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Abstract

Introduction: Spatio-temporal MRI methods enable whole-brain multi-
parametric mapping at ultra-fast acquisition times through efficient k-space
encoding, but can have very long reconstruction times, which limit their inte-
gration into clinical practice. Deep learning (DL) is a promising approach to
accelerate reconstruction, but can be computationally intensive to train and
deploy due to the large dimensionality of spatio-temporal MRI. DL methods also
need large training data sets and can produce results that don’t match the acquired
data if data consistency is not enforced. The aim of this project is to reduce recon-
struction time using DL whilst simultaneously limiting the risk of deep learning
induced hallucinations, all with modest hardware requirements.
Methods: Deep Learning Initialized Compressed Sensing (Deli-CS) is pro-
posed to reduce the reconstruction time of iterative reconstructions by "kick-
starting" the iterative reconstruction with a DL generated starting point. The
proposed framework is applied to volumetric multi-axis spiral projection MRF
that achieves whole-brain T1 and T2 mapping at 1-mm isotropic resolution for a
2-minute acquisition. First, the traditional reconstruction is optimized from over
two hours to less than 40 minutes while using more than 90% less RAM and only
4.7 GB GPU memory, by using a memory-efficient GPU implementation. The
Deli-CS framework is then implemented and evaluated against the above recon-
struction.
Results: Deli-CS achieves comparable reconstruction quality with 50% fewer
iterations bringing the full reconstruction time to 20 minutes.
Conclusion: Deli-CS reduces the reconstruction time of subspace reconstruc-
tion of volumetric spatio-temporal acquisitions by providing a warm start to the
iterative reconstruction algorithm.

KEYWORDS:
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01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.28.534431doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534431
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Siddharth S. Iyer ET AL

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.28.534431doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.28.534431
http://creativecommons.org/licenses/by-nc-nd/4.0/


Received xx xxxx xxxx; Revised xx xxxx xxxx; Accepted xx xxxx xxxx

1 INTRODUCTION

Highly undersampled, spatio-temporal MRI acquisition tech-

niques have enabled whole-brain multi-parametric mapping

in incredibly short exam times. These techniques leverage

highly-efficient k-space encoding1,2,3, as well as temporal

subspace reconstruction4,5,6,7,8,9,10,11,12 with carefully-chosen

regularization to achieve high-quality reconstruction without

detrimental noise and undersampling artifacts despite the high

rates of acceleration. However, this generally comes at the cost

of long reconstruction times, especially for for high isotropic

resolution volumetric imaging cases, making such methods

difficult to integrate into clinical practice despite the high

acquisition efficiency.

For example, consider the “Tiny Golden Angle Shuffling

Spiral Projection Imaging Magnetic Resonance Fingerprint-

ing” (TGAS-SPI-MRF12) volumetric acquisition, which will

be the target application of this work, that demonstrated

the use of an optimized trajectory to achieve whole-brain

multi-parametric mapping at 1mm isotropic resolution in 1-

2 minutes of acquisition time using the locally low-rank

(LLR)10 regularized reconstruction implemented in BART13.

With the settings of BART used by Cao et al.12, the recon-

struction takes around two hours and 10 minutes using up

to 80 CPU threads with around 140 GB of peak resident

memory usage. The large dimensionality of the problem

hinders out-of-the-box GPU utilization. This computational

performance is achieved after BART’s default optimiza-

tions to improve reconstruction speed, such as utilizing the

theoretically optimal Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA)14 for solving the LLR-regularized opti-

mization, as well as the combination of the “Toeplitz Point

Spread Function”15,16,17 and the “spatio-temporal kernel”10 to

reduce the per-iteration compute time at the cost of an even

more memory intensive pre-calculation (using up to 400 GB

of resident memory).

Concurrently with the development of fast spatio-

temporal MRI acquisition, significant progress has been made

in utilizing deep learning for image reconstruction for acqui-

sitions with high rates of acceleration18,19,20,21,22,23. These

methods commonly leverage an “unrolled” deep learning

architecture, where the algorithm alternates between perform-

ing network inference and enforcing a physics-based Data-

Consistency (DC) step akin to traditional (compressed sensing

like) iterative methods for solving regularized linear inverse

problems24,25,26,27,28,29. These works fall under the “physics-

driven” classification proposed by23, and will be referred to

as such in the sequel. The integration of the DC term into

these unrolled physics-driven methods has enabled the robust

application of deep learning based MRI reconstruction with-

out access to the copious amounts of training data typically

required by other deep learning methods18. These methods

have achieved excellent reconstruction performance at sig-

nificantly faster processing times compared to their iterative

convex algorithm counter-parts, which makes such frame-

works a promising means of achieving fast spatio-temporal

MRI reconstruction.

