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Summary 
The effector functions of CD4 + cells in vivo are presumed to reflect a combination of lympho- 
kine-mediated bystander reactions and direct cytotoxic T lymphocyte activity. To assess the relative 
importance of these two mechanisms, we studied the effects of transferring small doses of purified 
unprimed CD4 + cells to lightly irradiated (600 cGy) recipients expressing major histocompati- 
bility complex class II (Ia) differences. Within the first week after transfer, the host marrow 
was rapidly repopulated with hemopoietic cells. Thereafter, however, the donor CD4 + cells 
caused massive destruction of hemopoietic cells, both in marrow and spleen. Marrow aplasia 
did not affect stromal cells and was prevented by coinjecting donor but not host bone marrow. 
The use of allotypic markers and fluorescence-activated cell sorter analysis indicated that the 
destructive effects of CD4 + cells were directed selectively to host Ia + hemopoietic cells, including 
stem cells; donor hemopoietic cells and Ia- host T cells were spared. No evidence could be found 
that the ongoing destruction of host cells impaired the capacity of donor stem cells to repopulate 
marrow, spleen, or thymus. Moreover, CD4 + cells failed to destroy host-type hemopoietic cells 
from h-deficient mice. Tissue destruction by CD4 § cells thus did not seem to reflect a bystander 
reaction. We conclude that, under defined conditions, CD4 + cells can manifest extremely potent 
h-restricted CTL activity in vivo, probably through recognition of covert Ia expression on stem 
cells and/or their immediate progeny. 

C TLs play a vital role in many forms of cellular immu- 
nity and are largely responsible for elimination of viruses 

and rejection of allografts (1). Most of the effector cells for 
CTL responses are CD8 + cells. CD4 + cells make an impor- 
tant contribution to CTL responses, but CD4 + cells are 
thought to function largely by providing help (lymphokines) 
for CD8 + precursor cells rather than by acting as CTL 
effector cells. Nevertheless, there are a number of reports 
that, under defined conditions, CD4 + cells do exhibit CTL 
activity (2-9). The cytotoxic properties of CD4 + cells are 
most prominent with long-term T cell clones, but CTL 
activity is also seen for primary responses (2, 6). Most cyto- 
toxic CD4 § cells display a Thl phenotype (3, 8). In mice, 
CTL activity by CD4 + cells generally involves cell contact 
leading to apoptosis (7), but TNF-mediated lysis has also 
been reported (9). 

Whether CD4 + cells act as CTL under normal physio- 
logical conditions in vivo is unclear. In terms of allograft re- 
jection (10) and induction of lethal GVHD (11), CD4 + cells 

are known to exhibit potent effector function. The prevailing 
view is that the in vivo effector functions of CD4 § cells 
probably reflect a combination of lymphokine-mediated "by- 
stander" reactions and direct CTL activity (10). However, 
the relative importance of these two mechanisms is unknown. 

In this paper we investigated whether CD4 § cells mediate 
bystander tissue destruction in vivo by transferring purified 
CD4 + cells to lightly irradiated M HC class II (Ia)-different 
hosts. The results show that, even in small doses, allogeneic 
CD4 + cells are capable of causing massive destruction of 
host hemopoietic cells, both in spleen and marrow. The sur- 
prising finding, however, is that destruction of hemopoietic 
cells by CD4 + cells seems to be directed solely to host cells 
and not to donor-derived cells. Moreover, marrow-derived 
cells from h-deficient (knockout) mice are completely resis- 
tant to destruction by aUogeneic CD4 § cells. Tissue destruc- 
tion by CD4 + cells thus does not appear to reflect a by- 
stander reaction but rather a highly potent form of direct 
Ia-restricted CTL activity. 

307 J. Exp. Med. �9 The Rockefeller University Press ~ 0022-1007/94/07/0307/11 $2.00 
Volume 180 July 1994 307-317 



Materials and Methods 
Mice. Young adult B6, B6.C-H-2 b~12 (bin12), B6.C-H-2 bml 

(bml), D1.LP, B10.A(4R), B10.A(2R), B6 Ly 5.1, B6.PL (Thy 1.1) 
and F1 hybrids between these strains were obtained from the 
breeding colony of The Scripps Research Institute. The B6 Ly 5.1 
congeneic line was derived from breeding pairs obtained from the 
National Cancer Institute (Frederick, MD). Ia-deficient mice on 
the B6 background were kindly provided by Dr. L. Glimcher (Har- 
vard Medical School, Boston, MA) (12). 

Irradiation. Mice were exposed to a single dose of y-irradiation 
(80 cGy/min) by an irradiator (Gammacell 40; Atomic Energy of 
Canada, Ottawa, Canada). 

CellPurification. As described elsewhere (13), using RPMI 1640 
or HBSS supplemented with either 5% FCS or'r-globulin-depleted 
horse serum, highly purified populations of CD4 + cells were pre- 
pared by treating pooled LN with a cocktail of anti-CD8, anti-Ia, 
and anti-heat-stable antigen (HSA) mAbs plus C at 37~ followed 
by positive panning at 4~ on plates coated with anti-CD4 mAb. 
A reciprocal method was used to prepare purified CD8 § cells. 
Bone marrow (BM) ~ cells, flushed from the leg bones, were 
depleted of mature T cells by treatment with anti-Thy-1 mAb plus 
C (14). 

Assay for BM aplasia. Adult (6-16-wk-old) recipient mice ex- 
posed to 600 cGy 4-6 h before were injected intravenously with 
T cells (CD4 + or CD8 + cells), T-depleted (T-) BM cells, or with 
a mixture of T cells and BM cells (14). At various intervals, the 
host mice were killed to measure total numbers of nucleated cells 
in BM (usually both tibiae) and spleen. Nucleated cells were enumer- 
ated in 2% acetic acid or by phase-contrast microscopy. 

