its accuracy by pooling regions with region of interest (ROI) align
instead of max/average pooling and adding another parallel network (FCN) at the end
(Mask R-CNN [38]). Or its processing speed was improved by replacing FC layers with
convolutional layers and using the position-sensitive score map (R-FCN [189]).



Sensors 2021, 21, 1492 20 of 44

The third category is shortcut connection network, which can reduce feature van-
ishing during training. The first network using shortcut connection was ResNet [36], in
which the shortcut connection was built between two adjacent blocks. Then the shortcut
connection was extended to include multiple connections in depth (DenseNet [39]) or in
width (ResNeXt [192]).

The abovementioned networks are efficient networks from different perspectives of
views (e.g., processing speed or accuracy) and widely utilized in animal farming. Among
them, SSD, YOLO V3, and faster R-CNN were mostly applied, since the former two
had advantages in processing speed while the last one was advantageous on tradeoffs
of processing speed and accuracy. In some relatively simple scenarios (e.g., optimal
lighting, clear view), combinations of several shallow networks (i.e., VGG + CNN) may
achieve good performance [124]. However, in some complex cases (e.g., real commercial
environments), single networks may not work well, and combining multiple networks
(i.e., UNet + Inception V4 [196], VGGNet + SSD [110]) can accordingly increase model
capacity to hold sufficient environmental variations. Even with the same models, a parallel
connection to form a two-streamed connection may also boost detection performance [52].

4.3. Architectures for Semantic/Instance Segmentation

Modern CNN architectures for image segmentation mainly consist of semantic and
instance segmentation networks (Table 5). Semantic models generally have encoders for
downsampling images into high-level semantics and decoders for upsampling high-level
semantics into interpretable images, in which only regions of interest are retained. The first
semantic model was FCN [197]. Although it introduced the advanced concept of encoder–
decoder for segmentation, it required huge amount of data for training and consumed many
computational resources. It used repeated sets of simple convolution and max pooling
during encoding and lost much spatial information in images, resulting in low resolution
of images or fuzzy boundaries of segmented objects. To address the issues of exhausting
training, UNet [198] was created based on contrasting and symmetric expanding paths and
data augmentation, which required very few images to achieve acceptable segmentation
performance. There were two types of networks to improve segmentation accuracy. One
was fully convolutional instance-aware semantic segmentation network (FCIS [199]), and
it combined position-sensitive inside/outside score map and jointly executed classification
and segmentation for object instances. The other one was DeepLab [200]. It used Atrous
convolution to enlarge a field of view of filters, Atrous spatial pyramid pooling to robustly
segment objects at multiple scales, and a fully connected conditional random field algorithm
to optimize boundaries of segmented objects. As for issues of intensive computational
resources, the efficient residual factorized network (ERFNet [201]) optimized its connection
schemes (residual connections) and mathematical operations (factorized convolutions). It
retained remarkable accuracy (69.7% on Cityscapes dataset) while achieved high processing
speed of 83 fps in a single Titan X and 7 fps in the Jetson TX1. Development of instance
segmentation models is slower than semantic segmentation models, probably because
they need more computational resources and, currently, may be suboptimal for real-time
processing. Regardless of the processing speed, current instance segmentation models due
to deeper and more complex architectures had more compelling segmentation accuracy
than semantic segmentation models. One of the popular instance segmentation models
was the mask R-CNN [38], which implemented object classification, object detection, and
instance segmentation parallelly. Its segmentation accuracy can be further improved by
adding another network (mask intersection over union network, “mask IOU network”) to
evaluate extracted mask quality (Mask Scoring R-CNN [202]).
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Table 5. Convolutional neural network architectures for semantic/instance segmentation.

Model Highlight Source (Framework) Reference

Semantic segmentation networks

DeepLab [200] Atrous convolution, field of view, ASPP,
fully-connected CRF, sampling rate Bitbucket [203] (Caffe) [62,105,111]

ERFNet [201]
Residual connection, factorized

convolution, high speed with remarkable
accuracy, 83 fps

GitHub [204] (PyTorch) [112]

FCIS [199]
Position-sensitive inside/outside score
map, object classification, and instance

segmentation jointly
GitHub [205] (MXNet) [93]

FCN8s [197]
Classification networks as backbones,
fully convolutional network, 8-pixel

stride
GitHub [206] (PyTorch) [93]

UNet [198]
Data augmentation, contrasting path,

symmetric expanding path, few images
for training

GitHub [207] (PyTorch) [50,59]

Instance segmentation networks

Mask R-CNN [38] faster R-CNN, object detection, parallel
inference, FCN, ROIAlign GitHub [188] (TensorFlow) [93,127,208], etc.

Mask Scoring R-CNN [202] Mask IOU network, mask quality,
mask R-CNN GitHub [209] (PyTorch) [46]

Note: ASPP is atrous spatial pyramid pooling; Atrous is algorithm à trous (French) or hole algorithm; CRF is conditional random
field; ERFNet is efficient residual factorized network; FCIS is fully convolutional instance-aware semantic segmentation; FCN is fully
convolutional network; IOU is intersection over union; R-CNN is region-based convolutional neural network; ROIAlign is region of interest
alignment; and UNet is a network in a U shape.

The DeepLab [200], UNet [198], and Mask R-CNN [38] were applied in animal farm-
ing quite often because of their optimized architectures and performance as mentioned
above. Combining segmentation models with simple image processing algorithms (e.g.,
FCN + Otsu thresholding [67]) can be helpful in dealing with complex environments in ani-
mal farming. Sometimes, such a combination can be simplified via using lightweight object
detection models (e.g., YOLO) to detect objects of concern and simple image processing
algorithms (e.g., thresholding) to segment objects enclosed in bounding boxes [82,208].