However, utilizing such unrolled physics-driven meth-

ods out of the box can be challenging depending on the

dimensionality of the problem of interest. To use the tar-

get TGAS-SPI-MRF application as an example, the under-

lying desired signal is of dimensions 256 × 256 × 256 × 5,

where 256 × 256 × 256 is the matrix size of the acquisi-

tion, and 5 denotes the number of subspace coefficients (that
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are needed to represent the temporal characteristics of the

underlying signal)4,6,8,10,11,12. This, along with using multiple

receive channels for the acquired data across k-t-space dra-

matically increases the dimensionality of the reconstruction

problem, making such unrolled physics-driven reconstruc-

tions extremely computationally challenging to both train and

deploy. This problem is also not separable in the 3D spatial

dimensions, as the k-space trajectory is designed to spread

aliasing along all spatial dimensions, unlike acquisitions with

rectilinear trajectories and undersampling, where the problem

can be divided along the readout dimension.

To give a concrete example, the current infrastructure at

Stanford Health Care and the Lucile Packard Children’s Hos-

pital (Stanford, CA, USA) have dedicated MRI reconstruction

servers with multiple GPUs with memory capacities in the

range from 6 GBs to 12 GBs. Preliminary exploration of

leveraging multiple GPUs in parallel for image reconstruction

were futile due to the synchronization costs (likely due to the

large problem size of the application), and the 12 GB GPUs

by themselves were not sufficiently large enough to utilize

the unrolled physics-driven methods for the target application

when utilizing a Residual Network30 with 3D convolutions to

perform model inference.

With these constraints in mind, this work proposes Deli-

CS, which stands for “Deep Learning Initialized Compressed

Sensing”. The goal of this framework is the rapid and highly

compute-efficient subspace reconstruction of spatio-temporal

MRI acquisitions (such as TGAS-SPI-MRF) with the goal of

clinical deployment. This framework thus targets less than

6 GB peak GPU memory usage and a reconstruction of

the 2-minute TGAS-SPI-MRF acquisition that is compara-

ble in quality to iterative LLR reconstruction of the same

data. Unlike other DL methods that have been developed

for de-noising or other ways of improving image quality, the

aim of this project was strictly decreased reconstruction time

and hardware constraints, as good image quality was already

demonstrated for this application by Cao et al.12

By being GPU efficient, the proposed framework is

expected to scale well to ultra-high resolution sub-millimeter

applications such as the 0.66mm isotropic resolution “ViSTa-

MRF” acquisition for high-fidelity whole-brain myelin-water

fraction (MWF) and 𝑇1, 𝑇2 and proton density mapping on

a clinical 3T scanner31. Additionally, enforcing a minimal

amount of GPU memory for training simplifies the process of

“continuous training” to update the learned model to account

for potential distribution shifts, which is an important factor to

consider when deploying deep learning methods32,33,34,35,36.

This manuscript is organized as follows: First, the tra-

ditional LLR regularized reconstruction is implemented in

Python using SigPy37 in a GPU-efficient manner. Next, the

Deli-CS framework is described, where a fast initial recon-

struction (generated by multiplying the data with the adjoint of

the forward operator, 𝐀, described below) is fed into a neural

network that attempts to predict the final reconstruction. The

training and inference are performed in a block-wise manner

to significantly lower memory usage. Finally, since the model

does not have an integrated DC term and is not unrolled (this

would be classified as “data-driven” by Hammerik et al.23),

data consistency is enforced by a “compressed sensing certi-

fication” step, which is hypothesized to converge faster with

the DL initialization.
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2 BACKGROUND

Spatio-temporal subspace-reconstruction4,10,12 is posed as a

linear inverse problem where the acquisition operator, 𝐀,

models the transformation from the input subspace coeffi-

cient images (𝐱) to the data acquired (𝐛). Let the subscript 𝑡

denote the data acquired at the 𝑡𝑡ℎ TR, with 𝑇 being the total

number of TRs, and let 𝐾 denote the number of coefficient

images, or the rank of the low-rank subspace utilized. Then,

the acquisition operator 𝐀 is as follows:

𝐀 = 𝚽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

2

⋮

𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

2

⋮

𝐶

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝚽 (1)

Here, denotes the forward NUFFT operator38, the projec-

tion onto coil sensitivity maps according to the SENSE39,40

model and Φ denotes the prior low-rank linear subspace with

dimensions [𝑇 × 𝐾]. As shown above, the  operator can

also be expressed as a stack of smaller NUFFT’s, 𝑡, that each

express the transform from image to k-space for the 𝑡𝑡ℎ TR.

Similarly,  can be expressed of a stack of 𝑆𝑐 denoting the

projection onto the 𝑐𝑡ℎ receive channel. This formulation will

be used below when the memory efficiency optimization of

the operator is discussed.

The low-rank subspace 𝚽 is estimated by taking the Sin-

gular Value Decomposition (SVD) of signal dictionary gen-

erated from Bloch-simulations using the following realistic

brain tissue parameters that match prior work12.

