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Abstract: Hydrogen peroxide (H2O2), an accessible and eco-friendly oxidant, was employed for the
template-free hydrothermal synthesis of mesoporous CeO2 based on a cerium carbonate precursor
(Ce2(CO3)3•xH2O). Its microstructure and physicochemical properties were characterized by XRD,
TEM and N2 sorption techniques. The formation of the CeO2 phase with a porous structure was
strongly dependent on the presence of H2O2, while the values of the BET surface area, pore diam-
eter and pore volume of CeO2 were generally related to the amount of H2O2 in the template-free
hydrothermal synthesis. The BET surface area and pore volume of the mesoporous CeO2 synthesized
hydrothermally at 180 ◦C with 10 mL H2O2 were 112.8 m2/g and 0.1436 cm3/g, respectively. The
adsorption process had basically finished within 30 min, and the maximum adsorption efficiency
within 30 min was 99.8% for the mesoporous CeO2 synthesized hydrothermally at 140 ◦C with 10 mL,
when the initial AO7 concentration was 120 mg/L without pH preadjustment. The experimental
data of AO7 adsorption were analyzed using the Langmuir and Freundlich isotherm modes. More-
over, the mesoporous CeO2 synthesized at 140 ◦C with 10 mL H2O2 was regenerated in successive
adsorption–desorption cycles eight times without significant loss in adsorption capacity, suggesting
that the as-synthesized mesoporous CeO2 in this work was suitable as an adsorbent for the efficient
adsorption of AO7 dye from an aqueous solution.

Keywords: CeO2; mesoporous; template-free; hydrothermal; adsorption; azo dye

1. Introduction

With the widespread use of various dyes, numerous dyes have been released into
the environment in the process of the production and use of these dyes. Most dyes are
extremely stable, and it is difficult for them to undergo natural degradation [1–3]. After
entering a water environment, the chromaticity of the contaminated water is caused, which
can affect the amount of incident light and the normal life activities of the aquatic animals
and plants, and thus destruct the ecological balance of water. More severely, many dyes
have carcinogenic and teratogenic effects because of their toxicity; they can directly or
indirectly affect the health of the organism through the food chain [4–7]. Of today’s dif-
ferent groups of dyes, azo dyes are the most varied synthetic dyes, accounting for 80% of
total organic dye products. The azo dye wastewater is recognized as an obstinate organic
wastewater because of its stable chemical structure [8]. Therefore, how to get rid of azo
dye pollution from wastewater has been attracting significant attention. So far, numerous
technical and engineering approaches have been engaged to treat azo dye wastewater, such
as the adsorption method using activated carbon [9], membrane separation technology [10],
magnetic separation technology [11], the chemical oxidation method [12] and the biolog-
ical method [13]. Among these techniques, adsorption using a suitable adsorbent is an
alternative procedure and exhibits the best results [14]. Meanwhile, ceria (CeO2) with a
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mesoporous structure is a promising candidate for the removal of dye because of its high
BET surface (SBET), well-defined pore topology and special surface states [15,16].