4.4. Architectures for Pose Estimation

Few architectures for detecting poses of farm animals exist, and most of them are
cascade/sequential models (Table 6). Pose estimation models are mainly used for humans
and involve a series of key point estimations and key point associations. In this section,
existent models of pose estimation of animal farming are organized into two categories.
The first one was heatmap-free network. The representative one was DeepPose [210],
which was also the first CNN-based human pose estimation model. It regressed key points
directly from original images and then focused on regions around the key points to refine
them. Although DeepLabCut [211] also produced key points from original images, it first
cropped ROI for the key point estimation and adopted residual connection schemes, which
speeded up the process and was helpful for training. Despite being optimized, directly
regressing key points from original images was not an efficient way. A better method may
be to generate a heatmap based on key points and then refine the locations of the key points.
For the heatmap-based networks, convolutional part heatmap regression (CPHR [212]) can
first detect relevant parts, form heatmap around them, and then regress key points from
them; convolutional pose machines (CPMs [213]) had sequential networks and can address
gradient vanishing during training; and Hourglass [214] consisted of multiple stacked
hourglass modules which allow for repeated bottom-up, top-down inference. These are all
optimized architectures for pose estimation.
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Table 6. Convolutional neural network architectures for pose estimation.

Model Highlight Source Code (Framework) Reference

Heatmap-based networks

CPHR [212] Detection heatmap, regression on
heatmap, cascade network GitHub [215] (Torch) [216]

CPMs [213]
Sequential network, natural learning

objective function, belief heatmap,
multiple stages and views

GitHub [217] (Caffe, Python,
Matlab) [216]

Hourglass [214] Cascaded network, hourglass module,
residual connection, heatmap GitHub [218] (Torch) [97,104,216], etc.

Heatmap-free networks

DeepLabCut [211] ROI, residual network, readout layer GitHub [219] (Python, C++) [132]

DeepPose [210] Holistic fashion, cascade regressor,
refining regressor GitHub [220] (Chainer) [132]

Note: CPHR is convolutional part heatmap regression; CPMs is convolutional pose machines; and ROI is region of interest.

Among the existent models (Table 6), Hourglass [214] was the most popular in animal
farming because of efficient connection schemes (repeated hourglass modules and ResNets)
and remarkable breakthroughs of replacing regressing coordinates of key points with
estimating heatmaps of these points. However, single networks may not be able to handle
multiple animals in complex farm conditions, such as adhesive animals, occlusions, and
various lighting conditions. To deal with those, some investigators firstly used CNN (e.g.,
FCN) to detect key points of different animals, then manipulated coordinates among these
detected key points (e.g., creating offset vector, estimating maximum a posteriori), and
finally associated key points from the same animals using extra algorithms (e.g., iterative
greedy algorithm, distance association algorithm, etc.) [42,61,77].

4.5. Architectures for Tracking

There are a few tracking models used in animal farming. Among the four existent
tracking models listed in Table 7, the two-stream network [221] was the first tracking
model proposed in 2014. It captured complementary information on appearance from
still frames using several layers of convolutional networks and tracked the motion of
objects between frames using optical flow convolutional networks. Then in 2015, long-term
recurrent convolutional networks (LRCN) [222] were created. They generally consist of
several CNNs (e.g., Inception modules, ResNet, VGG, Xception, etc.) to extract spatial
features and LSTM to extract temporal features, which is called “doubly deep”. Then an
extremely fast, lightweight network (Generic Object Tracking Using Regression Network,
GOTURN) was built and can achieve 100 fps for object tracking. The network was firstly
trained with datasets containing generic objects. Then during the testing, ROIs of current
and previous frames were input together into the trained network, and location of targets
was predicted continuously. Dating back to 2019, the SlowFast network tracked objects
based on two streams of frames, in which one was in low frame rate, namely slow pathway
and the other was in high frame rate, namely high pathway. These are useful architectures
to achieve performance of interest for target tracking.
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Table 7. Convolutional neural network architectures for tracking.

Model Highlight Source Code (Framework) Reference

GOTURN [223] 100 fps, feed-forward network,
object motion and appearance GitHub [224] (C++) [75]

SlowFast network [225]
Low and high frame rates,
slow and high pathways,
lightweight network

GitHub [226] (PyTorch) [47]

Two-stream CNN [221]
Complementary information
on appearance, motion
between frames,

GitHub [227] (Python) [80]

(Inception, ResNet, VGG, and
Xception) with LSTM [222]

Recurrent convolution, CNN,
doubly deep in spatial and
temporal layers, LSTM

GitHub [228] (PyTorch)
GitHub [229] (PredNet) [86,87,119], etc.

Note: CNN is convolutional neural network; GOTRUN is generic object tracking using regression networks; LSTM is long short-term
memory; ResNet is residual network; and VGG is visual geometry group.

Among the four types of tracking models (Table 7), the LRCN was applied the most
due to reasonable architectures and decent tracking performance. Besides those models,
some researchers also came up with some easy but efficient tracking models tailored to
animal farming. Object detection models (e.g., faster R-CNN, VGG, YOLO, SSD, FCN, etc.)
were utilized to detect and locate animals in images, and then the animals were tracked
based on their geometric features in continuous frames using different extra algorithms.
These algorithms included popular trackers (e.g., simple online and real-time tracking,
SORT; Hungarian algorithm; Munkres variant of the Hungarian assignment algorithm,
MVHAA; spatial-aware temporal response filter, STRF; and channel and spatial reliability
discriminative correlation filter tracker, CSRDCF) [61,83,88,96,103] and bounding box
tracking based on Euclidean distance changes of centroids and probability of detected
objects [71,95,118,125,230].

5. Strategies for Algorithm Development

Appropriate strategies for algorithm development are critical to obtain a robust and
efficient model. In one aspect, they need to reduce overfitting in which models may
perform well in training data but generalize poorly in testing; in the other aspect, they need
to avoid underfitting in which models may perform poorly in both training and testing.
In this section, the strategies are organized into distribution of development data, data
augmentation, transfer learning, hyperparameter tuning, and evaluation metric. In some
model configurations, data augmentation and transfer learning are also categorized with
hyperparameters. These two parts have a significant impact on the efficiency of model
development, thus being discussed separately.