CFUs. Using standard techniques (15), the content of CFUs 
in BM was measured by transferring graded doses of T-depleted 
BM cells intravenously to heavily irradiated syngeneic hosts (three 
mice per cell dose). 8-10 d later the recipients were killed and their 
spleens were fixed in Bouin's solution for colony counting. 

FACS | Analysis. Using FITC-conjugated or unconjugated 
mAbs followed by FITC-streptavidin, cells were stained for expres- 
sion of Thy 1.2 (Jlj) (15), Thy 1.1 (19E12) (16), Ly 5.1 (A20-1.7), 
and Ly 5.2 (104-2.1) using standard techniques (16). Conjugated 
anti-Ly 5 mAbs were kindly provided by Dr. 13. J. Fowlkes (Na- 
tional Institute of Allergy and Infectious Diseases, Bethesda, MD). 
Dead cells were stained with propidium iodide (Sigma Chemical 
Co., St. Louis, MO) and gated out for analysis. Stained cells were 
analyzed on a FACScan | (Becton Dickinson, Mountain View, CA). 

Results 

In previous studies from this laboratory (The Scripps Re- 
search Institute), we examined the capacity of CD4 + cells 
to cause lethal GVHD in irradiated hosts using the strain 
combination of B6 and bin12 (14). These two strains are iden- 
tical except for several point mutations in the ~ chain of the 
I-A molecule. When small doses of B6 CD4 + cells were 
transferred to lightly irradiated (600 cGy) (B6 x bm12)Fl 
hosts, the recipients died suddenly from GVHD at 3 wk after 
transfer, apparently from acute hemopoietic failure. Other 
workers (17) had reported similar findings for h-different mice 
injected with unseparated T cells. The surprising finding was 
that acute GVHD in lightly irradiated (B6 x bm12)Fl hosts 
failed to occur when B6 CD4 + cells were supplemented 

1 Abbreviation used in this paper: BM, bone marrow. 

with donor BM cells or a mixture of donor and host BM 
cells (14). 

The initial aim of the experiments outlined below was to 
determine why the presence of donor BM cells prevents 
CD4 + cells from mediating lethal GVHD in lightly irradi- 
ated Ia-different hosts. Unless stated otherwise, doses of 
2 x 106 highly purified LN CD4 § cells were transferred 
intravenously to adult (B6 x bm12)F1 hosts exposed to a 
low dose of 600 cGy 4-6 h before; BM cells (2 x 106) were 
T-depleted and were injected alone or as a mixture with T cells. 

Acute Lethal G V H D  Induced by CD4 + Cells in Lightly Ir- 
radiated Ia-different Hosts Reflects B M  Aplasia. When a dose 
of 2 x 106 B6 CD4 + cells was transferred to 600 cGy 
(B6 x bml2)Ft hosts, the mice became acutely ill 16-18 d 
after transfer and died several days later. This was an invari- 
able finding (seen in >10 experiments) and death rates were 
virtually 100%. When the mice were killed at days 16-18, 
the mice were obviously anemic and numbers of white blood 
cells and erythrocytes in peripheral blood were markedly re- 
duced (data not shown). This pancytopenia was associated 
with striking atrophy of the host marrow, the numbers of 
nucleated cells in the long bones (tibiae) being reduced by 
20-200-fold relative to mice treated with irradiation alone 
(Table 1). Splenic atrophy was moderate on day 16 (Table 1) 
but was marked by days 18-21 (see below). 

Supplementing the injected B6 CD4 § cells with host F1 
(Table 1) or bm12 BM cells (see below) had no effect on 
BMApleen atrophy and failed to prevent death. However, 
adding donor BM cells, or a mixture of donor and host BM 
cells, caused minimal BM atrophy and resulted in prominent 
splenomegaly and virtually complete protection against death 
(Table 1). 

In hosts injected with B6 CD4 + cells in the absence of 
B6 stem cells, histological examination of the host long bones 
at days 16-18 revealed an almost complete absence of nucleated 
hemopoietic cells in the marrow cavities (Fig. 1, b and at). 
It is significant, however, that the stromal cells in the marrow 
were well preserved. When B6 CD4 + cells were sup- 
plemented with B6 BM cells or a mixture of B6 and either 
F1 or bm12 BM cells, there was no evidence of marrow at- 
rophy and the marrow was filled with dense accumulations 
of hemopoietic cells (Fig. 1, a and c). In this situation, the 
histology of the marrow was indistinguishable from the 
marrow of control mice given 600 cGy alone (data not shown). 

The dose of B6 CD4 § cells required to induce BM at- 
rophy in irradiated (B6 x bm12)F1 hosts was surprisingly 
low, since as few as 7 x 104 cells were sufficient to cause 
complete atrophy (Fig. 2 a). As a control for these studies 
with B6 CD4 § cells, we examined the dose of B6 CD8 § 
cells required to cause host marrow atrophy in 600 cGy 
(B6 x bml)F1 hosts (Fig. 2 b). In this strong MHC class 
I-different combination, induction of marked marrow atrophy 
necessitated injecting in the order of 3 x 10 s B6 CD8 + 
cells, i.e., fourfold more cells than were needed for CD4 + 
cells in the B6 --~ bin12 combination. 

