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An activated unfolded protein response promotes
retinal degeneration and triggers an inflammatory
response in the mouse retina

T Rana1, VM Shinde1, CR Starr1, AA Kruglov1, ER Boitet1, P Kotla1, S Zolotukhin2, AK Gross1 and MS Gorbatyuk*,1

Recent studies on the endoplasmic reticulum stress have shown that the unfolded protein response (UPR) is involved in the
pathogenesis of inherited retinal degeneration caused by mutant rhodopsin. However, the main question of whether UPR
activation actually triggers retinal degeneration remains to be addressed. Thus, in this study, we created a mouse model for retinal
degeneration caused by a persistently activated UPR to assess the physiological and morphological parameters associated with
this disease state and to highlight a potential mechanism by which the UPR can promote retinal degeneration. We performed an
intraocular injection in C57BL6 mice with a known unfolded protein response (UPR) inducer, tunicamycin (Tn) and examined
animals by electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT) and histological analyses. We
detected a significant loss of photoreceptor function (over 60%) and retinal structure (35%) 30 days post treatment. Analysis of
retinal protein extracts demonstrated a significant upregulation of inflammatory markers including interleukin-1β (IL-1β), IL-6,
tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IBA1. Similarly, we detected a strong
inflammatory response in mice expressing either Ter349Glu or T17M rhodopsin (RHO). These mutant rhodopsin species induce
severe retinal degeneration and T17M rhodopsin elicits UPR activation when expressed in mice. RNA and protein analysis revealed
a significant upregulation of pro- and anti-inflammatory markers such as IL-1β, IL-6, p65 nuclear factor kappa B (NF-kB) and MCP-1,
as well as activation of F4/80 and IBA1 microglial markers in both the retinas expressing mutant rhodopsins. We then assessed if
the Tn-induced inflammatory marker IL-1β was capable of inducing retinal degeneration by injecting C57BL6 mice with a
recombinant IL-1β. We observed ~ 19% reduction in ERG a-wave amplitudes and a 29% loss of photoreceptor cells compared with
control retinas, suggesting a potential link between pro-inflammatory cytokines and retinal pathophysiological effects. Our work
demonstrates that in the context of an established animal model for ocular disease, the persistent activation of the UPR could be
responsible for promoting retinal degeneration via the UPR-induced pro-inflammatory cytokine IL-1β.
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Retinal degeneration encompasses a diverse group of ocular
disorders that, despite different pathophysiological mechanisms,
are generally characterized by the progressive deterioration of
retinal cells, ultimately leading to their death. Although the
mechanisms of photoreceptor cell death are still under
investigation, recent publications indicate that the UPR1 is a
common cellular pathway involved in the pathogenesis of age-
related macular degeneration, retinitis pigmentosa and
diabetic retinopathy. However, the exact role of the UPR in
the disease process is unclear.1

The UPR, also known as the endoplasmic reticulum (ER)
stress response, is a series of evolutionarily conserved
signaling pathways aimed at restoring homeostasis under
conditions of ER stress.2 It is activated in response to the
accumulation of misfolded or unfolded proteins in the ER
lumen. Operating in a rheostat-likemanner, the primary goal of
the UPR is to maintain a pro-survival signaling environment.
However, if the capacity of the ER to resist stress in the

cell is insufficient, the UPR-associated signaling eventually
becomes dominant and shifts from a pro-survival to a pro-
death cascade. This happens to degenerating the photo-
receptor cells regardless of whether the retinal degeneration is
the result of genetic defects or prolonged light exposure.3,4

Mice and rats expressing mutant rhodopsin, experience the
photoreceptor cell death, much as humans, and manifest the
clinical signs of autosomal dominant retinitis pigmentosa
(ADRP). For example, the T17M RHO mice carrying a human
RHO, as well as the P23H Rho and S334ter Rho rats have
been used to study the effects of a persistently activated UPR
in the retina.5–7 As a result, we have demonstrated not only
that the progression of ADRP is associated with an upregula-
tion of UPR markers, but also that ER dysregulation and the
onset or progression of retinal degeneration are in fact linked.8

Despite these findings, the main question of whether UPR
activation is a protective photoreceptor cellular stress
response or a factor contributing to retinal pathogenesis in
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the degenerating retina remains open to debate. Moreover, a
mechanism by which the activated UPR could promote retinal
degeneration has not yet been proposed. The necessity of
understanding the physiological consequences of the UPR in
degenerating photoreceptors is obvious, considering UPR
activation is often associated with other pre-existing complica-
tions in the retina.9

Regarding the cell signaling involved in the ER stress-
induced retinal degeneration, the links between the UPR and
other cellular regulatory processes remain largely unknown.
Disruption of ER function broadly impacts other cellular
pathways including oxidative stress,10 cytosolic Ca2+-
release11 and inflammation.12 Thus, all three UPR branches
(PERK, IRE1a and ATF6) have been shown to mediate ‘cell
autonomous’ pro-inflammatory transcriptional programs and
contribute substantially to progression of cystic fibrosis,
metabolic disorders and intestinal bowel disease.12 Therefore,
further study of the potential role for the UPR in triggering
inflammation during retinal degeneration could give valuable
mechanistic insight into retinal pathogenesis. This could in
turn help determine if manipulating UPRmediators would be a
feasible strategy for fighting inflammation and arresting
disease progression in degenerating retinas.