5.1. Distribution of Development Data

Reasonable distribution of development data may feed networks with appropriate
variations or prevalent patterns in application environments of interest. Data are generally
split into training and validation/testing sets (training:validation/testing) or training,
validation, and testing sets (training:validation:testing). Validation sets are also called
development sets or verification sets and generally used for hyperparameter tuning during
model development. In conventional machine learning [231], models are trained with
training sets, simultaneously validated with validation sets, and tested with hold-out
or unseen testing sets; or if there are limited data, the models are developed with cross-
validation strategies, in which a dataset is equally split into several folds, and the models are
looped over these folds to determine the optimal model. These strategies are favorable to
avoid overfitting and get performance for models facing unseen data. However, strategies
of training:validation/testing were adopted more often than training:validation:testing
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(Figure 8a). Probably because these applications involved a large amounts of data (1000–
5000 images in Section 3.5), and the former one is able to learn sufficient variations and
produce a robust model. Meanwhile, CNN architectures contain many model parameters
to be estimated/updated and hyperparameters to be tuned, and the latter strategy may be
time-consuming to train those architectures and thus used infrequently. However, we did
recommend the latter strategy, or even cross-validation [11,66,73,90], which may take time
yet produce a better model.

The ratios of 80:20 and 70:30 were commonly used for the strategy of training:validation/
testing (Figure 8b). These are also rules of thumb in machine learning [232] to balance
variations, training time, and model performance. Training sets with ratios of <50% are
generally not recommended since models may not learn sufficient variations from training
data and result in poor detection performance. There are some exemptions that if a significant
amount of labeled data are available (e.g., 612,000 images in [95] and 356,000 images in [122]),
the proportion of training data can be as small as 2–3% due to sufficient variations in these
data. Ratios of the strategy of training:validation:testing included 40:10:50, 50:30:20, 60:15:25,
60:20:20, 65:15:20, 70:10:20, 70:15:15, 70:20:10, and 80:10:10 (Figure 8c). Although the frequency
of 40:10:50 was as high as that of 70:15:15, it does not mean that 40:10:50 is an optimal ratio.
For small datasets, the proportion of training data is expected to be higher than that of testing
data because of the abovementioned reasons.

5.2. Data Augmentation

Data augmentation is a technique to create synthesis images and enlarge limited
datasets for training deep learning models, which prevents model overfitting and underfit-
ting. There are many augmentation strategies available. Some of them augment datasets
with physical operations (e.g., adding images with high exposure to sunlight) [88]; and
some others use deep learning techniques (e.g., adversarial training, neural style transfer,
and generative adversarial network) to augment data [233], which require engineering
knowledge. However, these are not the focuses in this section because of complexity. In-
stead, simple and efficient augmentation strategies during training are concentrated [234].

Figure 9 shows usage frequency of common augmentation strategies in animal farm-
ing. Rotating, flipping, and scaling were three popular geometric transformation strategies.
The geometric transformation is to change geometric sizes and shapes of objects. Relevant
strategies (e.g., distorting, translating, shifting, reflecting, shearing, etc.) were also utilized
in animal farming [55,73]. Cropping is to randomly or sequentially cut small pieces of
patches from original images [130]. Adding noises includes blurring images with filters
(e.g., median filters [100]), introducing additional signals (e.g., Gaussian noises [100]) onto
images, adding random shapes (e.g., dark polygons [70]) onto images, and padding pixels
around boundaries of images [100]. Changing color space contains altering components
(e.g., hues, saturation, brightness, and contrast) in HSV space or in RGB space [88,216],
switching illumination styles (e.g., simulate active infrared illumination [59]), and manip-
ulating pixel intensities by multiplying them with various factors [121]. All these may
create variations during training and make models avoid repeatedly learning homogenous
patterns and thus reduced overfitting.

Although data augmentation is a useful technique, there are some sensitive cases that
are not suitable for augmentation. Some behavior recognitions may require consistent
shapes and sizes of target animals, hence, geometric transformation techniques that are
reflecting, rotating, scaling, translating, and shearing are not recommended [66]. Distortions
or isolated intensity pixel changes, due to modifying body proportions associated with body
condition score (BCS) changes, cannot be applied [108]. Animal face recognition is sensitive
to orientations of animal faces, and horizontal flipping may change the orientations and
drop classification performance [130].
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5.3. Transfer Learning

Transfer learning is to freeze parts of models which contain weights transferred from
previous training in other datasets and only train the rest. This strategy can save training
time for complex models but does not compromise detection performance. Various similar-
ities between datasets of transfer learning and customized datasets can result in different
transfer learning efficiencies [51]. Figure 10 shows popular public datasets for transfer
learning in animal science, including PASCAL visual object class dataset (PASCAL VOC
dataset), common objects in context (COCO) dataset; motion analysis and re-identification
set (MARS), and action recognition dataset (UCF101). Each dataset is specific for different
computer vision tasks.

5.4. Hyperparameters

Hyperparameters are properties that govern the entire training process and determine
training efficiency and accuracy and robustness of models. They include variables that
regulate how networks are trained (e.g., learning rate, optimizer of training) and variables
which control network structures (e.g., regularization) [235]. There can be many hyper-
parameters for specific architectures (e.g., number of region proposals for region-based
networks [37], number of anchors for anchor-based networks [173]), but only those generic
for any types of architectures or commonly used in animal farming are focused.