At present, most of the synthesis of CeO2 with porous structures involves the use of a
series of soft or hard templates, and these templates must be sacrificed by subsequent dis-
solution using appropriate chemical reagents or decomposition by heat treatment [17–19].
For example, Jiang et al. [20] synthesized mesoporous CeO2 (SBET = 150.8 m2/g) using the
pre-synthesized SBA-15 molecular structure as a template. The binary composite material
(CeO2/SBA-15) was first synthesized hydrothermally at 500 ◦C for 2 h. The as-synthesized
CeO2/SBA-15 was added into 30 mL NaOH solution (10 mol/L) and stirred at 100 ◦C
for 48 h. After that, the precipitates were rinsed with water to a pH of 7. The above
steps were repeated two to three times, and finally the mesoporous CeO2 was obtained.
Fu et al. [21] fabricated mesoporous CeO2 (SBET = 107.9 m2/g) by the KIT-6-templating
strategy using the ordered mesoporous silica (KIT-6) as a template. The mixture of KIT-6
and Ce(NO3)3•6H2O was calcined at 600 ◦C for 6 h, and the as-obtained powders were
twice treated in a hot (60 ◦C) NaOH solution (2.0 mol/L) for the removal of the Si template.
Recently, Li et al. [22] synthesized mono-dispersed hybrid microspheres composed of meso-
porous CeO2 (SBET = 67.2 m2/g) by the hydrothermal approach and controlled calcination
procedure. Glucose and acrylamide were used as templates during the hydrothermal pro-
cess, and the precursor obtained by hydrothermal process was first calcined at 600 ◦C for
6 h in an Ar atmosphere, and then calcined at 500 ◦C for 4 h in air. Moreover, Zhao et al. [23]
synthesized mesoporous CeO2 nanospheres (SBET = 77.8 m2/g) using the C-sphere tem-
plate. The C-sphere@CeO2 precursor was first obtained by impregnation, combining the
precipitation method with the prefabricated C-sphere as a template, and then 3D hollow
mesoporous CeO2 nanospheres were obtained by calcining C-sphere@CeO2 precursor at
550 ◦C for 2 h. Although their template method could synthesize mesoporous CeO2, the soft
or hard templates were essential, and thus either the procedure of dissolution or calcination
was required to eliminate the soft or hard templates, but the energy consumption and costs
were increased. Moreover, there have been limited reports for the direct and template-free
synthesis of CeO2 with mesoporous structures until now [24–26]. Therefore, developing
an effective, direct, and template-free synthetic strategy for mesoporous CeO2 is desir-
able. Despite their progresses in the template-free synthesis of mesoporous CeO2, it is still
challenging to further simplify the process, reduce costs and reduce energy consumption.

Herein, mesoporous CeO2 was synthesized by the hydrothermal process without
adding any precipitants and template agents, and the subsequent high temperature roasting
process was eliminated. So, the process has the advantages of simple operation, low
cost and low energy consumption. Compared with previous research work in 2015 [27],
this study used the off-the-shelf commercial Ce2(CO3)3•xH2O instead of pre-synthesized
Ce2(CO3)3•8H2O as the precursor, and studied the effects of the H2O2 addition amount
and reaction temperature on the SBET and adsorption efficiency of acid orange 7 (AO7,
azo dye). The cerium carbonate precursor (Ce2(CO3)3•xH2O) was purchased and used
as received without further purification. Significantly, hydrogen peroxide (H2O2), an
accessible and eco-friendly oxidant, was employed to achieve the phase transformation
of Ce2(CO3)3•xH2O to CeO2 with a mesoporous structure under the cooperation of the
following hydrothermal treatment. The microstructure and physicochemical properties
of samples were characterized by XRD, TEM and N2 adsorption–desorption analyses.
Moreover, the adsorption abilities of the as-synthesized mesoporous CeO2 were evaluated
by adsorptive removal of AO7.

2. Experimental
2.1. Starting Materials

Cerium carbonate (Ce2(CO3)3•xH2O, 99.9%) and acid orange 7 (AO7, >97.0%) were
supplied by Shanghai Maclin Biochemical Technology Co., Ltd. (Shanghai, China) and
Tokyo Chemical Industry Co., Ltd. (Shanghai, China), respectively. The general characteris-
tics of the AO7 dye are shown in Table 1. Hydrogen peroxide (H2O2, ≥30%) and ethanol
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(≥99.7%) were supplied by Chengdu Kelong Chemical Co., Ltd. (Chengdu, China). All
major chemicals were used as received without further purification, and distilled water
was used in all experiments.

Table 1. General characteristics of AO7 dye.

Generic Name Chemical
Formula

Chemical
Structure

Molecular
Weight (g/mol) Cas Number λmax (nm) Appearance

Acid orange 7 C16H11N2NaO4S
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2.2. Synthesis

H2O2 was selected as an oxidant to assist the phase transformation of Ce2(CO3)3•xH2O
precursor to CeO2, and the hydrothermal process was employed to synthesize the final
product, CeO2 with a porous structure. Typically, 3 mmol Ce2(CO3)3•xH2O powders and
the desired amount of H2O2 (2, 5, 8, 10 and 15 mL) were mixed, and the solution was
allowed to stand for 2 h. After that, the distilled water was added to make a final volume
of 20 mL. The above solution with precipitate was decanted into a 50 mL Teflon-lined
stainless steel autoclave and maintained for 24 h at a set temperature (120, 140, 160, 180 and
200 ◦C). Finally, the pale yellow powders were collected and washed with distilled water
and ethanol, and dried under air at 60 ◦C for 24 h.