As shown in Table 2, Exp. 1, the capacity of CD4 + cells 
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Table  1. BM Counts and Spleen Weights of Irradiated (B6 x bm12)F, Hosts Injected 16 d before with B6 CD4 + 
Cells Plus Donor vs. Host BM Cells 

No. of nucleated cells 
Cells transferred to 600 (•  10 -6) (SD) in Spleen weight Incidence 
cGy (B6 • bm12)F1 host marrow (both (mg) (SD) at of lethal 
hosts tibiae) at day 16 day 16 GVHD 

% 

B6 CD4 + 0.1 (< 0.1) 58 (11) 100 

B6 CD4 § + F1 BM 0.1 (< 0.1) 63 (9) 100 

B6 CD4 § + B6 BM 10.5 (6.3) 578 (524) 0 

B6 CD4 § + B6 BM + F1 BM 10.9 (0.8) 467 (201) 0 

B6 BM 16.2 (1.1) 84 (5) 0 

No cells 15.9 (2.4) 86 (6) 0 

Purified LN CD4+ cells and T-depleted BM cells (2 x 106 of each population) were transferred intravenously 4-6 h after irradiation of the hosts. 
The data (mean of three to five mice tested individually) are from a single experiment and are representative of several other experiments. 

Figure 1. Histology of BM aplasia. (B6 x bm12)F1 mice were exposed to 600 cGy and injected with B6 CD4 § cells plus a mixture of B6 and 
bm12 BM cells (2 x 106 of each) (a and c)'or with B6 CD4 + cells plus bm12 BM cells (b and d). After 16 d, femurs from the two groups of mice 
were decalcified; sections were prepared and stained with hematoxylin and eosin. (a and c) Low and high power views of femur from a mouse given 
B6 CD4 + cells plus B6 BM plus bm12 BM cells. The marrow is filled with nucleated hemopoietic cells. (b and d) Low and high power views of 
femur from a mouse given B6 CD4 + cells plus bm12 BM cells. The marrow is largely devoid of nucleated hemopoietic cells, but the stromal cells 
are well preserved. (a and b) xl00; (c and d) x400. 
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Figure 2. Dose orB6 CD4 + cells required to 
induce marrow atrophy in (B6 x bml2)F1 hosts. 
(a) Total numbers of nucleated cells recovered from 
both tibiae of 600 cGy (B6 x bml2)F1 mice in- 
jected 16 d before with graded doses of B6 CD4 + 
cells. (b) Total numbers of nucleated cells recov- 
ered from both tibiae of 600 cGy (B6 x bml)Fl 
mice injected 14 d before with graded doses of B6 
CD8 + ceils. Mean of data from three mice per 
group tested individually. 

Induction of Marrow Atrophy by CD4 § Cells in 600 cGy (136 x bml2)F1 Hosts Requires Recognition of Host la Antigens. 

No. of nucleated cells 
( x  10 -6) (SD) in 

Exp. Hosts Target both tibiae at days 
No. Cells transferred (600 cGy) antigen 15-18 

1 D1.LP CD4 § (B6 x bm12)Ft I-A bm12 0.5 (0.1) 

D1.LP CD4 + + D1.LP BM I-A bin12 23.2 (2.9) 

bin12 CD4 + bA h 0.9 (0.2) 

bin12 CD4 + + bm12 BM I-A b 19.0 (3.2) 

No cells - 17.3 (3.3) 

2 B6 CD4 + (B6 x bml2)Fi I-A bin12 0.3 (0.1) 

(B6 x bml2)F1 CD4 + - 16.6 (2.4) 

Chimera B6 CD4 + I-A bmlz 16.7 (3.7) 

No cells - 15.0 (2.4) 

3 B6 CD4 + (B6 x bml2)F1 I-A bin12 0.1 (<0.1) 

B6 CD8 + I-A bm12 9.4 (1.8) 

No cells - 9.4 (1.2) 

4 B6 CD4 + (B6 x 4R)F1 I-A k 1.2 (0.6) 

B6 CD4 § + B6 BM I-A k 20.3 (3.9) 

4R CD4 + I-A b 1.3 (0.5) 

4R CD4 + + 4R BM I-A b 24.0 (1.7) 

No cells - 21.6 (2.5) 

5 4R CD4 + 2R I-E k 1.7 (0.4) 

4R CD4 + + 4K BM I-E k 25.3 (4.7) 

No cells - 22.0 (0.8) 

6 B6 CD8 § cells (B6 x bml)Ft K bin1 0.2 (0.1) 

B6 CD4 § cells K bin1 20.3 (1.9) 

No cells - 18.3 (6.0) 

Host mice were exposed to 600 cGy and injected with purified CD4§ cells (2 x 106/mouse) _+ syngeneic BM cells (2 x 10~/mouse); chimera 
B6 CD4 + cells were prepared from LN of heavily irradiated (1,100 cGy) (B6 x bm12)F1 mice injected 6 mo previously with T-depleted B6 BM 
cells. BM counts refer to the mean data from three mice/group. 
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No. of nucleated cells (x  10 -6) (SD) 
in both tibiae 

day 16 
Cells injected into 600 cGy 
(B6 x bml2)F1 hosts day 2 day 7 

/t 

E 

L) 

- 1.0 (0.8) 18.0 (2.0) 20.2 (4.2) 

FI BM (2 x 106) 2.0 (1.1) 20.6 (1.6) 23.4 (7.4) 

F1 BM (2 x 106) + B6 CD4 § 1.1 (0.1) 20.4 (2.9) 0.2 (0.1) 

F, BM (2 x 107 ) + B6 CD4 + - 17.3 (2.2) 0.4 (0.2) 

B6 CD4 § 1.3 (0.2) 15.8 (3.3) 0.3 (0.2) 