5.4.1. Gradient Descent Mode

One important concept to understand deep learning optimization is gradient descent,
in which parameters are updated with gradients in backpropagation of training. There
are three major gradient descent algorithms: batch gradient descent, stochastic gradient
descent (SGD), and mini-batch SGD [236]. Batch gradient descent is to optimize models
based on entire datasets. It may learn every detailed feature in a dataset but be inefficient
in terms of time to obtain feedbacks. SGD is to optimize models based on each training
sample in a dataset. It may update model fast with noisy data, resulting in a high variance
in loss curves. Meanwhile, it is not able to take advantages of vectorization techniques and
slow down the training. Mini-batch SGD is to optimize models based on several training
samples in a dataset. It may take advantages of batch gradient descent and SGD. In most
cases, mini-batch SGD is simplified as SGD. Three hyperparameters determine efficiency
of SGD, which are learning rate, batch size, and optimizer of training. It should be noted
that batch size is only for SGD or mini-batch SGD.

5.4.2. Learning Rate

A learning rate is used to regulate the length of steps during training. Large rates
can result in training oscillation and make convergence difficult, while small rates may
require many epochs or iterations to achieve convergence and result in suboptimal net-
works without sufficient epochs or iterations. Nasirahmadi et al. [60] compared learning
rates of 0.03, 0.003, and 0.0003, and the middle one performed better. Besides absolute
values, modes of learning rate are other factors to consider. Constant learning rates are for
maintaining consistent steps throughout the training process [88], and under this mode,
initial rates are difficult to decide based on the abovementioned facts. Decay modes may
be better options since learning rates are reduced gradually to assist in convergence. One
of the modes is linear learning rate decay, in which learning rates are dropped at specific
steps (e.g., initially 0.001 for the first 80,000 steps and subsequently 0.0001 for the last
40,000 steps [71]) or dropped iteratively (e.g., initially 0.0003 and dropping by 0.05 every
2 epochs [66]). Another decay mode is exponential learning rate decay, in which learning
rates are dropped exponentially (e.g., initially 0.00004 with decay factor 0.95 for every
8000 steps [179]).
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5.4.3. Batch Size

A batch size controls the number of images used in one epoch of training. Large
batch sizes may make models learn many variations in one epoch and produce smooth
curves but are computationally expensive. The situation is opposite for small batch sizes.
Common batch sizes are in a power of 2, ranging from 20 to 27 in animal farming [91,120].
They depend on memory of devices (e.g., GPU) used for training and input image sizes.
Chen et al. [114] compared the batch sizes of 2, 4, 6, and 8 given that number of epochs was
controlled at 200, and the batch size of 2 had slightly better performance than the others.
Perhaps, larger batch sizes also needed a greater number of epochs to get convergence.
Another influential factor is complexity of architectures. Arago et al. [91] deployed batch
sizes of 1 for faster R-CNN and 4 for SSD. Perhaps, complex architectures with small batch
sizes can speed up training, while simple and lightweight large batch sizes can improve
training efficiency.

5.4.4. Optimizer of Training

An optimizer is to minimize the training loss during training and influences stability,
speed, and final loss of convergence. Common optimizers are Vanilla SGD [237], SGD
with momentum (typically 0.9) [238], SGD with running average of its recent magnitude
(RMSProp) [239], and SGD with adaptive moment estimation (Adam) [240]. Vanilla SGD
suffers from oscillation of learning curves and local minima, which slows down the training
speed and influences convergence. SGD with momentum is to multiply gradient with
a moving average. It, as indicated by term “momentum”, speeds up in the directions
with gradients, damps oscillations in the directions of high curvature, and avoids local
minima. SGD with RMSProp is to divide gradient with a moving average. It alleviates
variances of magnitude of gradient among different weights and allows a larger learning
rate, which improves the training efficiency. SGD with Adam is to combine momentum
method and RMSProp method and owns the strengths of both. However, it does not
mean that the Adam method is the only solution for algorithm optimization. Based on the
investigation, there were 4 publications for Vanilla SGD, 16 for SGD with momentum, 2
for SGD with RMSProp, and 7 for SGD with Adam. When Wang et al. [156] tested these
optimizers, Vanilla SGD even outperformed the others if it was appropriately regularized.
Adadelta and Ranger, which were the other two efficient optimizers and outperformed
Vanilla SGD [241,242], were also applied in animal farming [70,84].

5.4.5. Regularization

Regularization is to place penalty onto training, so that models do not match well
for training and can generalize well in different situations. Dropout is one of the efficient
regularization methods to control overfitting and randomly dropped units (along with their
connections) from network during training [243]. It should be noted that a high dropout
ratio can decrease the model performance. Wang et al. [156] compared dropout ratios of 0.3,
0.5, and 0.7, and the 0.7 ratio decreased over 20% of performance compared to the 0.3 ratio.
Dropping too many units may decrease the model capacity to handle variations and lead
to poor performance, while dropping too few units may not regularize models well. A
ratio of 0.5 may address the dilemma [74]. Another regularization method used in animal
farming is batch normalization [47,194]. It normalizes parameters in each layer with certain
means and variance, which maintains parameter distribution constant, reduces gradient
dispersion, and makes training robust [244]. Other regularization methods (e.g., L1/L2
regularization), which add L1/L2 norms to loss function and regularize parameters, were
also utilized in animal farming [76,111].

5.4.6. Hyperparameters Tuning

Training a deep learning model may involve many hyperparameters, and each hyper-
parameter has various levels of values. Choosing an optimal set of hyperparameters for
tuning models is difficult. Furthermore, as the “no-free-lunch” theorem suggests that there
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is no algorithm that can outperform all others for all problems [245]. An optimal set of
hyperparameters may work well on particular datasets and models but perform differently
when situations change. Therefore, hyperparameters also need to be tuned to get optimal
ones in particular situations. Considering the amount of hyperparameters, conventional
hyperparameter searching methods for machine learning (e.g., random layout, grid lay-
out [235]) may be time-consuming. There are better methods to optimize the values of
hyperparameters. Alameer et al. [88] selected an optimal set of hyperparameters using
nested-cross validation in an independent dataset and then trained models with the optimal
values. Nested-cross validation, like cross validation, uses k − 1 folds of data for training
and the rest for testing to select optimal values of hyperparameters [246]. Salama et al. [55]
iteratively searched optimal values of hyperparameters using the Bayesian optimization
approach, which is to jointly optimize a group of values based on probability [247].