𝑇1 ∈ {20, 40, 60,… , 3000} ∪

{3200, 3400, 3600,… , 5000}

𝑇2 ∈ {10, 12, 14,… , 200} ∪

{220, 240, 260,… , 1000} ∪

{1050, 1100, 1150,… , 2000} ∪

{2100, 2200, 2400,… , 4000}

The forward operation Φ𝐱 recovers the TR images of the

TGAS-SPI-MRF acquisition. A rank 𝐾 = 5 subspace was

deemed sufficient in capturing the signal variation as per Cao

et al.12. Please see Cao et al.12 for more information about the

acquisition and subspace forward model formulation.

The linear inverse problem used to solve the subspace

reconstruction is as follows:

min
𝐱
(1
2
‖𝐀𝐱 − 𝐛‖22 + 𝜆 LLR(𝐱)) (2)

Here, 𝜆 is the regularization value and LLR denotes the locally

low-rank constraint10,12.

3 METHODS

3.1 Data Acquisition

The method of TGAS-SPI-MRF proposed by Cao et al.12 was

used, but a modification was made to the acquisition by replac-

ing the RF excitation pulse with a water-exciting rectangular

pulse with duration of 2.38ms to suppress the fat signal41.

In summary, the TGAS-SPI-MRF acquisition consists of

an initial adiabatic inversion pulse followed by a 500 TR long

readout train (TI/TE/TR = 20/0.7/12ms) with varying flip

angles (10 to 75 degrees) and a rotating 3D center-out spi-

ral trajectory. Each acquisition group takes approximately 7.5

seconds and 16 such readout trains are required for a 2-minute
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acquisition, whereas 48 are used for a 6-minute acquisition,

which was treated as the gold standard in this work.

Additionally, prior to each TGAS-SPI-MRF acquisition,

a 20 second, low resolution (6.9 mm isotropic) gradient echo

(GRE) pre-scan with a large field-of-view (FOV) of 440mm

was performed. This pre-scan was used for automatic detec-

tion of the head position within the large FOV, so that the

TGAS-SPI-MRF data could be automatically shifted to ensure

that the brain, as well as the top of the head and nose,

was within the smaller FOV used for the TGAS-SPI-MRF

reconstruction. The large FOV pre-scan was also used to

pre-calculate a coil compression matrix, such that any signal

originating from outside the TGAS-SPI-MRF FOV after shift-

ing (e.g. shoulders) could be removed using region-optimized

virtual coil compression42 (ROVir) estimated from the GRE

with the interference region set to any area outside the target

FOV for the TGAS-SPI-MRF acquisition.

3.2 Memory Optimization

This work uses the Python-based SigPy37 framework for

the following experiments for its ease-of-use reconstruction

whilst retaining control over GPU memory management. To

reduce the memory requirements of 𝐀, the following standard

optimizations are made.

First, the forward model 𝐀 is split into smaller blocks so

that each block can be iteratively and independently efficiently

evaluated on the GPU. Second, to avoid expanding into the

range space ofΦ (𝑇 ≫ 𝐾), the commutativity of the subspace

operator Φ and the NUFFT is used akin to the spatio-temporal

kernel leveraged in 𝑇2−Shuffling10. These two optimizations

together result in the following forward model:

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑘 Φ𝑘 (1 + 2+⋯+ 𝑇 ) 𝑆1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴(𝑘,1)

∑

𝑘 Φ𝑘 (1 + 2+⋯+ 𝑇 ) 𝑆2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴(𝑘,2)

⋮

∑

𝑘 Φ𝑘 (1 + 2+⋯+ 𝑇 ) 𝑆𝐶
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴(𝑘,𝐶)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

Here, Φ𝑘 denotes the 𝑘𝑡ℎ column of Φ, and 𝑆𝑐 denotes the

𝑐𝑡ℎ SENSE39,40 coil-sensitivity map. The individual smaller

block linear operators,𝐴(𝑘,𝑐), can be evaluated one-by-one and

thus reduces memory requirements. The input to each block

linear operator, 𝐱𝑘, is first transferred to GPU memory before

applying the operator, and the resulting output, 𝐀(𝑘,𝑐)𝐱𝑘, is

then transferred into CPU memory before the stacking over

coils (𝑐) and sum over coefficients (𝑘) is applied.

The modified linear operator proposed in (3) achieves a

computational speed of approximately 58 seconds per itera-

tion of FISTA14 when solving (2) for a 2-minute TGAS-SPI-

MRF acquisition in SigPy on a single GPU. The seconds-

per-iteration of FISTA achieved by BART on the CPU is

approximately 26 seconds. These times were observed on a

Linux workstation with 80 threads on Intel Xeon Gold 5320

CPUs at 2.20GHz and an NVIDIA RTX A6000 GPU. Note

that this performance is expected to vary between hardware.