Results

A persistently activated UPR promotes loss of photo-
receptor function and retinal structure. Tn is known to
activate the UPR by inhibiting the N-linked glycosylation of
newly synthetized proteins resulting in ER protein misfolding
and is widely used to experimentally induce the UPR in vivo
and in vitro. We injected Tn into the retinas of ER stress
activated indicator (ERAI) mice carrying venus, a variant of
green fluorescent protein (GFP) fused with human XBP1
(X-box binding protein 1) to track UPR activation
(Supplementary Figure S1). The results demonstrated that
24 h post injection, the majority of photoreceptors experi-
enced UPR activation. Expression of venus was also
observed in other retinal cell types, indicating UPR activation
in these cells as well. The impact of UPR activation in
photoreceptors was monitored by photoreceptor-derived
a-wave amplitudes of the scotopic ERG, SD-OCT-assessed
averaged thickness of the outer nuclear layer (ONL) and by
performing histological analysis to count the number of
photoreceptor nuclei rows.
We performed intraocular injection in mice with one of two

Tn doses to generate a mild (0.001 μg per eye)13 and a strong

(0.01 μg per eye)14,15 retinal UPR activation. The contralateral
eye was injected with phosphate-buffered saline (PBS) and
served as surgery controls. Three days after injection with
0.01 μg of Tn we confirmed the presence of UPR activation
markers (Figure 1a and Supplementary Table S1) including
the phosphorylated (p) epEIF2α (eukaryotic translation initia-
tion factor 2α), which was elevated by 3.8-fold. The cleaved
form of pATF6 (50 kDa) was also upregulated by 2-fold,
suggesting that the Tn-injected retinas were experiencing an
ongoing UPR and that the PERK and ATF6 pathways were
activated. As a result, we found that the levels of the
downstream pro-apoptotic UPR marker CHOP significantly
increased by 1.3-fold. The dose of 0.001 μg of Tn per eye failed
to produce UPR activation 3 days after treatment.
Next, we analyzed the physiological response of retinas to

Tn injection (0.01 μg per eye) by ERG and found a loss of
photoreceptor function at 10 and 30 days after treatment
(Figure 1b and Supplementary Table S1). The greatest effect
was seen in the a-wave amplitude that was decreased by
over 60% at 30 days post treatment. In the same retinas, the
b-wave amplitudes dropped by 40%. ERG analysis of mice
injected with 0.001 μg of Tn demonstrated no alterations in
the scotopic ERG a- and b-wave responses at 10 or 30 days
post treatment, suggesting that the mild or transient ER
stress did not induce retinal degeneration in the wild-type
retina.
Then we found that the treatment with Tn resulted in a

reduction of the average ONL thickness in the superior and
inferior retinas by 35% and 37%, respectively (Figure 1c).
Histological analysis of retinal sections confirmed our
OCT findings and revealed that Tn-injected retinas lost
~ 36% of their photoreceptors at 30 days post treatment
(Figure 1d).
Altogether, our results demonstrated that Tn-induced UPR

activation in photoreceptors promotes progressive retinal
degeneration culminating in photoreceptor cell death within
the context of the wild-type retina.

A persistently activated UPR induces an inflammatory
response in the wild-type retina. We chose to further
investigate if UPR activation had a causal role in the
inflammation seen with degenerative ocular diseases
(Figure 1a,Supplementary Figure S2 and Supplementary
Table S1). Compared with PBS-injected controls, retinal
protein extracts from mice injected with 0.01 μg Tn demon-
strated UPR activation and showed an upregulation of
inflammatory markers TNF-α, IL-6 and CCL2/MCP-1 by 1.6-
, 2- and 2-fold, respectively. A significant increase in these

Figure 1 Persistently activated UPR in the wild-type retina induces retinal degeneration. The distribution of data values is shown in S.E.M. (a) Western blot analysis of Tn- or
PBS-injected retinal protein extracts (N= 4). Upper: a dose of 0.01 mg Tn activated the UPR in the retina 3 days post treatment. The UPR markers pEIF2a, CHOP and pATF6
were significantly increased compared with PBS-injected retinas (P= 0.001, P= 0.028 and P= 0.020, respectively). Images of western blots are shown on the side. Bottom
panel: activation of the UPR was observed concomitantly with the induction of inflammatory signaling in Tn-injected wild-type retinas. The inflammation markers IL-1β, IL-6,
MCP-1 and TNF-α were upregulated 3 days post injection, suggesting that Tn injection induced not only UPR activation but also led to activation of an inflammatory response in
the retina (P= 0.001, P= 0.029, P= 0.021 and P= 0.002). The calculation of the Tn-induced microglial response is shown in Supplementary Figure S1. (b) Scotopic ERG
responses were significantly reduced in Tn-injected retinas at 10 and 30 days after treatment (N= 6). Although no difference was observed between the PBS-injected and naive
retinas, the a- and b-wave amplitudes were reduced by460%, 30 days after Tn treatment (*Po0.05, **Po0.01, ***Po0.001 and ****Po0.0001). (c) A loss of retinal integrity in
Tn-injected wild-type retinas was measured by SD-OCT (N= 6). A430% reduction in the ONL thickness was observed across all of the Tn-injected retina compared with PBS-
injected mice, ****Po0.0001 at all measurement points. Bottom: SD-OCT images taken from PBS- and Tn-injected retinas. (d) Histological analysis following H&E staining of Tn-
injected cryostat-sectioned retinas demonstrated a significant loss of photoreceptor cells. The number of rows of photoreceptor nuclei in the Tn-injected retinas was 36% lower
compared with PBS-injected mice. Bottom: images of the H&E-stained retinas 30 days after treatment, (P= 0.001). Scale bar indicates 20 μm
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inflammatory markers suggests a strong inflammatory
response. We also found that the microglial response was
activated in the Tn-injected retina 3 days post treatment,
suggesting a potential cytokine release in response to the