5.5. Evaluation Metrics

Evaluation should be conducted during training or testing to understand the cor-
rectness of model prediction. For evaluation during training, investigators can observe
model performance in real time and adjust training strategies timely if something is wrong;
and as for evaluation during testing, it can provide final performance of trained models.
Different evaluation metrics can assist researchers in evaluating models from different
perspectives. Even with the same metric, different judgment confidences can result in
different performance [101]. Different loss functions are generally used to evaluate the
errors between ground truth and prediction during training. These include losses for classi-
fication, detection, and segmentation [51,111]. Accuracy over different steps is also applied
during training [126]. Although evaluation metrics during training can help optimize
models, final performance of models during testing is of major concern.

Common metrics to evaluate CNN architectures during testing are presented in
Table 8. Except for false negative rate, false positive rate, mean absolute error, mean
square error, root mean square error, and average distance error, higher values of the
rest metrics indicate better performance of models. Among these metrics, some (e.g.,
accuracy, precision, recall, etc.) are generic for multiple computer vision tasks, but some
(e.g., Top-5 accuracy for image classification, panoptic quality for segmentation, overlap
over time for tracking, etc.) are specific for single computer vision tasks. Generic evalua-
tion metrics account for the largest proportion among the metrics. Some focus on object
presence (e.g., average precision), some focus on object absence (e.g., specificity), and
some focus on both (e.g., accuracy). Among object presence prediction, misidentification
(wrongly recognizing others as target objects) and miss-identification (wrongly recogniz-
ing target objects as none) are the common targets of concern. Regression metrics (e.g.,
mean absolute error, mean square error, root mean square error, etc.) are used to evaluate
the difference of continuous variables between ground truth and prediction. Besides
a single value, some metrics (e.g., precision-recall curve) have multiple values based
on different confidences and are plotted as curves. Processing speed, a critical metric
for real-time application, is typically used to evaluate how fast a model can process
an image.
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Table 8. Metrics for evaluating performance of convolutional neural network architectures.

Metric Equation Brief Explanation Reference

Generic metrics for classification, detection, and segmentation

Accuracy TP+TN
TP+FP+TN+FN

Commonly used, comprehensive
evaluation of predicting object presence

and absence.
[51,101,108], etc.

AP 1
n

n
∑

i=1
Pinterp(i)

Average performance of
misidentification of object presence for

a single class. Pinterp(i) is the ith
interpolated precision over a

precision-recall curve.

[51,191]

AP@0.5, AP@0.7,
AP@0.75, AP@0.5:0.95 —

COCO, evaluation of predicting object
presence with different confidence

(IOU: >0.5, >0.7, >0.75, and 0.5 to 0.95
with step 0.05)

[72,92,191]

AUC —
Comprehensive evaluation of

miss-identification and
misidentification of object presence

[45,248]

Cohen’s Kappa

Po−Pe
1−Pe

, Po = accuracy, Pe =

Pyes + PnoPyes =
TP+FP

Total ×
TP+FN

Total ,Pno = FN+TN
Total ×

FP+TN
Total

Comprehensive evaluation of
classification based on confusion matrix [76,249]

Confusion matrix — Table presentation of summarization of
correct and incorrect prediction [66,101,111], etc.

False negative rate FN
FN+TP

Evaluation of incorrect recognition of
object absence [49,87]

False positive rate FP
FP+TN

Evaluation of incorrect recognition of
object presence [70,73,87], etc.

F1 score 2×Precision×Recall
Precision+Recall

Comprehensive evaluation of
predicting object presence [51,101,108], etc.

IOU Overlapping area
Union area

Evaluation of deviation between
ground truth area and predicted area [88,111]

MCC TP×TN−FP×FN√
(TP+FN)(TP+FP)(TN+FP)(TN+FN)

Evaluation of difference between
correct prediction and incorrect

prediction for object presence and
absence

[90]

Mean AP 1
n

n
∑

i=1
AP(i)

Comprehensive evaluation of
predicting presence of multiple classes.

AP(i) is AP of the ith class.
[88,96,102], etc.

Recall/sensitivity TP
TP+FN

Evaluation of miss-identification of
object presence [51,101,108], etc.

Precision TP
TP+FP

Evaluation of misidentification of object
presence [51,101,108], etc.

Specificity TN
FP+TN Evaluation of predicting object absence [86,114,119], etc.

Processing speed Number o f images
Processing time Evaluation of speed processing images [51,81,128], etc.

Generic metrics for regression

Coefficient of
determination (R2) 1− ∑n

i=1(yi−y)
∑n

i=1(yi−ŷi)

Comprehensive evaluation of
prediction errors based on a fitted

curve. yi is the ith ground truth values,
ŷi is the ith predicted value, and y is

average of n data points

[50,115,121]
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Table 8. Cont.

Metric Equation Brief Explanation Reference

Mean absolute error 1
n

n
∑

i=1
|yi − ŷi|

Evaluation of absolute deviation
between ground truth values (yi) and

predicted values (ŷi) over n data points
[54,194]

Mean square error 1
n

n
∑

i=1
(yi − ŷi)

2
Evaluation of squared deviation

between ground truth values (yi) and
predicted values (ŷi) over n data points

[54,73,96], etc.

RMSE
√

1
n

n
∑

i=1
(yi − ŷi)

2

Evaluation of root-mean-squared
deviation between ground truth values

(yi) and predicted values (ŷi) over n
data points

[73,194]

Generic metrics with curves

F1 score-IOU curve —

Comprehensive evaluation of
miss-identification and

misidentification of object presence
based on different confidence

[64,106]

Recall-IOU curve —
Evaluation of miss-identification of
object presence based on different

confidence
[64,106]

Precision-IOU curve — Evaluation of misidentification of object
presence based on different confidence [64,106]

Precision-recall curve —
Evaluation of misidentification of object

presence based on number of
detected objects

[45,99,196], etc.