For comparison, a sample was synthesized following the same procedure as the control
at 180 ◦C for 24 h but in the absence of H2O2.

2.3. Characterization

The phases of the samples were examined by X-ray diffraction (XRD, DX-2700). The
morphologies and microstructures of samples were examined by transmission electron
microscopy (TEM, JEM-2100F). Nitrogen (N2) adsorption–desorption isotherms of CeO2
samples were measured on Micromeritics ASAP2460, and their specific surface areas (SBET)
were calculated by the Brunauer–Emmett–Teller (BET) method. The pore diameters and
pore volumes were determined by Barrett–Joyner–Halenda (BJH) analysis.

2.4. Evaluation of Adsorption Capacity

AO7 is a typical azo dye that is widely used in textile industries because of its low cost
and high solubility in water. AO7 is a toxic synthetic dye, and its poor degradability allows
it to exist in the environment for a long time and then cause environmental pollution. So, the
removal of AO7 dye from water and wastewater due to its detrimental effects is essential. In
this work, the adsorption ability of porous CeO2 was evaluated by the adsorptive removal
of AO7 dye from simulated wastewater. Typically, 0.2 g of the as-synthesized CeO2 was
dispersed into 100 mL AO7 solution with an initial concentration of 120 mg/L, and the
mixture was stirred using a vibrator (200 rpm). About 4 mL of the suspension was taken
continually at regular intervals and centrifuged. The absorbance of supernatant at regular
intervals (At, a.u.) was measured at the maximum absorption wavelength of 484 nm for
AO7 dye using an ultraviolet spectrophotometer (Techcomp UV-2600), and the adsorption
efficiency at this moment (Et, %) was estimated as the following Equation (1):

Et(%) =
A0 − At

A0
× 100 (1)

where A0 is the initial absorbance value of AO7 dye solution ([AO7] = 120 mg/L) at the
λmax of 484 nm.
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3. Results and Discussion
3.1. Characterization of Mesoporous CeO2

The phases of all samples were detected by XRD analysis. Figure 1a shows the
XRD patterns of commercial Ce2(CO3)3•xH2O powders. As shown in Figure 1a, the
XRD pattern of commercial Ce2(CO3)3•xH2O was well indexed to the characteristic peaks
of Ce2(CO3)3•8H2O (Orthorhombic; JCPDS no. 38-0377), revealing the major chemical
composition was Ce2(CO3)3•8H2O. Furthermore, the diffraction peaks at the diffraction
angle in the 2θ region of 36–80◦ were not matched to any substance from JCPDS standard
cards, but its profile was similar to these previous reports on Ce2(CO3)3•8H2O [27,28].
Figure 1b shows the XRD pattern of the resulting precipitate synthesized hydrothermally
at 180 ◦C for 24 h without adding H2O2. The major phase of the as-obtained precipitate
was Ce(CO3)OH (Hexagonal; JCPDS no. 52-0352). It could be found that pure CeO2 phase
was not obtained hydrothermally in the absence of H2O2.
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Figure 1. XRD patterns of (a) commercial Ce2(CO3)3•xH2O powders; The resulting precipitate
synthesized hydrothermally (b) at 180 ◦C for 24 h without adding H2O2, (c) at 180 ◦C for 24 h
with desired amounts H2O2 of 2–15 mL, and (d) at a set temperature of 120–200 ◦C for 24 h with
10 mL H2O2.

Figure 1c,d show the resulting precipitates synthesized hydrothermally at 180 ◦C with
a desired amount of H2O2 and synthesized hydrothermally at a set temperature with 10 mL
H2O2, respectively. As observed in Figure 1c,d, all broad peaks had a good match with the
standard CeO2 pattern (Cubic; JCPDS no. 34-0394), suggesting that the as-synthesized CeO2
had a good crystallinity. Moreover, no additional phases for impurities were detected (such
as Ce2(CO3)3•8H2O and Ce2(CO3)OH,), which indicated that the single phase CeO2 could
be successfully obtained by hydrothermal process in the presence of H2O2. The FWHM
(full width at half maximum) in Figure 1c showed obvious broadening phenomenon with
the added volume of H2O2 increased. The broadening phenomenon of FWHM implied that
the grain sizes of CeO2 decreased. In the formation process of the CeO2 phase, the H2O2
acts as an oxidant; their added volume directly affects the number of CeO2 crystal nucleus,
and then affects their grain size. From Figure 1d, no significant changes on FWHM were
observed with the increase in the hydrothermal temperature from 120 to 200 ◦C, which
could be due to the constant amount of H2O2 (10 mL). The results showed that the addition
amount of H2O2 could affect the grain size of the CeO2 final products. According to the
above XRD results of the evolution process, a clear phase transformation from orthorhombic
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Ce2(CO3)3•8H2O to cubic CeO2 with better crystallinity was observed, which could verify
the mechanism involving the oxidation-assisted dissolution of Ce2(CO3)3•xH2O precursor
followed by the formation of the CeO2 phase.