activation of ER stress in photoreceptors. A 42-fold increase
in IBA1-positive cells was detected in the treated retinas.
Photoreceptors have been reported to express cytokines

Cx3cl1, Mcp-1, Rantes, Il-1β and Tnf-α in response to

UPR markers
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photo-injury,16 a known trigger for UPR activation,17 and to
release cytokines in response to LPS treatment.18 On the
basis of this information, we decided to verify whether cone-
derived 661W cells induce Il-1β, Il-1R and Il-6 cytokines when
treated with Tn and whether modulation of UPR markers
would modify cytokine levels in a mouse retina experiencing
an ongoing UPR (Figure 2 and Supplementary Table S2). We

found that 1 h post treatment 661W cells demonstrated an
upregulation of the early-mediated Il-1β by 3.6-fold and
downregulation of Il-1R by 0.67-fold, whereas at 8 h post
treatment Il-6 mRNA was upregulated by 44-fold. Next, we
also analyzed IL-1β and IL-6 production in CHOP− /− retinas
injected with Tn, as well as in C57BL6 retinas overexpressing
ATF4 in their photoreceptors; thus mimicking the activation of
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Figure 2 Injection with Tn leads to over production of cytokines in the retinal cells. (a) The cone-derived 661W cells treated with Tn (N= 4) were harvested 1 and 8 h post
injection to assess levels of Il-1β, Il-1 R and Il-6 by qRT-PCR. Results of the experiments demonstrated that the Tn treatment induces a 3.6-fold upregulation of Il-1β mRNA and
33% downregulation of Il-1R mRNA 1 h post treatment. (a) A 4-fold overexpression of Il-6 mRNAwas observed 8 h post treatment with Tn. (b–d): Modulation of the UPR markers
leads to altered cytokine’s production. (b) Images of western blots obtained from the CHOP− /− and ATF4 overexpressing retinal extracts. (c) CHOPablation in Tn-injected retinas
(N= 4) leads to a 46% and by 66% reduction in IL-6 and IL-1β, respectively, at 3 days post treatment, indicating that CHOP might regulate production of these cytokines. (d) The
2.6-fold increase in ATF4 triggers pro-inflammatory IL-1β over production. A 3-fold increase in IL-1β in AAV2/5 ATF4-injected retinas (N= 4), suggested that the PERK UPR arm
that leads to the ATF4 mRNA increase may be responsible for activation of the IL-1β mediated inflammatory signaling. The distribution of data values is shown in S.E.M.,
*Po0.05, **Po0.01, ***Po0.001 and ****Po0. 0001
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the PERK UPR signaling arm. Our results indicated that the
ablation of CHOP resulted in a 66% reduction of IL-6 and a
62% of IL-1β, in the retinas injected with Tn as compared with
Tn-treated C57BL6 controls. These results indicate that
CHOP is crucial for IL-6 and IL-1β over production.
A 2.6-fold overexpression of ATF4 was achieved in

photoreceptors by means of adeno-associated viral (AAV)
transduction (serotype 5).19 As ATF4 was previously shown to
activate IL-6 production,20 we concentrated on IL-1β and
found that it was significantly upregulated by 43-fold in the
AAV2/5 ATF4 retinas.

Retinas of mice with inherited retinal degeneration
demonstrate an increase in pro- and anti-inflammatory
markers. Previously, we showed that the T17M RHO retina
expressed hallmarks of the UPR starting from P15, before the
onset of any symptoms, and continued to P30 at which point
retinal degeneration resulted in a marked loss of photo-
receptor cells and vision.6,21 We also demonstrated that the
elevation of TNF-α in mice expressing T17M RHO (rhodopsin
class II mutation)22 occurred concomitantly with the activation
of the TRAF2-pcJun pathway at P30.23 These data suggest
that the T17M RHO retina could experience initiation of
inflammatory signaling, perhaps leading to the suppression of
pro-survival and elevation of pro-death pathways.
Inflammatory chemokines, interleukins and TNF-α can be

classified as either pro- or anti-inflammatory biomarkers, but
some have more complex, multifunctional roles such as TNF-
α, TRAF6, IL-1β and IL-6. For the sake of simplicity we present
our results based on typical pro- and anti-inflammatory
classifications of these inflammation biomarkers (Figure 3
and Supplementary Table S3). Western blot analysis and
collected qRT-PCR data demonstrate that the expression of
both pro- and anti-inflammatory markers changed significantly
over the course of ADRP progression in the T17M RHO
retinas.
We analyzed the P15, P30, P45 and P60 time points and