As for Table 1, three mice per group. CD4+ cells were injected in a dose of 2 x 106 cells/mouse. 

to induce host marrow atrophy in irradiated (B6 x bml2)F1 
hosts applied to both parental strains and also extended to 
D1.LP (I-A b) CD4 + ceils (B6 and D1.LP are MHC iden- 
tical but have different genetic backgrounds). Recognition 
of host antigens appeared to be essential because no marrow 
atrophy was observed when (B6 x bm12)F1 hosts were in- 
jected with host F1 CD4 § cells or with B6 CD4 + cells 
tolerized to host antigens in B6 BM -*- 1100 cGy (B6 x 
bm12)F1 chimeras (Table 2, Exp. 2). In terms of T cell 
subsets, marrow atrophy in (B6 x bm12)F1 hosts was re- 
stricted to CD4 § cells: no atrophy occurred with injection 
of B6 CD8 + cells (Table 2, Exp. 3). 

In addition to the B6/bm12 combination, CD4 § cells in- 
duced marked marrow atrophy in a number of other Ia- 
different strain combinations, including strains with isolated 
allelic I-A differences (4R --- B6, B6 -+ 4R) and I-E differ- 
ences (4R ~ 2R) (Table 2, Exp. 4 and 5). Ia disparity ap- 

peared to be essential because B6 CD4 + ceils failed to cause 
marrow atrophy in class I-different (B6 x bml)F1 hosts 
(Table 2, Exp. 6). 

In all of the above situations, marrow atrophy in Ia-different 
hosts only applied when CD4 + cells were injected in the 
absence of donor BM cells. When CD4 + cells were sup- 
plemented with syngeneic donor BM cells, marrow atrophy 
was mild or undetectable (Table 2). 

Kinetics of Marrow Aplasia. The above data refer to marrow 
counts measured 14-18 d after transfer of CD4 + ceils. The 
kinetics of the onset of marrow aplasia are shown in Table 
3 and Fig. 3. When (B6 x bm12)F1 mice were treated with 
600 cGy alone, the cellularity of the marrow on day 2 was 
reduced by 10-20-fold relative to unirradiated mice (Table 
3). Thereafter, cell counts in the marrow increased progres- 
sively to reach near-normal levels by days 7-12 (indicating 
repopulation by radioresistant host stem cells). When 600 
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Table  3. Marrow Aplasia Induced by CD4 § Cells Develops Late and Is Not Apparent during the First 7 d after Transfer 

20 

Time after transfer (d) 

Figure 3. Kinetics of marrow and spleen atrophy in irradiated (B6 x bml2)F: mice given B6 CD4 + cells. Groups of (B6 x bm12)Fl mice were 
exposed to 600 cGy and injected with 2 x 106 F1 BM cells (O) or a mixture of 2 x 106 B6 CD4 + cells and 2 x 106 F1 BM cells (O). Total numbers 
of nucleated cells in BM (both tibiae) (a), spleen (b), and spleen weights (c) were then measured at 2-d intervals. In a separate experiment (d), spleen 
weights in 600 cGy (B6 x bm12)F1 mice were measured at various stages after transferring 2 x 106 B6 BM cells (VI) or 2 x 106 B6 CD4 + cells 
and 2 x 106 B6 BM cells (1) .  In this experiment, spleen weights in mice given B6 CD4 + cells and B6 BM cells returned to near normal levels 
by day 30. The data represent the mean of three mice per group. 
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cGy F1 mice were injected with B6 CD4 § cells, either alone 
or with F1 BM cells, the increase in marrow counts between 
days 2 and 7 was the same as in uninjected irradiated mice, 
indicating that CD4 + cells did not prevent initial repopula- 
tion of the host marrow. Between days 7 and 16, however, 
the cellularity of the marrow dropped precipitously. Adding 
large doses of F1 BM cells (2 x 107) failed to prevent this 
late onset of marrow atrophy (Table 3). 

When the cellularity of the marrow was measured at 2-d 
intervals, the onset of marrow atrophy in F1 mice given B6 
CD4 + cells (data not shown) or B6 CD4 + cells plus F1 BM 
cells (Fig. 3 a) first became evident 8-10 d after transfer. There- 
after marrow counts declined abruptly and reached very low 
levels by day 12. Similar kinetics applied to cell counts in 
spleen (Fig. 3 b). Spleen weights were mildly increased rela- 
tive to uninjected control mice 6-10 d after transfer and then 
decreased to below the control levels after day 14 (Fig. 3 c). 
This applied to B6 CD4 + cells transferred in the absence of 
B6 BM cells. When B6 CD4 § cells were supplemented 
with syngeneic B6 BM cells, massive splenomegaly occurred: 
spleen weights were maximal ~2  wk after transfer and then 
gradually declined towards normal levels over the next 2-3 
wk (Fig. 3 d and data not shown); marrow counts remained 
close to control levels throughout the period studied (data 
not shown). 