The morphologies, sizes and microstructures of commercial Ce2(CO3)3•xH2O pre-
cursor and CeO2 sample synthesized hydrothermally at 200 ◦C with 10 mL H2O2 were
measured by TEM analysis. As observed in Figure 2a, there were no uniform morphologies
and uniform sizes for commercial Ce2(CO3)3•xH2O particles, and these particles were
basically on the micron scale with smooth and compact surfaces. After hydrothermal treat-
ment at 200 ◦C in the presence of H2O2, it was clearly observed that the as-obtained CeO2
particles consisted of aggregated nanoparticles with a mean diameter of about 4.5 nm, and
the pores resulted from these aggregated nanoparticles (see Figure 2b). This is a preliminary
indication that the oxidation-induced and hydrothermal-assisted template-free synthesis of
porous CeO2 is viable.
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Figure 2. TEM images of (a) commercial Ce2(CO3)3•xH2O particles and (b) CeO2 sample synthesized
hydrothermally at 200 ◦C for 24 h with 10 mL H2O2.

To further clarify the porous nature of the CeO2 final products, N2 adsorption–
desorption experiments were conducted, and their SBET, average pore sizes and pore vol-
umes were estimated by N2 physisorption. Figure 3a,b show the N2 adsorption–desorption
isotherms of the porous CeO2 synthesized hydrothermally at 180 ◦C with the desired
amounts of H2O2 of 2, 5 and 10 mL, and at a set temperature of 140 and 200 ◦C with 10 mL
H2O2, respectively. From Figure 3, the similar hysteresis loops in the relative pressure
(P/P0) range of 0.4–1.0 were observed, and these N2 adsorption–desorption isotherms were
consistent with that of the mesoporous CeO2 reported in literatures [29–31], suggesting
that these as-obtained CeO2 belonged to the mesoporous material [32].
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The determined values of SBET, pore diameters and pore volumes are summarized in
Table 2. As observed in Table 2, the SBET of the mesoporous CeO2 powders synthesized
hydrothermally at 180 ◦C with 2, 5 and 10 mL H2O2 were determined as 52.5, 84.9 and
112.8 m2/g, respectively. These results implied that the amount of H2O2 played a decisive
role on the SBET, as well as the pore diameter and pore volume. In other words, the
more H2O2 added, the larger these physicochemical parameters. Meanwhile, it can be
found that the SBET of the mesoporous CeO2 synthesized hydrothermally at 140, 180 and
200 ◦C with 10 mL H2O2 were 107.0, 112.8 and 109.4 m2/g, respectively. It suggested
that the hydrothermal temperature had little effect on the SBET of the mesoporous CeO2
powders; however, it could affect the surface state of CeO2, such as the empty 4f orbital of
the cerium ion onto the CeO2 surface. Combining with the results of the XRD and TEM
analyses, we could derive a conclusion that H2O2 as an oxidant would play an important
role in achieving phase transformation from Ce2(CO3)3•xH2O to CeO2 with a mesoporous
structure; the addition amount of H2O2 not only affects the grain size of CeO2, but also
determines the SBET, pore diameters and pore volumes.

Table 2. Physicochemical properties of the mesoporous CeO2 synthesized hydrothermally at 180 ◦C
for 24 h with a desired amounts H2O2 of 2, 5 and 10 mL, and the mesoporous CeO2 synthesized
hydrothermally at a set temperature of 140 and 200 ◦C for 24 h with 10 mL H2O2.