Specific metrics for image classification

Top-1, Top-3, and
Top-5 accuracy —

ImageNet, evaluation of whether a
target class is the prediction with the

highest probability, top 3 probabilities,
and top 5 probabilities.

[47,63]

Specific metrics for semantic/instance segmentation

Average distance error Aunion−Aoverlap
Tcontour

Comprehensive evaluation of
segmentation areas and segmentation
contours. Aunion is union area; Aoverlap

is overlapping area; and Tcontour is
perimeter of extracted contour.

[127]

Mean pixel accuracy 1
k+1

k
∑

i=0

Pii

∑k
j=0 Pij

Comprehensive evaluation of
segmenting multiple classes. k is total

number of classes expect for
background; Pii is total number of true
pixels for class i; Pij is total number of

predicted pixels for class i.

[90,127]

Panoptic quality ∑s∈TP IOU
TP+ 1

2 FP+ 1
2 FN

Comprehensive evaluation of
miss-identified and misidentified

segments. s is segment.
[59]

Specific metrics for pose estimation

PCKh ∑n
i=1 δ(‖Pi, j−Tij‖−threshold×head_sizei)

n

Evaluation of correctly detected key
points based on sizes of object heads. n

is number of images; Pi, j is the jth
predicted key points in the ith image;

Tij is the jth key points of ground truth
in the ith image; and head_sizei is the

length of heads in the ith image

[216]
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Table 8. Cont.

Metric Equation Brief Explanation Reference

PDJ — Evaluation of correctly detected parts
of objects [210]

Specific metrics for tracking

MOTA 1− ∑t FNt+FPt+(ID switch)t
∑t GTt

Evaluation of correctly tracking objects
over time. t is the time index of frames;

and GT is ground truth.
[83,88,96]

MOTP ∑i, t di
t

∑t ct

Evaluation of location of tracking
objects over time. t is time index of

frames; i is index of tracked objects; d is
distance between target and ground

truth; and c is number of ground truth

[88]

OTP ∑MTUi
Boxesi, f=30

∑MTUi
Boxesi, f=1

Evaluation of tracking objects in
minimum tracking units (MTU).

Boxesi, f=30 is the number of bounding
boxes in the first frame of the ith MTU;
Boxesi, f=1 is the number of bounding
boxes in the last frame of the ith MTU.

[72]

Overlap over time — Evaluation of length of objects that are
continuously tracked [75]

Note: AP is average precision; AUC is area under curve; COCO is common objects in context; FP is false positive; FN is false negative; IOU
is intersection over union; MCC is Matthews correlation coefficient; MOTA is multi-object tracker accuracy; MOTP is multi-object tracker
precision; OTP is object tracking precision; PDJ is percentage of detected joints; PCKh is percentage of correct key points according to head
size; RMSE is root mean square error; TP is true positive; and TN is true negative. “—” indicates missing information.

Existent metrics sometimes may not depict the performance of interest in some ap-
plications, and researchers need to combine multiple metrics. Seo et al. [89] integrated
average precision and processing speed to comprehensively evaluate the models based
on the tradeoff of these two metrics. They also combined these two metrics with device
price and judged which models were more computationally and economically efficient.
Fang et al. [75] proposed a mixed tracking metric by combining overlapping area, failed
detection, and object size.

6. Performance
6.1. Performance Judgment

Model performance should be updated until it meets the expected acceptance criterion.
Maximum values of evaluation metrics in the 105 publications are summarized in Figure
11. These generic metrics included accuracy, specificity, recall, precision, average precision,
mean average precision, F1 score, and intersection over union. They were selected because
they are commonly representative as described in Table 8. One publication can have
multiple evaluation metrics, and one evaluation metric can have multiple values. Maximum
values were selected since they significantly influenced whether model performance was
acceptable and whether the model was chosen. Most researchers accepted performance
of over 90%. The maximum value can be as high as 100% [69] and as low as 34.7% [92].
Extremely high performance may be caused by overfitting, and extremely low performance
may be resulted from underfitting or lightweight models. Therefore, these need to be
double-checked, and models need to be developed with improved strategies.

6.2. Architecture Performance

Performance can vary across different architectures and is summarized in this section.
Due to large inconsistencies in evaluation metrics for object detection, semantic/instance
segmentation, pose estimation, and tracking, only the accuracy for image classification of
animal farming was organized in Table 9. There could be multiple values of accuracy in
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one paper, and only the highest values were obtained. Inconsistent performance appeared
in the tested references due to varying datasets, development strategies, animal species,
image quality, etc. Some lightweight architectures (e.g., MobileNet) can even outperform
the complicated architectures (e.g., NASNet) with proper training (Table 9). Some archi-
tectures (e.g., AlexNet, LetNet5, and VGG19) had a wide range (over 30% difference) of
performance in animal farming, likely due to various levels of difficulties in the tasks.
General performance (i.e., Top-1 accuracy) of these models was also extracted from the
benchmark dataset of image classification (ImageNet [250]) for the reference of architecture
selection of future applications. Most accuracies in animal farming were much higher than
those in ImageNet with the same models, which can be attributed to fewer object categories
and number of instances per image in the computer vision tasks of animal farming.

Table 9. Accuracy of architectures for image classification.