Marrow Aplasia Includes Stem Cells. To examine whether 
the destruction of host marrow cells by CD4 + cells included 
stem cells, the few cells remaining in the host marrow at 14 d 
after transfer were assayed for CFUs using standard proce- 
dures (see Materials and Methods); the cells (pooled from 
9 mice) were treated with anti-Thy-1 mAb plus C before 

transfer to remove mature T cells. As shown in Table 4, Exp. 
1, the total content of CFUs in the hind legs of F1 mice 
injected with B6 CD4 + cells (without B6 BM cells) was 
reduced by about 300-fold relative to marrow cells recovered 
from uninjected irradiated control mice. To determine whether 
the destruction of stem cells applied to pluripotential stem 
cells, host BM cells harvested from a group of 20 F1 host 
mice injected 15 d before with B6 CD4 + cells were T-de- 
pleted and then tested for their capacity to protect lethally 
irradiated (1,100 cGy) F1 mice. Of  three mice injected with 
a dose of 5 x 105 BM cells, two mice died 3 wk after 
transfer and one mouse survived. With control BM cells from 
mice treated with irradiation alone, a dose of 5 x 10 s cells 
led to 100% survival and 10 s cells caused 80% survival. 
These data imply that the residual marrow cells harvested 
from F1 mice given B6 CD4 + cells were largely depleted of 
pluripotential stem cells. 

Marrow Aplasia Induced by CD4 + Cells Is Associated with 
Migration of Donor T Cells into the Host Marrow. To examine 
whether the donor CD4 + cells entered the host long bones, 
600 cGy (B6 x bm12)F1 hosts (Thy 1.2) were injected with 
B6.PL (B6-Thy-l.1) CD4 + cells. When the cells recovered 
from the host marrow were analyzed by FACS | at days 14-16, 
40-70% of the few nucleated cells recovered were Thy 1.1 + 
(Table 4, Exp. 2); 5-10% of the cells were Thy 1.2 + . These 
findings indicate that the donor CD4 § cells did indeed reach 
the marrow of the host. Donor (Thy 1.1 +) CD4 + cells were 
also evident in the spleen (10-20% Thy 1.1 + cells by day 
18) (data not shown). With regard to host cells, the few viable 
cells recovered from the spleen 16-18 d after transfer con- 
sisted predominantly of radioresistant host (Thy 1.2 +) T 

Table 4. CFUs and Donor T Cells in Aplastic Marrow from Irradiated (136 x bml2)Fl Mice Injected with B6 CD4 + Cells 14 d before 

Exp Treatment of Cells recovered from host marrow 
No. (B6 x bm12)F1 hosts at day 14 

1 No. of nucleated CFUs/106 cells Total CFUs in 
cells in both both hind legs 

hind legs 

- 42 x 106 66 2,772 
600 cGy 32 • 106 32 1.024 

600 cGy + B6 CD4 + cells 0.5 • 106 6 3 

2 % Thy 1.1 § % Thy 1.2 + 
cells in cells in 
marrow marrow 

~2 4 
65 7 600 cGy + B6.PL CD4 § cells 

In Exp. 1, pooled marrow cells were treated with anti-Thy 1.2 mAb plus C to remove mature T cells and then transferred in graded doses to 1,000 
cGy B6 mice to measure spleen colonies on day 8. Similar data were observed in another experiment where CFUs were measured on day 10. In 
Exp. 2, pooled marrow cells were analyzed by FACS | for expression of Thy 1.1+ cells and Thy 1.2+ cells using standard procedures (See Materials 
and Methods). 
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cells and other Ia- cells; Ia + cells were almost undetectable 
(data not shown). Host T cells were also evident in marrow 
(Table 4). 

Marrow Destruction by CD4 + Cells Is Restricted to Host 
Cells. As mentioned earlier, marrow aplasia induced by 
CD4 § cells was mild or absent when the donor CD4 + cells 
were supplemented with donor BM cells or a mixture of donor 
and host BM cells. The simplest explanation for this finding 
is that the donor CD4 + cells destroyed host BM cells but 
spared donor BM cells. Alternatively, the presence of donor 
BM-derived cells might somehow have inhibited the destruc- 
tive effects of the donor CD4 + cells. 

To distinguish between these two possibilities, 600 cGy 
(B6 x bm12)F1 mice (Ly 5.2) were injected with BM cells 
from the B6-Ly 5.1 congeneic line (Ly 5.1) with or without 
B6 CD4 + cells (Ly 5.2). In terms of total cell counts in the 
marrow, both groups of recipients showed no evidence of 
marrow aplasia when tested 14-35 d after transfer. When 
the donor/host identity of the marrow cells was assessed by 
FACS | analysis, the recipients of B6-Ly 5.1 BM cells alone 
comprised a mixture of Ly 5.1 § (donor) and Ly 5.2 + (host) 
cells in both marrow and spleen. With injection of a mix- 
ture of B6-Ly 5.1 BM and B6 CD4 + cells, by contrast, 
nearly all of the Thy 1- cells in the host marrow were Ly 
5.1 + . 

This is illustrated in the experiment shown in Fig. 4 in 
which a limiting dose of 2 x 10 s B6-Ly 5.1 BM cells was 

used for reconstitution. With this small dose of BM calls, 
reconstitution of the host marrow with donor Ly 5.1 + calls 
was quite limited (11% Ly 5.1 + cells 4 wk after transfer). 
In marked contrast, in recipients of a mixture of B6 CD4 + 
cells and the same small dose of B6-Ly 5.1 BM cells, nearly 
all (93%) of the Thy 1- marrow cells were Ly 5.1 + (com- 
pared with 95% staining of normal B6-Ly 5.1 BM). Reciprocal 
results were observed when the marrow from the two groups 
of mice were stained for host Ly 5.2 expression. Bearing in 
mind that the anti-Ly 5.2 mAb used caused weak (6%) cross- 
reactive staining of normal B6-Ly 5.1 marrow (Fig. 4), Thy 
1- host Ly 5.2 + cells were virtually absent in in the mice 
given a mixture of B6 CD4 + calls and B6-Ly 5.1 BM cells. 
Similar findings applied to the Thy 1- T cells in spleen (Fig. 
4). As a control in this experiment, some of the mice were 
injected with B6-Ly 5.1 BM cells plus bin12 CD4 + cells and 
bin12 BM ceils (both Ly 5.2). The expectation here was that 
the bin12 CD4 + cells would kill the allogeneic B6-Ly 5.1 
BM cells (and also host F1 BM cells) but spare the syngeneic 
bm12 BM cells, thus causing complete repopulation with Ly 
5.2 + cells, i.e., with bm12-derived cells. This was indeed the 
case (Fig. 4). 