Synthesis Conditions
180 ◦C with Desired Amounts of H2O2

Different Temperaments with
10 mL H2O2

2 mL 5 mL 10 mL 140 ◦C 200 ◦C

SBET (m2/g) 52.5 84.9 112.8 107.0 109.4
Pore diameter (nm) 8.95 5.81 5.09 4.98 5.28

Pore volume (cm3/g) 0.1174 0.1234 0.1436 0.1332 0.1445

The specific surface areas were calculated by Brunauer–Emmett–Teller (BET) method (labeled as SBET), while the
pore diameters and pore volumes were determined by Barrett–Joyner–Halenda (BJH) analysis.

3.2. Adsorption Characteristics

An anionic dye, AO7, was selected as the modal target to evaluate the adsorption
performance of the as-synthesized mesoporous CeO2 powders without pH preadjustment.
As shown in Figure 4a,b, the adsorption efficiencies within the first 10 min were surprisingly
fast for all mesoporous CeO2 samples, above 60% of the AO7 was adsorbed, particularly
the mesoporous CeO2 synthesized hydrothermally at 140 ◦C for 24 h with 10 mL H2O2,
and the adsorption efficiency could reach 86.7%. Moreover, the adsorption efficiencies
showed almost no significant changes after 30 min, indicating that the adsorption process
had basically finished within 30 min. The maximum adsorption efficiency within 30 min
was obtained with 99.8% for the mesoporous CeO2 synthesized hydrothermally at 140 ◦C
with 10 mL H2O2. The fast and excellent adsorption of the mesoporous CeO2 for AO7
dye could be explained by the following three aspects. First, the as-synthesized CeO2
with mesoporous structures possessed high SBET, which could provide for numerous sites
for the adsorption of AO7, and then it increased their adsorption capacities. Second, the
abundant pore structure of the mesoporous CeO2 was conducive to the transference of AO7
molecule toward the inside of this porous material, and then it increased the effectiveness
of the contact between CeO2 adsorbent and AO7 adsorbate. Third, the strong adsorption
toward AO7 may be attributed to the chelation interaction between the electron-rich groups
(sulfonate group, SO3

−) of the AO7 molecule and the empty 4f orbital of cerium ion
onto CeO2.
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Figure 4. (a) Time-dependence of adsorption profiles of AO7 dye without pH pre-adjustment onto
mesoporous CeO2 synthesized hydrothermally at 180 ◦C for 24 h with a desired amount H2O2 of
2–15 mL and (b) synthesized hydrothermally at a set temperature of 120–200 ◦C for 24 h with 10 mL
H2O2. ([CeO2] = 2.0 g/L; [AO7] = 120 mg/L; V = 100 mL; distilled water; 200 rpm; room temperature).

Significantly, the mesoporous CeO2 synthesized hydrothermally at 140 ◦C
(SBET = 107.0 m2/g), 180 ◦C (SBET = 112.8 m2/g) and 200 ◦C (SBET = 109.4 m2/g) with
10 mL H2O2 possessed similar SBET (see Table 2); however, their adsorption efficiencies for
AO7 within 30 min exhibited varying degrees of difference, and the values were 99.8%,
90.8% and 89.7%, respectively. Moreover, the mesoporous CeO2 synthesized hydrother-
mally at 180 ◦C with 10 mL H2O2 exhibited a maximum SBET of 112.8 m2/g from Table 2;
however, its adsorption efficiencies for AO7 within 30 min was not the maximum among
all as-synthesized mesoporous CeO2 powders. It indicates that the SBET is not the only
factor for the adsorption of AO7 dye onto mesoporous CeO2 in this study, if any, including
the CeO2 surface state, such as the empty 4f orbital of cerium ion on the CeO2 surface.

CeO2 has selective adsorption for the anion dye with SO3
− groups, especially methyl

orange (MO) and AO7 dyes [33,34]. In general, there are three coordination modes of
SO3

– group: monodentate coordination, double dentate mononuclear coordination and
bicentate biconuclear coordination. According to Deacon and Phillip’s theory and Bauer’s
hypothesis, the wave-number distance between the peaks of asymmetric and symmetric
vibration from the isolated SO3

– groups is larger than that of the adsorbed one, indicating
that the SO3

– groups and Ce atoms form a tooth bridge integration [35]. According to the
geometrical structure of AO7 molecule, when the adsorption reaction between AO7 and
CeO2 occurs, the two oxygen atoms on SO3

– group will coordinate with the two Ce atoms
on CeO2, and the nitrogen atom from the azo bond (-N=N-) also will interact with the Ce
atoms in the appropriate position [36].