found that mRNAs for the pro-inflammatory markers Tnfrsb, Il-
1β, Il-6, Cx3cr1, Cxcl1, Tnf-α and Iba1 were already
significantly upregulated at P15, as compared with wild-type
retinas. Their fold change ranged from 1.65- to 6-fold at P15.
However, anti-inflammatory Ccl2/Mcp-1 expression was also
significantly increased by 4.9-fold. At P30, in addition to the
above mentioned markers, we observed upregulation of the
pro-inflammatory Traf6, Nf-kb2, Tnfrsα and Cxcr2, which
increased by 1.5–2.6-fold. Interestingly, Il-1β mRNA was not
elevated in the T17MRHO retina at any of the time points. The
anti-inflammatory Ccl2/Mcp-1 also did not differ from wild type
but Il-10 mRNA was elevated by 7-fold in the ADRP retina. At
P45, almost all of the examined pro-inflammatory markers
were upregulated at the mRNA level. The exceptions were
Traf6, Il-6 and Cxcr2. The anti-inflammatory Ccl2 and Il-10
mRNAswere elevated by44- and 3.6-fold, respectively, in the
T17M RHO retinas. However, by P60 these markers dropped
significantly to levels that were no different from controls while
pro-inflammatory Tnf-α, Traf6, Cxcl1 and Iba1 remained
steadily upregulated in the ADRP retina. The observed
decrease in anti-inflammatory markers correlated with a
significant loss of a- wave ERG amplitude in the T17M RHO
photoreceptors at P60.21

Recently, it has been proposed that cytokines Cxcl11 and
Ccl22 are secreted by M1 and M2 macrophages that are
generally considered to be pro- and anti-inflammatory,
respectively, and that the ratio of Ccl22 to Cxcl11 could be
used to characterize the polarization of the macrophage
population within the advanced AMD retina.24 We used these
markers to identify these macrophages populations in the
retina and found predominantly M1 macrophages during the
progression of ADRP. The ratio of Ccl22/Cxcl11 ranged from
1.2 to 1.4 with the only exception being at P30, when this ratio
dropped. This, however, did not result from an increase in M2
macrophages but instead corresponded with a significant drop
in Cxcl11 mRNA expression.
Next, we found that the pro-inflammatory proteins IL-1β,

IL-6, p65 NF-kB, MCP-1 and TNF-α were already upregulated
in the P15 ADRP retina by 2.7-, 2.9-, 1.5- and 2.3-fold,
respectively (Figure 4 and Supplementary Tables S3),
whereas the levels of the anti-inflammatory CCL2/MCP-1
increased by 1.5-fold. Thus, western blot analysis confirmed
the qRT-PCR data suggesting that both pro- and anti-
inflammatory markers were elevated in the P15 ADRP retinas.
Given that both pro- and anti-inflammatory markers were

expressed in T17M RHO animals, we wanted to determine
whether the ADRP retina expressing a class I mutant RHO
would have a different inflammatory marker profile. We
analyzed the retinas of the knock-in Ter349Glu RHO mice,
which carry a human rhodopsin gene with a read-through
mutation that was generated by adding 51 amino acids to the
1D4 epitope.25 The retinas of these mice showed a 50% loss
of photoreceptors at 5 weeks (Supplementary Figure S3).
First, we investigated whether or not these mice experi-

enced retinal UPR activation as previously seen in rats
carrying another class I rhodopsin mutant7 (Figure 5 and
Supplementary Table S4).We found thatBip,Cnx,Atf4 (PERK
signaling) and Hsp901b were upregulated by 1.6-fold in the
P15 Ter349Glu retinas. At P30, Bip mRNA continued to be
upregulated by 2-fold. In addition, the Cnx, Xbp1 (IRE1
signaling), Edem1, Edem2, Synovalin1, Bcl2, Bid, Noxa,
Puma and Bik mRNAs were also upregulated by 2.2-, 2.2-,
1.9-, 1.9-, 2.7-, 1.9-, 3.5-, 3.2-, 2.5- and 6.8-fold, respectively.
Western blot analysis confirmed qRT-PCR results and

demonstrated that the hallmarks of UPR activation were
upregulated in the P30 Ter349Glu RHO retina. Although BIP
over production changed slightly in the Ter349GluRHO retina,
the CHOPand pATF6 (50) proteins demonstrated a significant
increase of over 1.3- and 3-fold, respectively, as compared
with controls. In addition, we also found that the UPR
activation in the Ter349Glu RHO retinas was accompanied
by a 1.9-fold increase in the inflammatory marker IL-1β.

Microglia are activated in the ADRP retina expressing
either class I and class II mutant rhodopsins. In addition
to analyzing the ratio of Ccl22/Cxcl11, which suggested a
trend towards M1 polarization in the ADRP retina, we
performed immunohistochemical analysis on the T17M
RHO retinas and found that the macrophage markers F4/80
and IBA1 were upregulated at P15 and P30, respectively
(Figure 6a and Supplementary Table S5). The number of
F4/80-positive cells was 1.7- and 2-fold greater than in wild-
type retinas at P15 and P30, respectively. The number of
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IBA1-positive cells was also increased by 1.4- and 1.7-fold.
Therefore, the results of immunohistochemical analysis
revealed that microglia were activated in the class II mutant
rhodopsin expressing retina.
As the Ter349Glu retinas also exhibit UPR activation, we

wanted to know whether the microglial activation was also
present. We performed western blot and immunohistochemical
analysis (Figure 6b) and found that the levels of IBA1 were 1.9-
fold higher in the Ter349Glu retina at P30 when compared with
wild-type controls. In addition, IBA1 was detected in 10-week-
old Ter349Glu retinas by immunohistochemical analysis.