However, the modified linear operator only utilizes

approximately 13 GB of peak CPU memory and 4.7 GB of

peak GPU memory, compared to 140 GB peak CPU memory

for the BART implementation. BART uses Toeplitz embed-

ding16, which reduces per-iteration computation time as the

NUFFT’s in the acquisition model can be replaced by FFT’s,
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but increases memory usage and requires a step before itera-

tions can start, which had a peak memory usage of >400 GB.

Additionally, as methods are striving for ever higher resolu-

tion, the memory requirements for the BART reconstruction

would grow well over what is available on most research com-

puters, not to mention what is available in clinical settings.

3.3 Density Compensation

Having achieved considerably lower memory usage, the next

optimization targets improving the iterative convergence of

FISTA. The acquisition operator 𝐀 is ill-conditioned in that

the difference between the largest and smallest eigenvalue of

𝐀∗𝐀 is large, yielding slow iterative convergence. Assum-

ing 25 seconds per iteration and 300 iterations, which was

used by Cao et al.12, this results in approximately 2 hours

10 minutes required to reconstruct data. To improve this, first

Pipe-Menon43 density compensation was integrated into the

optimization (equation 2) as described in17,44,45, yielding the

following optimization:

min
𝐱
(1
2
‖𝐃1∕2 (𝐀𝐱 − 𝐛)‖22 + 𝜆 LLR(𝐱)) (4)

Here, 𝐃 is the Density Compensation array designed to target

(1+2+⋯+𝑇 ) in equation 3 so that 𝐀∗𝐃𝐀 has better condition-

ing. In the block linear operator form, this becomes:

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑘 𝐃1∕2𝐀(𝑘,1)

∑

𝑘 𝐃1∕2𝐀(𝑘,2)

⋮

∑

𝑘 𝐃1∕2𝐀(𝑘,𝐶)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

Similarly to the prior section, the sum across 𝑘 and stack-

ing across 𝑐 is performed in CPU memory with each block

evaluated in GPU memory.

While the inclusion of 𝐃 does in principle cause noise col-

oring, in practice, careful tuning of the LLR regularization

value was found to provide suitable levels of denoising, result-

ing in high quality reconstructions in fewer iterations. This

reflects the results discussed in Baron et al.17, and demon-

strates that Density Compensation can be leveraged to achieve

high quality subspace reconstruction. The inclusion of den-

sity compensation into the optimization formulation is seen

to significantly reduce the number of required iterations, with

convergence reached after only 40 iterations (39 minutes).The

reconstruction quality was also visually sharper compared to

the 300 iterations (2 hours and 10 minutes) presented in Cao

et al.12 In this work, the LLR block size used was 8.

3.4 Field of View Processing

It is beneficial to reduce the image size of the reconstruction

for lower memory usage and faster processing times. How-

ever, using a smaller FOV is not advisable if there is signal

originating outside the reconstructed FOV as it results in arti-

facts during the reconstruction. For the TGAS-SPI-MRF brain

imaging application, signal from the shoulders and neck are

particularly troublesome. This is overcome by utilizing the

automatic FOV shifting approach proposed in Baron et al.17

that is augmented with a newly proposed coil compression

method for additional robustness42.

The automatic FOV centering was done by reconstruct-

ing the fully sampled, Cartesian, GRE image using a Fourier

Transform, and performing a sum-of-squares combination of

data from the multiple receive coils. The image was then flat-

tened by taking a maximum intensity projection through the

sagittal plane. The resulting 2D image was then smoothed,
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binarized, and a bounding box was calculated around the

largest continuous area using the OpenCV toolbox46. A shift

was then calculated to ensure the top and front of the bounding

box was within the target field of view.

Baron et al.17 derived the binary image from the eigen-

values of the estimated ESPIRiT40 maps, which is not used

in this work as the target TGAS-SPI-MRF application uti-

lizes 48 receive coils during the acquisition, making ESPIRiT

computationally expensive. Additionally, the FOV shifting is

performed before applying any coil compression techniques,

which enables the shifted GRE image to be used as a refer-

ence for further suppression of signals originating outside the

FOV using the ROVir method42 as outlined below.

The data was pre-whitened as described by Kim et al.42

before ROVir was applied. Signal outside the field of view

was removed by throwing away 8 virtual ROVir coils that con-

tained the most signal in the interference region. After that,

SVD compression to 10 virtual channels of the remaining

40 channels were performed to reduce the size of the com-

putation. The complete coil compression matrix containing

coil whitening, ROVir, and SVD compression was calcu-

lated based on the GRE, and used for compression of the

TGAS-SPI-MRF data.

The reconstruction, automatic FOV shifting, and coil pro-

cessing matrix calculation for the GRE data takes less than

30 seconds, and can be run while the TGAS-SPI-MRF data is

being acquired.