Model Accuracy in Animal
Farming (%)

Top-1 Accuracy in
ImageNet (%) Reference

Early versions of CNN

AlexNet [33] 60.9–97.5 63.3 [55,76,131]
LeNet5 [27] 68.5–97.6 − [156]

Inception family

Inception
V1/GoogLeNet [35] 96.3–99.4 − [66,76]

Inception V3 [158] 92.0–97.9 78.8 [63,76,120]
Inception ResNet V2

[160] 98.3–99.2 80.1 [69,120]

Xception [162] 96.9 79.0 [120]

MobileNet family

MobileNet [149] 98.3 − [120]
MobileNet V2 [164] 78.7 74.7 [120]

NASNet family

NASNet Mobile [150] 85.7 82.7 [120]
NASNet Large [150] 99.2 − [120]

Shortcut connection networks

DenseNet121 [39] 75.4–85.2 75.0 [120,151]
DenseNet169 [39] 93.5 76.2 [120]
DenseNet201 [39] 93.5–99.7 77.9 [69,76,120]

ResNet50 [36] 85.4–99.6 78.3 [69,76,151], etc.
ResNet101 [36] 98.3 78.3 [120]
ResNet152 [36] 96.7 78.9 [120]

VGGNet family

VGG16 [34] 91.0–100 74.4 [49,107,151], etc.
VGG19 [34] 65.2–97.3 74.5 [120,131]

YOLO family

YOLO [148] 98.4 − [74]
DarkNet19 [171] 95.7 − [76]

Note: “Net” in model names is network, and number in model names is number of layers of network. AlexNet is
network designed by Alex Krizhevsky; CNN is convolutional neural network; DenseNet is densely connected
convolutional network; GoogLeNet is network designed by Google Company; LeNet is network designed by Yann
LeCun; NASNet is neural architecture search network; ResNet is residual network; VGG is visual geometry group;
Xception is extreme inception network; and YOLO is you only look once. “−” indicates missing information.
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7. Applications

With developed CNN-based computer vision systems, their applications were sum-
marized based on year, country, animal species, and purpose (Figure 12). It should be
noted that one publication can include multiple countries and animal species.

7.1. Number of Publications Based on Years

The first publication of CNN-based computer vision systems in animal farming ap-
peared in 2015 (Figure 12a) [249], which coincided with the onset of rapid growth of
modern CNNs in computer science as indicated in Figure 2. Next, 2016 and 2017 yielded
little development. However, the number of publications grew tremendously in 2018,
maintained at the same level in 2019, and doubled by October 2020. It is expected that there
will be more relevant applications ongoing. A delay in the use of CNN techniques in animal
farming has been observed. Despite open-source deep learning frameworks and codes,
direct adoption of CNN techniques into animal farming is still technically challenging for
agricultural engineers and animal scientists. Relevant educational and training programs
are expected to improve the situation, so that domain experts can gain adequate knowledge
and skills of CNN techniques to solve emerging problems in animal production.

7.2. Number of Publications Based on Countries

China has applied CNN techniques in animal farming much more than other countries
(Figure 12b). According to the 2020 report from USDA Foreign Agricultural Service [251],
China had 91,380,000 cattle ranking number 4 in the world, 310,410,000 pigs ranking num-
ber 1, and 14,850,000 metric tons of chickens ranking number 2. It is logical that precision
tools are needed to assist farm management in such intensive production. Developed coun-
tries, such as USA, UK, Australia, Belgium, and Germany, also conducted CNN research,
since the techniques are needed to support intensive animal production with less labor
in these countries [252]. It should be pointed out that only papers published in English
were included in this review, as the language can be understood by all authors. Excluding
papers in other languages, such as Chinese, French, and German, could have altered the
results of this review investigation.

7.3. Number of Publications Based on Animal Species

Cattle and pig are two animal species that were examined the most (Figure 12c).
Although cattle, pig, and poultry are three major sources of meat protein [251], poultry are
generally reared in a higher density than the other two (10–15 m2/cow for cattle in a freestall
system [253], 0.8–1.2 m2/pig for growing-finishing pigs [254], and 0.054–0.07 m2/bird
for broilers raised on floor [255]). High stocking density in poultry production leads to
much occlusion and overlapping among birds, and low light intensity can cause low-
resolution images [13]. These make automated detection in poultry production challenging.
Alternatively, researchers may have trials of CNN techniques in relatively simple conditions
for cattle and pigs. Sheep/goat are generally reared in pasture, where cameras may not be
able to cover every sheep/goat [65], which is an obstacle to develop CNN-based computer
vision systems for sheep/goat production.

7.4. Number of Publications Based on Purposes

Purposes of system applications are categorized into abnormality detection, animal
recognition, behavior recognition, individual identification, and scoring (Figure 12d).
Abnormality detection can signal early warnings for farmers and contribute to timely
intervention and mitigation of the problems. Abnormality includes pain reflected by face
expression [76], lameness [152], mastitis [53], and sickness [78]. Animal recognition is to
recognize animals of interest from background and generally used for animal counting,
so that usage status of facilities can be understood [230]. Behavior recognition is to
detect different behaviors of animals, such as feeding, drinking, mounting, stretching,
etc. [51,86,90,119]. Behaviors of animals reflect their welfare status and facility utiliza-
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tion efficiency, as well as signs of abnormality. Individual identification is to identify
individual animals based on the features from back of head [111], faces [49], body coat-
ings [100], muzzle point [116], and additional code [54]. By identification, production
performance, health status, and physiological response of individuals may be linked
together and tracked through the entire rearing process. Scoring is to estimate the body
conditions of animals, which were typically associated with production, reproduction,
and health of animals [101].

Animal recognition, behavior recognition, and individual identification occupy large
proportions in the five categories of purposes (Figure 12d). Based on the above definition,
one category can achieve one or two functions of others. However, abnormality detection
and scoring, per the best knowledge of the authors, require veterinary or animal science
expertise, which is challenging for some engineers of system development. Therefore,
computer science researchers may prioritize the three categories for exploring the potential
of CNN techniques in animal farming.

8. Brief Discussion and Future Directions

In this section, emerging problems from the review are briefly discussed and some
directions of future research are provided for CNN-based computer vision systems in
animal farming.