Injection of recombinant il-1β promotes retinal degenera-
tion in the wild-type retina. Given that the T17M RHO
retinas express pro-inflammatory markers under the conditions
of ER stress, like early mediated IL-1β, and that the
photoreceptors could be the sources of these induced
cytokines (Figure 2),17 we investigated whether pro-
inflammatory cytokines could directly mediate retinal degen-
eration in the mouse retina. The rationale for this experiment
stemmed from the multifunctional nature of many cytokines that

are activated during inflammation. In the case of the P15 T17M
RHO mouse retina, the precise role of IL-1β during the course
of retinal degeneration is not clear. Figure 7 and Supplementary
Table S6 demonstrate results obtained from C57BL6 mice
intraocularly injected with recombinant IL-1β protein.
We found that at 30 days after injection, a- and b-wave

scotopic ERG amplitudes were reduced by 19% and 16%,
respectively, suggesting a loss of photoreceptor function.
This loss was in agreement with the SD-OCT data demon-
strating that the average ONL thickness of the superior and
inferior retina, when measured within 400 nm from the optic
nerve head (ONH), was reduced by 11% and 12%,
respectively. In addition, hematoxylin and eosin (H&E)
staining of the IL-1β-injected, cryostat sectioned, retinas
demonstrated a significant loss (29%) of photoreceptors
30 days after treatment.

Discussion

A clear understanding of the underlying mechanisms of retinal
degeneration has been complicated by the heterogeneity of
cases within any particular retinopathy and by the interplay of
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multiple cellular signaling pathways involved in each disease
model.1 A recent increase in the number of studies on ER
stress in different models of retinal degeneration has
significantly advanced our understanding of the mechanisms
of retinopathy and highlighted the role of the UPR and
individual UPR markers in the pathogenesis of retinal
degeneration. However, the main question of whether UPR

activation could directly contribute to retinal pathology by
promoting retinal degeneration has remained unanswered.
The ER stress occurs in the majority of photoreceptors

whose function and vulnerability can be monitored by
photoreceptor-originated a-wave scotopic ERG, as well as
SD-OCT photoreceptor nuclei layer measurements and H&E
staining. Thus, by analyzing a functional loss of photoreceptor
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cells in the Tn-injectedmice, we can evaluate the physiological
impact of the UPR on retinal degeneration. In contrast, these
relationships would not be possible to track by using the 661W
cone-derived cell line.
The dose of 0.001 μg Tn does not cause a persistent

activation of UPR and does not induce retinal degeneration as
measured by ERG and OCT after 30 days, suggesting a
cellular recovery from the transiently activated UPR. It is
challenging to produce UPR activation in the retina that both
exceeds the physiological norm and does not kill retinal
cells.13–15 Monitoring the degree of UPR activation at 3 days
post treatment gave us additional confirmation that we were
triggering a persistently activated, a mild or possibly a transient
UPR. A similar persistently activated UPRwas observed in the
T17M RHO retinas starting at day P15 and continuing through
P30.6 A strong ER stress response to Tn resulted in the
activation of inflammatory cytokines (IL-1β, IL-6) and a robust
microglial response (MCP-1/CCL2) that was confirmed by an
observed increase in the number of IBA-1-positive cells. The
UPR-mediated cytokine response could also be signaling by
the photoreceptors. Our data and results obtained by others
demonstrate that photoreceptors may be the source of the
cytokines induced and secreted in the retina.26 However, the
presence of IL-1R in photoreceptors suggests that IL-1β could
also be taken up by photoreceptors from the surrounding
media. Altogether, overexpression of pro-inflammatory cyto-
kines and UPR-induced proapoptotic CHOP, as well as the

elevated microglial response could conceivably ‘kill’ wild-type
photoreceptors leading to a reduction in the number of
detected nuclei in the H&E stained retinal sections.
Among the multitude of potential causes for retinal

degeneration by a persistently activated UPR, the activation
of inflammatory signaling is especially intriguing. The modula-
tion of CHOP and ATF4 in the mouse retinas demonstrates a
regulatory role for these UPR markers in IL-6 and IL-1β
production and confirms results from previous studies on the
activation of IL-1β and IL-6 via the ER stress CHOP pathway,
as well as the ATF4-mediated increase in IL-6.20,27,28 The
spectrum of ocular disease associated with dysfunction of the
immune system has continued to expand over the past
decade.29–35 However, to date there has been no definitive
evidence of a significant causal role for an inflammation in
retinal degeneration. Thus, based on the finding of Tn-induced
IL-1β expression, we examined the role of pro-inflammatory
IL-1β in the wild-type retina to determine whether the
overexpression of this cytokine could promote progressive
retinal degeneration.
Previously examined electrophysiological effect of recom-