3.5 Deli-CS

With Deli-CS, the goal is to achieve reconstruction of TGAS-

SPI-MRF data that is of comparable quality to the traditional

reconstruction with minimal memory footprint as well as

faster convergence than previously demonstrated. To achieve

this, the following design pillars are utilized:

1. Fully Leveraging MRI Physics. The aim is to solve

the traditional model based reconstruction and only

using DL as a way to "kickstart" the reconstruction.

As a first step, an approximate reconstruction is per-

formed by gridding the acquired data using the adjoint

of the forward operator (𝐀∗𝐛). By not using an iterative

reconstruction (e.g. conjugate gradient) and not regu-

larizing, the input to the next step suffers from severe

temporal-aliasing artifacts and increased noise, in par-

ticular in the lower energy subspace components, which

the following deep learning step is expected to robustly

mitigate. The resulting subspace coefficient images will

be referred to as “Deli-CS Input”.

2. Block-based Data-Driven Deep Learning. A deep

learning network is trained to denoise the input image.

The model is both trained and deployed in a “block-

wise” manner to reduce the memory and training data

requirements, and is consequently not integrated with

DC terms in an unrolled manner. This also avoids back-

propagation through the high-dimensional acquisition

operator 𝐀 during training, which is challenging to do

even with a GPU with large memory capacity. The

block-based processing proposed in this step allows

the deep learning model to be trained and deployed

efficiently with 5 GB of GPU memory. The resulting

inference will be referred to as “Deli-CS Prediction”.

3. Compressed Sensing Certification. Since the above net-

work is block-based and data-driven, the inferred recon-

struction is susceptible to hallucinations. The inferred
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result is therefore only used to initialize equation 4

solved with an iterative reconstruction. By initializing

the iterative reconstruction with the inferred result, the

number of iterations required to converge is signifi-

cantly reduced. Additionally, the resulting image is still

“Compressed Sensing Certified” in the sense that the

resulting image satisfies the same convergence criterion

as the traditional reconstruction achieved when solving

equation 4. This step will be referred to as the “refine-

ment” step, with the resulting reconstruction denoted

“Deli-CS Refined”.

The full Deli-CS pipeline is depicted in figure 1.

3.6 Basis Balancing

The subspace basis is estimated by taking the SVD of a dictio-

nary of realistic signal evaluations generated using the Bloch

equation and using the singular vectors corresponding to the

top five singular values to form Φ12. This rank-truncation

level was deemed sufficient in capturing the signal variation

as per Cao et al.12, and the parameters used to derive the dic-

tionary was presented in section 2. Using this basis directly

results in very low signal level in the fourth and fifth coef-

ficients as most of the signal is already captured in the first

three basis components. This is shown in figure 2(A) and (B).

To ensure each coefficient image contributes roughly equally

to the objective function when model training and to more

equally distribute the artifacts across coefficients, a “basis bal-

ancing” heuristic is proposed to equally distribute the energy

across all the coefficients.

The low-rank basis Φ of dimensions 𝑇 ×𝐾 with Φ𝑘 denot-

ing the 𝑘𝑡ℎ column of Φ. Let 𝐵 denote the new basis with 𝑏𝑘

denoting the 𝑘𝑡ℎ column. In order to balance 𝐵, the columns

𝑏𝑘 are derived so that 𝑏𝑘 consists of equal contributions from

each column of Φ. This translates to an equality constraint on

the magnitude of the inner products. That is to say, for some

constant 𝛼,
|

|

|

⟨𝑏𝑝,Φ𝑞⟩
|

|

|

= 𝛼 for all 𝑝, 𝑞 (6)

In other words, 𝐵∗Φ is a matrix where the magnitude of each

matrix is the same.

One operator that satisfies this property is the Discrete

Fourier Transform (DFT) matrix. Let Θ be the DFT matrix of

dimensions 𝐾×𝐾 . Then, the balanced basis 𝐵 can be derived

as:

𝐵 = Φ × Θ (7)

With Θ normalized to have unitary columns, 𝐵 is also an

orthonormal matrix. Additionally, since the columns 𝐵 are

constructed from a linear combination of the columns of Φ, 𝐵

and Φ span the same subspace. In other words, 𝐵 is a linear

combination of the columns of Φ and thus a reconstruction

with or without basis balancing should give the same result

up-to a change-of-basis transformation. Since 𝐵 is derived

from Θ, Θ−1 can be used to perform a linear change of basis

from 𝐵 to Φ.