The data in Fig. 4 indicate therefore that, in the presence 
of a mixture of donor and host BM cells, donor CD4 + cells 
selectively destroyed host BM-derived cells. The recipients 
thus showed complete repopulation with donor-derived cells. 

CD4 + Cells Destroy Host Precursors of Thymocytes. Thy- 

Normal 
B6 Ly 5,1 
mouse 

Normal 
(B6 x bm121F 1 
mouse 

B6 Ly 5.1 BM 
-~ 600 cGy F 1 

B6 Ly 5.1 8M 
+ B6 CD4 + 
-~ 600 cGy F 1 

Cel ls  f r o m  r e c i p i e n t s '  B M  

Ly 5.2 

6.2 \ 

7.4 

B6 Ly 5.1 BM I I~ 95.1~ 
+ bm12 CD4 + 
+ bin12 BM 

-~ 600 cGy F 1 

Ly 5.1 

0.9 

Ce l ls  f r o m  r e c i p i e n t s '  s p l e e n  

Ly 5.2 

12.. 

Ly 5.1 

~ _ 0.6 I 

1 

Figure 4. Donor CD4 § cells 
destroy host hemopoietic cells but 
spare donor cells. (B6 x bm12)Ft 
mice (1..7 5.2) were exposed to 600 
cGy and reconstituted with a low 
dose of 2 x 10 s B6-Ly 5.1 BM 
cells with or without 2 x 106 B6 
(Ly 5.2) CD4 + cells. A control 
group of mice received B6-Ly 5.1 
BM cells supplemented with bm12 
CD4 + cells and bm12 BM cells. 
Using cells pooled from two to 
three mice per group, marrow and 
spleen suspensions were prepared 4 
wk after transfer, treated with anti- 
Thy I mAb plus C to remove ma- 
ture T cells and stained for expres- 
sion of Ly 5.1 and Ly 5.2 followed 
by FACS | analysis. The data are 
plotted on a log scale. 
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2 x 10 s B6.PL BM 
-~ 600 cGy F1 

2 x 10 s B6.PL BM 
+ 2x108B6CD4  + 
�9 -,, 600 cGy F: 

Cells f rom reci 

1 ~  3.9 

3ients" thymus 

B9.5 

1.o 

Thy 1.1 Thy 1.2 

Figure 5. Donor CD4 + cells destroy host precursors of thymocytes. 
(B6 x bm12)F1 mice exposed to 600 cGy were injected with a low dose 
of 2 x 10 s B6.PL (Thy 1.1) BM cells with or without 2 x 106 B6 (Thy 
1.2) CD4 + cells. Pooled thymocytes from both groups of mice (40-60 
X 106/mouse) were stained for expression of Thy 1.1 vs. Thy 1.2 4 wk 
after transfer and then analyzed with a FACS | The data are plotted on 
a log scale. 

mocyte repopulation in irradiated mice is known to depend 
upon a constant influx of  stem cells, probably pluripotential 
stem cells, from the marrow (18). To examine whether thymic 
cells can act as targets for CD4 + cells, 600 cGy (B6 • 
bm12)Ft mice (Thy 1,2) were reconstituted with a low dose 
of  2 • 105 B6-Thy 1.1 BM cells + B6 CD4 + cells (Thy 
1.2). When  thymocytes from the two groups of  mice were 
analyzed by FACS | 4 wk  later, thymocytes from the control 
group given B6-Thy 1.1 BM cells alone contained very few 
donor BM-derived cells, i.e., 4% Thy 1.1 + cells (Fig. 5). In 
marked contrast, donor-derived Thy 1.1 + cells accounted for 
virtually all of  the thymocytes recovered from recipients of  
a mixture of  B6-Thy 1.1 BM and B6 CD4 § cells. This 
finding implies that the injected B6 CD4 + cells selectively 
destroyed host stem cells, thereby allowing the thymus to 
be repopulated solely by donor stem cells. 

Resistance of Ia-  B M  Cells to Destruction by CD4 + Cells. 
The above data on phenotyping of marrow cells and thymo- 
cytes indicate that the destructive function of  CD4 § cells is 
strongly Ia restricted and is directed, at least in part, to stem 
cells. The key problem with this scenario is that despite ex- 

Table 5. Resistance of B6 Ia ~ BM Cells to Destruction by bin12 CD4 + Cells 

Cells transferred to 
600 cGy hosts 

Exp. 
No. T cells BM cells 

Spleen/BM recovered from 
hosts at days 14-16 

No. of nucleated 
cells in both tibiae Spleen weight 

(x 10 -6) (SD) (rag) (SD) 

1 bm12 CD4 § bm12 

bin12 CD4 § B6 
bm12 CD4 § B6 Ia ~ 
B6 CD4 + bin12 

B6 CD4 § B6 

B6 CD4 + B6 Ia ~ 

2 bm12 CD4 § bm12 

bm12 CD4 § B6 
bm12 CD4 + B6 Ia ~ 

- B6 
- B 6  Ia  ~ 

(B6 x bml2)F1 hosts 
19.7 (1.0) 166 (32) 
0.8 (0.1) 80 (2) 