binant IL-1β on the rabbit retina demonstrated that IL-1β
produced a pathophysiological impact.36 However, the delay
in the visual evoked potential seen in injected eyes was found
to be reversible 24 and 48 h after injection. In our experiment,
the pathophysiological effect of IL-1β was evaluated 30 days
post injection and we observed a statistically significant
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reduction of the photoreceptor-originated a-wave scotopic
ERG amplitude. Moreover, the photoreceptor functional loss
was in agreement with the reduction in the number of
photoreceptor cells suggesting a pathophysiological role for
the pro-inflammatory IL-1β in the retina. Even though the loss
of photoreceptor function in the IL-1β-injected retinas was not
overly profound (19%), it is necessary to keep in mind that in a
real diseased condition, IL-1β would not be the only pro-
inflammatory cytokine overexpressed in the retina. The
mechanism by which IL-1β exerts cytotoxicity still needs to
be studied. We cannot rule out the possibility that in real-world

disease conditions such as ADRP, IL-1β is released in the
degenerating retina by infiltrating microglia37 in response to
other pro-inflammatory cytokines released by photoreceptors
in a UPR-triggered manner. However, in either the case of
IL-1β release or the uptake by photoreceptors, it is capable of
promoting photoreceptor cell death, by a mechanism that can
be associated with multiple signaling pathways including
induced neovascularization.38 Therefore, we believe that one
possible way to trigger retinal degeneration in mice with an
activated UPR is to induce overexpression of pro-
inflammatory cytokines in the photoreceptors.
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Persistent UPR activation in T17M RHO retinas6 correlates
with the rate of retinal degeneration21 and the production of
pro-inflammatory markers. Expression of the class II mutant
T17M RHO in the mouse retina resulted in the consistent
upregulation of pro-inflammatory markers such as IL-1β and
IL-6 from P15, suggesting a strong pro-inflammatory response
at the onset of ADRP. The anti-inflammatory response was
also activated at this time. Likewise, the CCL2/MCP-1 protein
was significantly upregulated at P15 but the mRNA was
significantly downregulated at P60.
P30 seemed to be a critical time point for ADRP progression

and was characterized by marked photoreceptor functional
loss and cell death.21 The level of anti-inflammatory Il-10

mRNA increased at this point suggesting a polarization
towards M2 macrophages, which are known to be capable of
promotingCNS repair.39 This potential enhancement in theM2
population of the P30 ADRP retina was supported by the
observed 1.5-fold increase in the ratio of Ccl22/Cxcl11
mRNAs.24 However, at P15, P45 and P60, the M1 phenotype
appeared to be predominant and this may in fact have
contributed to ADRP progression.
Unsurprisingly, mice expressing the class I mutant Ter349-

Glu RHO also demonstrated the UPR induction at P30, when
animals demonstrated a 50% loss of photoreceptor cells. We
have previously demonstrated that the retinas expressing the
S334ter Rho experienced UPR activation.7 Together, these
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studies imply that the ER homeostasis in photoreceptors
expressing class I RHO mutants may be generally compro-
mised. Although a Ter349Glu RHO mutant is not misfolded in
these mice, a variety of stimuli including disturbances in redox
regulation, calcium regulation, glucose deprivation and viral
infection can compromise ER homeostasis. Consequently, by
analogy with the T17M RHO retinas, we analyzed the
inflammatory markers and discovered that class I RHO
mutants induced an increase in IL-1β, thus suggesting that
UPR and inflammatory activation occurred concomitantly in
both the ADRP models. As with T17M RHO photoreceptors,
the Ter349Glu RHO photoreceptors could also be the source
of the secreted cytokines, resulting in the observed F4/80 and
IBA1 microglia increase within the retinas.
Our results indicate that a persistently active UPR signaling

in ADRP photoreceptors can promote retinal degeneration. In
addition to the UPR-stimulated TNF-α induction, which in
T17M RHO retinas is accompanied by activation of JNK
signaling,23 UPR-induced retinal degeneration might also be
provoked by induction of pro-inflammatory cytokines like
IL-1β. Therefore, for the first time, our data link UPR activation
with inflammation and retinal degeneration seen in the
diseased retinas. Our findings also highlight a potential
mechanism responsible for ocular disorders that may not be
directly associated with protein misfolding as a primary cause
for UPR activation.

Materials and Methods
Animals and treatments. C57BL/6, T17M RHO+/− , CHOP− /−, ERAI+/− ,
C57BL/6 and albino Ter349Glu RHO knock-in mice were obtained from our animal
facility housed in an air-conditioned room (23± 1 °C) under 12 h dark/12 h light
cycles. Ter349Glu RHO knock-in mice were created as previously described.25 The
animal protocol was approved by the University of Alabama at Birmingham
Institutional Animal Care and Use Committee and was conducted following the
animal guidelines according to the ARVO statement for the Use of Animals in
Ophthalmic and Vision Research. The genotype was confirmed using PCR analysis
as previously described.6,21 Retinas were collected from individual groups and wild-
type animals at postnatal days 15, 30, 45 and 60 for our study.

Subretinal injection with AAV. Subretinal injections were performed in
pups at postnatal day 15 with 1 µl of either AA2/5 virus expressing the mouse ATF4
complementary DNA (cDNA) or GFP (1013 genome particle per ml for both viruses)
under the control of the CMV enhancer–chicken β-actin promoter. Viral vector was
injected into the right eye and PBS in the left eye.6 Animals were monitored for
2 weeks. Retinal protein analysis of injected retinas were performed to evaluate the
results of ATF4 overexpression.