To describe the interaction between the as-synthesized mesoporous CeO2 and AO7
molecule and investigate the adsorption mechanism, the experimental data were analyzed
by the Langmuir (Equation (2)) [37] and Freundlich [38] (Equation (3)) isotherm models, as
shown in Figure 5a,b.

Ce

qe
=

1
qm

Ce +
1

KLqm
(2)

log qe =
1
n

log Ce + log KF (3)

where Ce (mg/L) and qe (mg/g) are the concentration of AO7 solution and the amount of
AO7 adsorbed per gram of CeO2 at equilibrium, respectively. qm (mg/g) is the maximum
amount of AO7 molecule adsorbed per gram of CeO2. KL and KF are the Langmuir constant
related to the energy of adsorption and the Freundlich constant related to the adsorption
capacity, respectively. 1/n is the heterogeneity factor, and n is the adsorption intensity.
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Figure 5a,b shows the Langmuir and Freundlich linear fittings of the experimental data
of the adsorption of the AO7 molecule onto the mesoporous CeO2 synthesized hydrother-
mally at 140 ◦C with 10 mL H2O2, and the relevant parameters calculated by Langmuir
and Freundlich linear fittings are listed in Table 3. As observed in Figure 5a,b, it is found
that the adsorption of the AO7 molecule onto the mesoporous CeO2 can be described
by both Langmuir and Freundlich isotherm models. However, the correlation coefficient
(R2) for the Langmuir isotherm model (R2 = 0.9985) was much closer to 1.0 than that of
the Freundlich isotherm model (R2 = 0.9512) from Table 3. According to the Langmuir
isotherm model, the maximum amount of AO7 adsorbed on mesoporous CeO2 could reach
757.6 mg/g at room temperature. Moreover, the Freundlich adsorption constant (n = 10.94)
related to the adsorption capacity was larger than 1, indicating that the adsorption intensity
was favorable in the concentration range studied [39].

Table 3. Estimated parameters of Langmuir and Freundlich linear fittings for the adsorption of AO7
molecule onto mesoporous CeO2 synthesized hydrothermally at 140 ◦C for 24 h with 10 mL H2O2 at
room temperature.

Langmuir Isotherm Model Freundlich Isotherm Model

qm (mg/g) KL R2 n KF R2

757.6 0.6256 0.9985 10.94 505.3 0.9512

Table 4 shows the maximum amount (qm, mg/g) of AO7 molecule adsorbed per gram
of various adsorbents from the recent literature [27,40–52]. By comparing the qm of various
adsorbent, we could see clearly that the adsorption capacity of the mesoporous CeO2
synthesized hydrothermally at 140 ◦C with 10 mL H2O2 in this work was among the very
highest in these reported works in the literature. By noticing the SBET and qm of these
adsorbents, it further indicated that the SBET of the adsorbents was not the main factor
determining their adsorption capacities. So, considering the unique electronic structure
of CeO2, the adsorption mode of AO7 molecule on CeO2 surface could be described as
a Lewis acid-based reaction between the SO3

− groups of AO7 molecule and empty 4f
orbital of cerium ion on CeO2 surface, which eventually formed an inner-sphere complex.
Therefore, both the addition amount of H2O2 and the hydrothermal temperature affected
the physicochemical state of the CeO2 surface, and their joint action ultimately determined
the adsorption capacity of mesoporous CeO2 for AO7 dye.
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Table 4. Recent literature on adsorbent development for the adsorption of AO7 dye.

Authors Adsorbent Name Sorption Conditions SBET
(m2/g)

qm
(mg/g)

Pedro Silva [40] Spent brewery grains (SBG) 30 ◦C / 30.5

Hamzeh [41] Canola stalks (CS) 25 ◦C; pH = 2.5 / 25.1

Ashori [42] Soybean stalk (SS) 25 ◦C; pH = 2.0 / 17.5

Lin [43] Iron oxide-loaded biochar (Fe-BC)
from sorghum straw

25 ◦C; pH = 6.0;
180 rpm 216.6 59.3

Noorimotlagh [44] Mesoporous activated carbon
prepared from Iranian milk vetch pH = 7.0 565 99.0