23.1 (6.8) 220 (19) 
1.1 (0.1) 69 (5) 

22.5 (5.8) 230 (32) 
23.3 (6.0) 204 (64) 

19.8 (7.4) 126 (8) 
0.1 (<0.1) 38 (3) 
20.2 (2.7) 183 (110) 
20.1 (2.4) 76 (2) 
24.3 (0.6) 72 (6) 

(B6 • bml)Fl hosts 
bml CD8* B6 1.2 (0.2) 43 (9) 
bml CD8 + B6 Ia ~ 0.3 (0.2) 50 (12) 

- B 6  Ia  ~ 2 1 . 4  ( 4 . 5 )  7 7  ( 1 )  

In each experiment, T cells and BM cells were injected in a dose of 2 x 106 cells/mouse. The mice were analyzed at 14--16 d after transfer. The 
data represent the mean of three mice per group. 
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haustive attempts we were unable to demonstrate Ia expres- 
sion on stem cells. Thus, even after incubation with lym- 
phokines in vitro, treating marrow cells with anti-Ia mAb 
plus C and/or removing Ia + cells by panning failed to cause 
any significant reduction in CFUs or remove pluripotential 
stem cells (data not shown). Since the above methods might 
not be sufficiently sensitive to detect limited (but physiologi- 
cally significant) Ia expression on stem cells, we examined 
whether CD4 + cells could destroy BM cells taken from Ia 
"knockout" (Ia ~ mice; the Ia ~ line used was backcrossed to 
the B6 background (12). 

As shown in Table 5, BM cells from this line were com- 
pletely resistant to the cytotoxic effects of bin12 CD4 + cells. 
Thus, whereas bm12 § CD4 § cells caused marked marrow 
and spleen atrophy when transferred to 600 cGy (B6 x 
bm12)F1 mice with B6 BM cells, transferring bm12 CD4 + 
cells with B6 Ia ~ BM cells caused no sign of marrow atrophy 
and led to splenomegaly (Table 5, Exp. 1 and 2). Control 
experiments indicated that the B6 Ia ~ BM ceUs retained sen- 
sitivity to marrow aplasia directed to class I antigens. Thus, 
as with B6 BM cells, transferring B6 Ia ~ BM cells to 600 
cGy (B6 x bml)F1 hosts in the presence of bin1 CD8 + cells 
led to marked marrow atrophy (Table 5, Exp. 3). 

A Search for Nonspecific Destruction of Donor BM Cells by 
CD4 + Cells. To assess the possibility that the destruction 
of BM cells by CD4 + ceils reflected a subtle bystander reac- 
tion, we reconstituted 600 cGy (B6 x bm12)F1 mice with 
B6-Ly 5.1 BM cells __ B6 CD4 + cells and then studied the 
kinetics of the appearance of the donor Ly 5.1 + BM cells 
in the host marrow by FACS | analysis. If the destruction 
of the host marrow by CD4 + cells reflected a bystander reac- 
tion rather than direct CTL activity, this reaction would be 
expected to impede engraftment by the donor B6-Ly 5.1 BM 
cells. However, counting total numbers of Ly 5.1 + cells in 
the host long bones during the period of rapid engraftment 
(days 6-15) showed little or no evidence that the presence 
of B6 CD4 + cells impaired engraftment with B6-Ly 5.1 BM 
cells. 

Discuss ion 

This article documents that small doses of normal CD4 + 
cells transferred to lightly irradiated Ia-different hosts caused 
profound atrophy of host hemopoietic cells 2-3 wk after 
transfer. By all parameters studied, the destruction of hemo- 
poietic cells by CD4 + cells was limited to Ia + host ceils. 
Evidence for bystander damage of donor BM-derived cells 
or Ia- host cells was conspicuously absent. The key ques- 
tion is whether the injected CD4 + ceils destroyed 
hemopoietic cells via direct Ia-restricted CTL activity. 

The notion that the injected CD4 + cells killed host 
hemopoietic ceils via direct CTL activity strains credulity when 
it is borne in mind that complete marrow atrophy in the 
B6/bm12 combination was induced by as few as 7 x 104 
CD4 + cells. Thus, taking into consideration the extensive 
size of the host marrow, it is extremely difficult to envisage 
how the antigen-reactive progeny of such a conspicuously 
small dose of CD4 + cells caused virtually complete destruc- 

tion of host marrow cells in a brief period, i.e., during the 
second week after transfer. Surely one has to argue in terms 
of cell destruction by humoral factors? 

In this respect, perhaps the simplest possibility is that the 
host cells were destroyed through the production of anti-Ia 
antibody, i.e., by donor-derived B cells. There are three cru- 
cial problems with this idea. First, given that the injected 
CD4 + cells were effective in very small doses and were 
highly purified, the number of contaminating B cells in the 
injected CD4 § cells must have been extremely low. More- 
over, the purification method used to prepare the CD4 + 
cells included treatment with anti-Ia mAb plus C in doses 
sufficient to kill >95% of spleen B cells. Second, to our 
knowledge the antigenic difference between I-A and I-A bin12 
is serologically undetectable. Third, and most importantly, 
we have been unable to detect antibody activity in the serum 
of irradiated (B6 x bm12)F1 hosts injected with B6 CD4 § 
cells (data not shown). For these reasons, it is very difficult 
to sustain the argument that host hemopoietic cells were 
destroyed via anti-Ia antibody. It is also worth noting that 
treating normal or lymphokine-induced BM cells with high 
concentrations of anti-Ia mAb plus C failed to impair stem 
cell activity. Yet stem cells appeared to be one of the main 
targets of attack by CD4 + cells (see below). 