Preparation of IL-1β human recombinant protein and Tn
solution. IL-1β and Tn for the treatment groups, or PBS for control groups,
were injected intraocularly in C57BL/6 mice. IL-1β human recombinant protein (Cat
# GWB-267F10) was injected at a concentration of 250 ng per eye (125 ng/μl, 2 μl)
(Planck et al.40). Tn (Cat# T7765 Sigma-Aldrich, St Louis, MO, USA) from
Streptomyces was dissolved in water at a concentration of 1 mg/ml, 2 μl (0.01 μg/μl
concentrations)15 was injected for each mouse eye. PBS was used as a control and
was injected into the other eye of each animal.

Quantitative real-time RT-PCR. The retina was placed in TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) to extract the total RNA. cDNA was made by
adding 1μg of the total RNA to the High Capacity RNA-to-cDNA Master Mix
(Applied Biosystems, Foster City, CA, USA), and reverse transcribing according to
the manufacturer's instructions. PCR was performed at 50 °C for 2 min and 95 °C for
10 min, followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. The mRNA
levels of these genes were normalized to that of Gapdh. We used a custom Taqman
array plate with 22 genes, including Gapdh as an endogenous control (Applied

Biosystems, Carlsbad, CA, USA). qRT-PCR was performed using 50 ng of cDNA
mixed with TaqMan universal PCR master mix (Applied Biosystems) in the
StepOnePlus Real-Time PCR system (Applied Biosystems, N= 4 for each time
point). The fold changes were calculated by dividing the mean of the relative
quantities (RQs) for the T17M RHO mice by the mean RQ of the wild-type mice at
each time point. The results were analyzed by two-way ANOVA using GraphPad
Prism (GraphPad Software, Inc., La Jolla, CA, USA).

Cell culture. The 661W photoreceptor cell line was generously provided by Dr
Muayyad Al-Ubaidi (Department of Cell Biology, University of Oklahoma Health
Sciences Center, Oklahoma City, OK, USA). These cells were cultured in
Dubelcco's modified Eagle's medium (Invitrogen) supplemented with 10% heat-
inactivated fetal bovine serum and 1% penicillin/streptomycin (Invitrogen), at 37 °C
in a humidified atmosphere with 5% CO2. Cells (10

6) were seeded in tissue culture
100 mm Petri dish and were allowed to attach for 15 h. The cells were then washed
with PBS twice (pH 7.4) followed by the addition of 10 ml serum-free medium. The
control group contained only media, whereas the experimental group was treated
with Tn (10 μg/ml) for 1 or 8 h. After incubation at different time points cells were
harvested, washed with PBS and collected for RNA isolation. cDNA preparation was
described previously. qRT-PCR was performed using 66 ng of cDNA, TaqMan
Universal PCR master (Applied Biosystems) and the StepOnePlus Real Time PCR
system (N= 4). We detected Il-1R, Il-1β and Il-6 genes including Gapdh as a
control. The fold change was calculated by dividing the mean of the RQs for the
control by the mean RQ of the Tn treatment at each time point. The result were
analyzed by one-way ANOVA using GraphPad Prism software.

Western blots (WB). Retinas were rinsed in lysis buffer (NP-40, 50 mM Tris,
150 mM NaCl, 1% Triton X-100) and halt protease and phosphatase
inhibitor cocktail (Prod# 1861281, ThermoScientific, Rockford, IL, USA). Protein
concentration was determined using the Bradford method (Bradford, MM 1976).
Total protein (40 μg per well) was electrophoresed on a 4–12% SDS-polyacrylamide
gradient gel (Bio-Rad, Hercules, CA, USA) and blotted onto a PVDF membrane
(Cat # 170-4157). The blot was incubated with primary antibody overnight at 4 °C,
washed and incubated with the secondary antibody for 1 h at room temperature.
The bands were visualized using either the enhanced chemiluminescence detection
system (Western Sure Ultra Chemiluminescent Substrate parts; Cat #926-85000,
LI-COR, Inc., Lincoln, NE, USA) or infrared secondary antibodies and an Odyssey
infrared imager (LI-COR Model: 2800 S/N OFC-0172).

Antibodies used were as follows: anti-TNF-α mouse monoclonal (1 : 1000)
(Cat#ab1793, Abcam, Cambridge, MA, USA); anti-IL-1β rabbit monoclonal (1 : 1000)
(Cat# 12507, Cell signaling); anti-NFKB p65 rabbit polyclonal (1 : 1000) (Cat# 06-418,
Millipore, Billerica, MA, USA); anti-MCP-1 goat polyclonal (1 : 1000) (Cat# Sc1784
Santacruz); IL-6 rabbit polyclonal (1 : 1000) Cat# Ab6672, Abcam); anti-ATF6 rat
monoclonal (1 : 1000) (Cat# ab6160, Abcam); anti-CHOPmouse monoclonal (1 : 300)
(Cat# Sc7351, Santa-Cruz Biotechnology, Santa-Cruz, CA, USA); anti-
Phosphorylated eIF2α rabbit monoclonal (1 : 1000) (Cat# 3398 Cell Signaling,
Danvers, MA, USA); anti-TNF-α (1 : 1000) and anti-Bip goat polyclonal (1 : 300) (Cat#
Sc1050, Santa-Cruz Biotechnology) and anti-β-actin mouse monoclonal (1 : 1000)
(Cat# A1978, Sigma-Aldrich), anti-tubulin rat monoclonal (1 : 1000) (Cat# ab6160,
Abcam). Donkey anti-goat IRDye (1 : 10 000) (Cat# 926-32214, LI-COR); goat anti-
mouse IRDye (1 : 10 000) (Cat# 926-32210 LI-COR, Inc.); goat anti-rat IRDye
(1 : 10 000) (Cat# 926-32229, LI-COR, Inc.); HRP-conjugated goat anti-rabbit IgG
(1 : 20,000) (Cat #31460, ThermoScientific, Waltham, MA, USA). The results were
analyzed by two-way ANOVA using GraphPad Prism (GraphPad Software, Inc.).