8.1. Movable Solutions

Conventional computer vision systems require installation of fixed cameras in optimal
locations (e.g., ceiling, passageway, gate, etc.) to monitor the areas of interest. To cover an
entire house or facility, multiple cameras are utilized and installed in strategic locations [6].
This method relies on continual and preventative maintenance of multiple cameras to
ensure sufficient information and imaging of the space. An alternative method is to use
movable computer vision systems. Chen et al. [61] placed a camera onto an inspection
robot capable of navigating along a fixed rail system near the ceiling of a pig house. The
UAVs were also used to monitor cattle and/or sheep in pastures and may potentially
be used inside animal houses and facilities [45,57,120]. The UAVs move freely in air
space without occlusion by animals and may serve to assist farmers in managing animals.
But they are difficult to navigate inside of structures due to obstacles and loss of Global
Positioning System signal, and their efficiency is still needed to be verified. To achieve
real-time movable inspection, some lightweight models (e.g., SSD, YOLO) of computer
vision systems are recommended for monitoring farm animals.

8.2. Availability of Datasets

Current CNN techniques require adequate data to learn data representation of in-
terest. In this regard, available datasets and corresponding annotations are critical for
model development. Publicly-available datasets contain generic images (e.g., cars, birds,
pedestrians, etc.) for model development. However, few datasets with annotations for
animal farming are available (Table 10). Lack of availability of animal farming datasets
is due to confidentiality of data and protocols within animal production research and
industries. Although transfer learning techniques aid in transferring pre-trained weights
of models from publicly available datasets into customized datasets, which lessens model
development time, high similarities between those datasets may improve transfer learning
efficiency and model performance [51]. Environments for capturing generic images are
quite different from those encountered in animal farming, which may downgrade transfer
learning. Therefore, animal-farming-related datasets are urgently needed for engineers or
scientists to develop models tailored to animal farming.
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Table 10. Available datasets of animal farming.

Computer
Vision Task

Name of
Dataset

Animal
Species

Size of
Images

# of
Images

Annotation
(Y/N) Source Reference

Image
classification

AerialCattle2017 Cattle 681 × 437 46,340 N University of
BRISTOL [256]

[57]
FriesianCattle2017 Cattle 1486 × 1230 840 N [57]

Object
detection

Aerial
Livestock
Dataset

Cattle 3840 × 2160 89 N GitHub [257] [196]

Pigs
Counting Pig 200 × 150 3401 Y GitHub [258] [194]

— Cattle 4000 × 3000 670 Y Naemura Lab [259] [45]

— Pig 1280 × 720 305 Y UNIVERSITAT
HOHENHEIM [260] [113]

— Poultry 412 × 412 1800 N Google Drive [261] [126]

Pose
estimation — Cattle 1920 × 1080 2134 N GitHub [262] [216]

Tracking Animal
Tracking

Pig 2688 × 1520 2000 Y
PSRG [263]

[77]
2688 × 1520 135,000 Y [42]

Note: “—” indicates missing information; “Y” indicates a specific dataset has annotation; “N” indicates a specific dataset does not have
annotation, and PSRG indicates Perceptual Systems Research Group. There can be more than one sizes of images, but we only listed one in
the table because of presentation convenience.

8.3. Research Focuses

Some items were found in smaller proportions compared with their counterparts
in animal farming, such as fewer CNN architectures of pose estimation out of the five
computer vision tasks, fewer applications of poultry out of the four farm animal species,
and fewer applications of abnormality detection and scoring out of the five purposes.
These might be caused by complexity of detected objects, poor environments for detection,
and limited expertise knowledge. These areas may need more research focuses than their
counterparts to fill the research and knowledge gaps.

8.4. Multidisciplinary Cooperation

Models are always among central concern for developing robust computer vision
systems. Despite many advanced CNN architectures being applied to animal farming, more
cutting-edge and better models (e.g., YOLO V5) have not been introduced into the animal
industry. Alternatively, there were only a few studies exploring the useful information
for animal farming using trained CNN architectures, which included animal behavior
performance with food restriction [66,88], lighting conditions [11], rearing facilities [85], and
time of a day [85,122]. Most studies primarily focused on evaluating model performance,
from which animal management strategies were still not improved, due to limitations of
knowledge, time, and resources from single disciplines. Enriched research and applications
of CNN-based computer vision systems require multidisciplinary collaboration to synergize
expertise across Agricultural Engineering, Computer Science, and Animal Science fields to
produce enhanced vision systems and improve precision management strategies for the
livestock and poultry industries.

9. Conclusions

In this review, CNN-based computer vision systems were systematically investigated
and reviewed to summarize the current practices and applications of the systems in
animal farming. In most studies, the vision systems performed well with appropriate
preparations, choices of CNN architectures, and strategies of algorithm development.
Preparations influence quality of data fed into models and included camera settings,
inclusion of variations for data recordings, GPU selection, image preprocessing, and data
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labeling. Choices of CNN architectures may be based on tradeoffs between detection
accuracy and processing speed, and architectures vary with respect to computer vision
tasks. Strategies of algorithm development involve distribution of development data, data
augmentation, transfer learning, hyperparameter tuning, and choices of evaluation metrics.
Judgment of model performance and performance based on architectures were presented.
Applications of CNN-based systems were also summarized based on year, country, animal
species, and purpose.

Four directions of CNN-based computer vision systems in animal farming were pro-
vided. (1) Movable vision systems with lightweight CNN architectures can be alternative
solutions to inspect animals flexibly and assist in animal management. (2) Farm-animal-
related datasets are urgently needed for tailored model development. (3) CNN architectures
for pose estimation, poultry application, and applications of abnormality detection and
scoring should draw more attention to fill research gaps. (4) Multidisciplinary collaboration
is encouraged to develop cutting-edge systems and improve management strategies for
livestock and poultry industries.
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