All reconstructions presented here used the balanced basis

𝐵, but the coefficient images with respect to Φ are shown after

applying the change-of-basis operation Θ−1 to the recovered

coefficients. This is done for ease-of-comparison against prior

reported reconstructions such as in Cao et al.12 Using 𝐵 for

the initial reconstruction yields coefficient images of roughly

equal signal level with no one coefficient suffering from sig-

nificantly more artifacts compared to the others as shown in

2(B).
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FIGURE 1 The Deli-CS pipeline is depicted in (A) with further detail regarding the ResUNet shown in (B). The gray boxes in (B) show the data size
at various layers of the network and the first three numbers are the spatial dimensions, whereas the fourth number is the number of feature channels.

3.7 Experiments

To train and verify the Deli-CS framework, data from 14

healthy volunteers were acquired on a 3T Premier MRI

scanner (GE Healthcare, Waukesha, WI) and a 48-channel

head receiver-coil. GRE and TGAS-SPI-MRF data were

acquired. The TGAS-SPI-MRF acquisition time was 6 min-

utes, acquired resolution was 1 mm isotropic, and FOV was

220 mm isotropic. The data was retrospectively sub-sampled
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FIGURE 2 This figure depicts how the 6-minute gold standard images
(magnitude only) look without basis balancing (A,B), and with basis
balancing (C). Note variation in image intensity between bases in (A,B)
which could cause instabilities in the subsequent DL step. (C) looks like
it has less variability between bases, but the balancing method transfers
tissue information to the image phase, which is not depicted here.

to simulate a 2-minute acquisition. The data were partitioned

as 10 training, 2 validation and 2 testing subjects. The tech-

nique was additionally tested on three sets of patient data

(all male, ages 28, 49, and 75) acquired as additional scans

to the standard of care protocols at a local outpatient imag-

ing center using two different 3T Signa Premier scanners.

The patients were scanned with a prospectively accelerated

2-minute TGAS-SPI-MRF protocol and thus no 6-minute

reference comparison was possible for these cases.

All human data were acquired with informed consent

using protocols approved by the local institutional review

board at Stanford University.

Coil sensitivity maps were estimated with JSENSE47 from

the time averaged acquisitions to maintain fast reconstruction

time (JSENSE coil sensitivity estimation took approximately

30 seconds compared to over 10 minutes using ESPIRiT).

The dictionary and subspace were generated as described in

section 2 above, and finally template matching was used to

estimate the (𝑇1, 𝑇2) parametric maps1.

The reported 𝜆 values for all reconstructions are after

right-hand-side of the DC term of equation 4 (i.e. 𝐷1∕2𝑏) is

normalized to have unitary 𝑙2−norm.

A gold standard LLR reconstruction was performed on

the 6-minute data with an LLR block size of 8 and a 𝜆

value of 3 × 10−5 with 40 FISTA iterations. The matrix

size was 256 × 256 × 256. This “gold standard” reconstruc-

tion was only used for reference to compare performance of

the different reconstruction approaches of the retrospectively

undersampled 2-minute case.

The retrospectively undersampled 2-minute data LLR

reconstruction was also performed using an LLR block size

of 8 and a 𝜆 value of 5 × 10−5 with 40 FISTA iterations. In

both the 6-minute and 2-minute case this was sufficient for

convergence. The assumed matrix size was 256 × 256 × 256.

These data were used as target reconstructions when training

the Deli-CS network.

For training the Deli-CS network, corresponding blocks

of dimensions 64×64×64×5 were extracted from the initial

adjoint reconstruction and the reference reconstruction of the

2-minute acquisition. For data augmentation, random flips,

transposes, absolute scaling, and shifts were performed.

After global normalization, if the block’s DC coefficient’s

standard deviation was below 0.3, the block was discarded.

This simple filter ensures that the network avoids learn-

ing from regions with no signal variation (e.g. background

only blocks). The blocks are subsequently split into real and

imaginary components, and concatenated along the subspace

dimension. A total of 623 training blocks from 10 subjects,

and 152 validation blocks from 2 subjects were used. These

blocks are piped into a ResUNet48 with 3D convolutions,

where the channel dimension corresponds to the subspace
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dimension. The ResUNet utilized 3 residual encoding blocks

and 3 residual decoding blocks with a filter size of 3 and

ReLU activation. The total number of trainable parameters

was 23.8 million. The model was implemented in PyTorch

Lightning49,50 and trained for 479 epochs (stopping criteria

defined by minimal validation loss) using the Adam opti-

mizer51 with a learning rate of 1 × 10−5. The training utilized

5 GB of GPU memory.

During inference, blocks of spatial dimensions 64×64×64

were extracted from the initial reconstruction with a 16 voxel

overlap in all dimensions. The resulting blocks were com-

bined by applying a linear cross-blend operation to the overlap

region to smooth out inconsistencies between blocks at the

block edges.

For the final step of Deli-CS, the model prediction is used

to initialize equation 4. The iterative reconstruction used for

refinement utilized the same parameters as the reference 2-

minute reconstruction.