Histological analysis. Mice were killed using a CO2 chamber. The eye balls
were enucleated, afixed in 4% freshly made paraformaldehyde (Cat# S898-09 J.T.
Baker, Phillipsburg, NJ, USA) and kept at 4 °C for 8 h. Then, eyecups were transferred
to fresh PBS to remove formaldehyde and immersed in a 30% sucrose solution for
cryoprotection. Eyecups were then embedded in cryostat compound (Tissue TEK
OCT, Sakura Finetek USA, Inc., Torrance, CA, USA) and frozen at − 80 °C. Twelve-
micron sections were obtained using a cryostat. To count the nuclei of photoreceptors,
we stained cryostat-sectioned retinas with H&E using an H&E stain Kit (Cat#3490).
Other slides were used for immunohistochemistry. Digital images of the right and left
retinas of individual mice were taken and the outer segment length was analyzed in
the central superior and inferior retina, located equidistant from the ONH. Images
were analyzed by a blinded investigator. All sections were examined on a microscope
equipped with a digital camera (Carl Zeiss Axioplan2 Imaging microscope B000707,
Carl Zeiss, Gottingen, Germany).
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Immunohistochemical analysis. Twelve-micron sections were obtained
and fixed on polylysine-treated glass slides. Slides were warmed for 30 min at 37 °C
and washed in 0.1 M PBS for 10 min three times. Slides were kept in blocking buffer
with 10% normal goat serum and 0.3% Triton solution for 1 h at room temperature
and washed with PBS three times. The sections were incubated with primary
antibodies at 4 °C overnight. The slides were then washed three times with PBS and
incubated with secondary antibody for 1 h at room temperature. After washing,
mounting medium was added to slides containing DAPI, and was allowed to dry for
1 h. Images were taken using a confocal microscope.
The following primary antibodies were used for immunohistochemical analysis:

Anti-F4/80 rat monoclonal (1 : 50), Anti-IBA1 rabbit (0.5 μg/ml) (Cat#019-19741
Wako Chemicals); and secondary anti-mouse antibody (1 : 10 000); the
anti-rat antibody (1 : 10 000). Images of retinas were obtained using confocal
microscopy.

Electroretinogram. Mice were dark adapted for at least 12 h, and
anesthetized by intraperitoneal injection of 50 mg xylazine and ketamine/kg body
weight. The mouse corneas were anesthetized locally with 0.5% proparacaine
hydrochloride (Bausch & Lomb, Rochester, NY, USA), and the pupils were dilated
with 2.5% phenylephrine hydrochloride (Bausch & Lomb). The ground and
reference electrodes were inserted subcutaneously in the hind limb and centered
along the nasal ridge, respectively. Gold loop electrodes were placed on each eye.
The amplitude of the a-wave was measured from the baseline to the trough of the
a-wave, and the amplitude of the b-wave was measured from the trough of the
a-wave to the peak of the b-wave. The scotopic ERGs were performed on
IL-1β-treated group and Tn-treated mice after day 10 and day 30 using LKC
Technologies Bigshot Ganzfeld Stimulator, Gaithersburg, MD, USA, as previously
described23 and were registered with 10 μs flashes of white light at − 20, − 10, 0, 5,
10 and 15 db. PBS injection was used as control for both the treatment groups
(IL-1β and Tn).

Spectral domain optical coherent tomography. The SD-OCT
measurements were performed at P30, P60 and P90 using the Spectral Domain
Ophthalmic Imaging System (SDOIS) (Bioptigen, Morrisville, NC, USA) on
anesthetized mice. Horizontal volume scans through the area dorso-temporal
from the optic nerve (superior retina) and the area ventro-temporal from the optic
nerve (inferior retina) were used to evaluate the thickness of the ONL.
For measuring the thickness of the ONL, six calibrated calipers were placed in the
superior and inferior hemispheres of the retinas within 100, 200, 300 and 400 μm
of the ONH. The thickness of the ONL was determined by averaging ten
measurements.

Statistical analysis. A one- and two-way ANOVA was used to assess statistical
significance for the gene expression assays, as well as the ERG and OCT analyses.
The paired t-test was used to calculate differences in protein levels, number of F4/80-
and Iba1-positive cells and the number of photoreceptor rows in the retina. Data are
reported as mean±S.E.M. For all experiments, a P-value o0.05 was considered
significant (*Po0.05, **Po0.01, ***Po0.001 and ****Po0.0001).
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