Another possibility is that hemopoietic cells were destroyed 
via local production of toxic cytokines such as TNF. This 
notion deserves serious consideration because anti-TNF-c~ 
mAb is reported to be highly effective in preventing some 
of the in vivo effector functions of CD4 + cells, e.g., gut 
damage associated with GVHD (19). The chief problem with 
the idea that tissue destruction reflected local production of 
toxic cytokines is that bystander damage by CD4 + cells ap- 
peared to be remarkably limited. Thus the disapperance of 
host hemopoietic cells in the marrow did not seem to injure 
host stromal cells or cause significant impairment of donor 
BM-derived repopulation of marrow and thymus. These 
findings, plus the failure of CD4 + cells to destroy residual 
radioresistant host T cells or host-type BM cells from Ia- 
deficient mice, strongly suggest that the destruction of host 
cells was directed exclusively to host Ia + cells. 

For the reasons cited above, it is very difficult to explain 
the destruction of hemopoietic cells by CD4 + cells in terms 
of humoral factors. By exclusion, one is thus forced to con- 
sider the possibility that the injected CD4 + cells killed host 
hemopoietic cells via direct Ia-restricted CTL activity. All 
of the available data are consistent with this possibility. The 
following model can be considered. During the first week 
after transfer, the intravenously injected CD4 + cells homed 
to the spleen and became sensitized to host Ia antigens ex- 
pressed on dendritic cells. The host-reactive CD4 + cells then 
underwent considerable clonal expansion, differentiated into 
effector cells, and percolated throughout the body, including 
the BM (where >50% of the cells from aplastic marrow 
were donor CD4 § cells). Through direct CTL activity, the 
effector cells then destroyed Ia + cells, leaving Ia- host cells 
and Ia § donor cells untouched. 

At least two objections can be raised against this scenario. 
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Figure 6. Donor CD4 + cells fail to impede marrow engraftment of 
donor BM cells. (B6 x bm12)F1 mice exposed to 600 cGy were injected 
with 2 x 106 B6-Ly 5.1 BM cells alone (O) or with a mixture of 2 x 
106 B6-Ly 5.1 BM cells and 2 x 106 B6 CD4 + cells (O). At the intervals 
shown, BM cells recovered from both tibiae of two mice per group were 
counted and then stained for Ly 5.1 expression followed by FACS | anal- 
)'sis. The data shown were calculated from the percentage of Ly 5.1 + cells 
and the total BM counts. 

First, one has to explain how typical BM cells, most of which 
are largely Ia- ,  could be destroyed en masse by CD4 + cells. 
The explanation we favor here is that the CTL activity of 
CD4 + cells is directed predominantly to various types of 
stem cells and/or their immediate progeny. In the absence 
of stem cells, the short-lived, terminally differentiated descen- 
dants of these cells rapidly disappear and hemopoietic failure 
results. In support of this idea, we observed a marked pau- 
city of  stem cells in the atrophic marrow of mice given 
CD4 § cells. It is disturbing, however, that we failed to find 
evidence of  Ia expression on stem cells by antibody plus C 
treatment or by panning. Moreover, studies in both humans 
(20) and mice (Spangrude, J., and I. Weissman, personal corn- 

munication) have found that purified pluripotential stem cells 
(nonlymphokine induced) are Ia- by FACS | analysis. De- 
spite these findings, it is striking that the destruction of B6 
BM cells by bm12 CD4 + cells did not apply to B6 BM cells 
from Ia-deficient mice. This finding strongly suggests that 
Ia expression on stem cells is physiologically significant and 
sufficient to act as a target for CD4 + cells. Since the stem 
cell targets for CD4 + cells in irradiated hosts are probably 
cycling and exposed to various cytokines, it would seem likely 
that Ia expression on stem cells has to be induced. In favor 
of this possibility, it has been found that Ia expression on 
human stem cells can be upregulated by lymphokines (20). 
We presume the same applies to mouse stem cells but this 
remains to be proved. 

The second problem with the notion that CD4 § cells de- 
stroy hemopoietic cells via direct CTL activity is that we have 
had little success in demonstrating more than minimal CTL 
activity by CD4+cells in vitro. In several experiments we 
observed significant class II-restricted lysis of tumor cells and 
LPS blasts by in vivo-sensitized CD4 + cells in the B6/bm12 
combination (our unpublished data). However, the level of 
killing was quite l o w - f a r  lower than for anti-class I killing 
by CD8 + cells-unless the effector cells were restimulated 
with antigen in vitro. Yet Ia-restricted tissue destruction by 
CD4 + cells in vivo was as potent, or more potent, than the 
destruction mediated by CD8 + cells responding to a class 
I difference. In view of this paradox, the existing techniques 
for demonstrating CTL activity by CD4 § cells in vitro may 
be a poor model for the in vivo functions of these cells (6). 

Whatever the explanation for the mechanism of  tissue 
destruction, the finding that very small doses of CD4 § 
cells were capable of mediating massive Ia-restricted destruc- 
tion ofhemopoietic cells in irradiated hosts with no evidence 
of an overt bystander reaction indicates that the CTL activity 
of CD4 § cells in vivo is extremely potent. Direct evidence 
on whether the CTL activity of CD4 + cells in vivo reflects 
direct lysis or the local release of  humoral factors will have 
to await further investigation. As a footnote it may be men- 
tioned that destruction of  stem cells by CD4 + CTL could 
explain the finding that BM engraftment across Ia barriers is 
enhanced when the recipients are depleted of CD4 + cells (21). 
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