Image quality in both the estimated coefficient images and

the resulting quantitative maps was initially assessed qualita-

tively. Secondly, the T1 and T2 values for different number

of reconstruction iterations were assessed in a gray matter

and white matter mask generated by FSL FAST52 after brain

segmentation using FSL BET53.

4 RESULTS

Using Density Compensation and GPU optimized processing

improves both reconstruction quality (sharpness in particular)

and time compared to the prior work that used LLR12 without

density compensation. This is shown in figure 3.

As shown in figure 4(A) and (B), the Deli-CS initial-

ized prediction of T1 maps had a slightly lower RMSE error

than the reference 2-minute LLR reconstruction after 4 itera-

tions and after 20-30 iterations both reconstructions reached

convergence. However, for the Deli-CS initialized reconstruc-

tion, the iterations mostly removed local biases, whereas the

conventional iterative reconstruction mostly denoised the T1

maps. T2 maps estimation on the other hand benefited greatly

from the Deli-CS initialization as can be seen in figure 4(C)

and (D). The convergence of the T2 values for the conven-

tional reconstruction required the full 40 iterations, whereas

the Deli-CS initialized estimates had low error from the begin-

ning and the iterative refinement changed the error from bias

to more noise-like error.

After 20 iterations of refinement, the RMSE error of the

T1 and T2 maps were similar to that of 40 iterations of adjoint-

initialized reconstruction, providing a 2x acceleration factor

on top of what the memory efficient and density compensated

SigPy implementation of the algorithm already generated.

The reference iterative reconstruction took 39 minutes;

the Deli-CS initial adjoint reconstruction took approximately

20 seconds; the Deli-CS model inference took approximately

20 seconds; the final refinement step with 20 iterations took

approximately 19 minutes and 20 seconds.

Thus, the initialization approach enables approximately >

2𝑥 faster processing times with 50% fewer iterations.

Figure 5 shows a sagittal view of all steps within the recon-

struction pipeline as well as the T1 and T2 quantification for

one test subject. A magnitude threshold was applied to the

figures to zero-out regions outside the FOV of the signal for

presentability. The DL step smoothed the image significantly,

which can be seen more clearly in figures 6 and 7, and caused
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FIGURE 3 This figure compares a prior method by Cao et al. 12 (A) to the updated reconstruction (B) that includes density compensation to
significantly improve the conditioning of the problem, resulting in both much faster iterative convergence and improved sharpness compared to not
using density compensation. The data shown here is for a 2-minute acquisition.

FIGURE 4 The estimated T1 RMSE values (A,B) and especially T2
RMSE values (C,D) within the white matter and gray matter in the two
test subjects are shown to converge faster for the Deli-CS approach than
standard initialization of the FISTA reconstruction.

some bias in the quantitative values especially in low signal

areas around the brain stem (figure 5). The refinement step

retrieved more sharpness and correct quantitative values in the

low signal areas.

As evidenced by figures 6 and 7, the refinement step adds

missing features that were over smoothed or misassigned from

the network prediction, mostly in the T1 map.

Similarly, in the patient data (figures 8, 9, and 10), great

improvements in denoising by the network and sharpness and

contrast from the refinement step was observed. The baseline

quality of the 2-minute reference reconstruction was, how-

ever, lower than that of healthy volunteers. This is likely due

to higher levels of motion as well as positioning further out of

the head coil for patient comfort.

The 75 year old patient had indications for chronic small

vessel disease in both the T1 and T2 maps shown in figures

8, and 9, whereas the other two patients exhibited no signif-

icant clinical findings, consistent with their standard-of-care

imaging protocol as shown in figure 10.

The reference images in the clinical case are of some-

what lower quality than the healthy volunteers. This is likely

due to motion and imperfect positioning in the head coil (fur-

ther from receive coils and isocenter). However, despite not
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FIGURE 5 This figure compares the coefficient sagittal images recovered from the TGAS-SPI-MRF data using various methods for one of the
healthy test subject. The first row denotes the reference LLR reconstruction of the 6-minute data acquisition, and the second row denotes the LLR
reconstruction of the retrospectively under-sampled 2-minute acquisition. The remaining rows depicts the various steps of the Deli-CS pipeline. The
third row shows the initial adjoint reconstruction, the fourth row shows the model inference, and the fifth row shows the reconstruction after iterative
refinement.

having trained on any data containing pathology, the Deli-CS

network retained many clinically relevant features as shown

in figure 10. Some deep gray matter areas that were visible

on T2 weighted images were, however, obscured on quantita-

tive T2 maps. This could be because the T2 weighted images

have additional contrast from T1 and/or MT effects that are

not captured in pure T2 maps54.