Lim [45] Zeolite-activated carbon
macrocomposite

Room temperature;
pH = 7.0 84.7 0.19

Aber [46] Powdered activated carbon 25 ◦C; pH = 2.8 / 440

Jia [47] Multi-walled carbon nanotubes
(MWCNTs) pH = 7.0 ~1800 47.7 ± 0.79

Nourmoradi [48] Activated carbon coated with zinc
oxide (AC-ZnO) 25 ◦C / 66.2

Ghasemi [49] Zeolitic imidazolate framework-8
(ZIF-8)

25 ◦C; pH = 6.0;
200 rpm 978 80.5

Zhou [50]

Fe3O4-
poly(methacryloxyethyltrimethyl

ammonium chloride)
(Fe3O4-pDMC)

pH = 3.0; 150 rpm 35.7 270.3

Huo [51] Nickel (II) oxide (NiO) 25 ◦C; pH = 5.5 251.8 178.6

Li [52]
Amine shield-introduced-released
porous chitosan hydrogel beads

(APCB)
30 ◦C; 150 rpm / 2571.0 (pH = 2.0);

363.6 (pH = 4.0)

Xu [27]

Mesoporous CeO2 synthesized
based on integrating bottom-up

and top-down routes in the
previous report

25 ◦C; No pH
preadjustment; 200 rpm 166.5 510.2

Xu
Mesoporous CeO2 synthesized

hydrothermally at 140 ◦C for 24 h
with 10 mL H2O2 in this work

Room temperature; No
pH preadjustment;

200 rpm
107.0 757.6

3.3. Desorption and Reusability

Desorption of AO7 molecules from the adsorbed mesoporous CeO2, and the reusability
of mesoporous CeO2 are essential. In this experiment, 0.5 mol/L NaOH solution was used
to desorb AO7 molecules from the mesoporous CeO2 surface. The adsorption histogram
in eight successive adsorption–desorption cycles is shown in Figure 6. It was clear that
the adsorption efficiency could reach 98.4% in the first adsorption–desorption cycle. To
examine the reproducibility of mesoporous CeO2, another seven adsorption–desorption
cycles were performed. It can be found that the similar AO7 uptake capacity of the
regenerated mesoporous CeO2 only appeared to be slightly fading, and the adsorption
efficiency for AO7 could maintain more than 92% after eight cycles. Due to the high
recycling efficiency, the as-synthesized mesoporous CeO2 in this work may be suitable as a
promising absorbent for water treatment or the removing of the AO7 dye.
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4. Conclusions

In summary, an oxidation-induced strategy was developed for the template-free
hydrothermal synthesis of CeO2 with a mesoporous structure, in which commercial
Ce2(CO3)3•xH2O was purchased and served as a cerium precursor, while H2O2 served
as an accessible and eco-friendly oxidant employed to achieve the phase transformation
of the Ce2(CO3)3•xH2O precursor to the CeO2 phase with a mesoporous structure under
the cooperation of following the hydrothermal treatment. H2O2 as an oxidant had a deci-
sive influence on the formation of cubic CeO2 phase as well as its mesoporous structure;
moreover, the values of SBET, pore diameters and pore volumes were generally related to
the amount of H2O2 in the template-free hydrothermal synthesis. The oxidation-induced
and hydrothermal-assisted template-free synthesis of mesoporous CeO2 can be expected to
provide a synthetic alternative for other porous inorganic materials. Preliminary adsorbate
evaluation suggested that the as-synthesized mesoporous CeO2 was a promising absorbent
for wastewater treatment containing AO7 dye; the maximum AO7 adsorption efficiency
of these mesoporous CeO2 was found to be 99.8% within 30 min when the initial AO7
concentration was 120 mg/L without the pH preadjustment. The Langmuir isotherm
fitted (R2 = 0.9985) the equilibrium data better than the Freundlich isotherm (R2 = 0.9512),
with a higher correlation coefficient (R2). The maximum uptake capacity for mesoporous
CeO2 was 757.6 mg/g for AO7 at room temperature according to the Langmuir isotherm
model, and it could be easily regenerated by an alkali washing. Moreover, the regeneration
experiments revealed the good potential of mesoporous CeO2 for reuse, even though a
slight decrease in adsorption capacity was observed in the subsequent eight cycles.
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