5 DISCUSSION

This work presented a framework for MRI reconstruction

that targets high dimensional applications like volumetric

non-Cartesian spatio-temporal subspace reconstruction, with

the goal of reconstructing said application in clinically fea-

sible time frame with modest hardware requirements. This

was achieved with a block-based deep learning initialization

approach, where the deep learning prediction was used to

jump-start a regularized linear inverse problem. In clinical

workflows this could allow the technologist/radiographer that

acquires the scan to get the initial reconstruction or Deli-

CS prediction to make an initial assessment on whether the

scan was successful or need to be reacquired. The refined

reconstruction, which takes an additional 20 minutes to recon-

struct can then be sent to the radiologist for more detailed

assessment.
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FIGURE 6 In this axial view of test subject 2 of the fifth (lowest
energy) coefficient using the un-balanced basis that contains much of
the white and gray matter contrast of the contrast of the putamen
(denoted with a red arrow) is somewhat reduced using the Deli-CS
inference but restored to the same level of contrast as the 2-minute
acquisition by the refinement step. It is also noticeable just how much
denoising the network performs.

FIGURE 7 The quantitative maps of test subject 2 show high
sharpness and contrast in both T1 and T2 maps with half the number of
iterations when initialized with Deli-CS. T2 estimates benefit more than
T1 estimates from Deli-CS initialization as they depend more on the
lower energy coefficients.

The new, GPU optimized and sampling density com-

pensated reconstruction method outperforms the prior recon-

struction approach by Cao et al.12 as evidences by figure 3.

The Deli-CS inference step efficiently denoises and smooths

the initial reconstuction, and the refinement step suppresses

hallucinations and bias, as well as over-smoothing. In prin-

ciple, the optimization in 4 has a unique solution that the

iterations will converge to, regardless of initialization. We

noticed that the iterations when initializing with 𝐀∗𝐛 mainly

denoises the result, whereas initializing with Deli-CS reduces

bias in the quantitative parameter maps. The T2 maps benefit

most from Deli-CS initialization as the T2 estimation is more

dependent on the lower energy coefficient maps which suffer

the most from noise and aliasing in the 𝐀∗𝐛 initialization.

In the patient data the denoising effect of the DL pre-

diction step was very strong and the Deli-CS predictions

before the refinement looked much cleaner than both the refer-

ence image and subsequent refinement step. But although the

reconstruction was clean there is no way to certify whether or

not the DL method hallucinated features that were not actually

there and not even consistent with the data acquired as no data

consistency is included in this step. As unrolled methods get

more powerful and multi-GPU solutions become more read-

ily available, the Deli-CS prediction can be used as a prior

instead of a starting point in iterative reconstructions and thus

be useful in improving image quality as well as reconstruction

times.

The good recovery of the fourth and fifth coefficients in

the healthy volunteer data is also expected to improve more

advanced quantitative parameter fitting, such as in multicom-

ponent modeling and multidimensional correlation spectro-

scopic imaging55. In particular, since a voxel typically con-

sists of multiple tissue types, the better resolved fourth and

fifth coefficients are expected to allow for the better fitting of

multiple 𝑇1 and 𝑇2 values per voxel.

While this work aims to describe a general deep learn-

ing initialization approach, prior work56 has been proposed
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FIGURE 8 In this axial view of the subspace coefficients of a 75 year old male patient with chronic small vessel disease that affects both T1 and T2
in the deep white matter of the bilateral centrum semiovale (left side shown in the inset) is clear. Even though the original data in the lower energy
coefficients is very noisy, a clean estimate is generated by the Deli-CS prediction step and the refinement step removes any bias generated by the
Deli-CS prediction and confirms consistency with the acquired data. More detailed view available in figure 9.

FIGURE 9 The refined quantitative maps in this patient (75 y/o male
with chronic small vessel disease) show high sharpness and contrast in
both T1 and T2 maps. Some areas are biased and blurred after the
network inference (cerebellum: blue arrows, white matter lesion: red
arrows), but recovered by the iterative refinement.

for rapid whole brain MRF reconstruction. The proposed

Deli-CS frameworks aims to fully leverage MRI physics and

differs from Gomez et al.56 in the following key ways. First, it

fully leverages subspace and coil information to enable robust

reconstruction at high accelerations which leads to shorter

scan times. Second, the deep learning prediction is used to ini-

tialize an iterative reconstruction instead of being used as the

output of the framework, which was demonstrated to guard

against potential hallucinations and improve robustness.

Although, this work uses a simple deep learning model

(ResUNet48) to jump-start the compressed sensing recon-

struction, given the flexibility of the Deli-CS framework,

various deep learning architecture can be easily integrated to

try and improve the quality of the initialization, as well as

incorporating B0 and B1 correction strategies. Note that in

this work no B1 and B0 correction was included as proposed

by Cao et al.12 to improve quantification estimates in areas

affected by field inhomogeneities. B1 inhomogeneity affects

the T2 estimation in the front of the brain, whilst B0 inhomo-

geneity mostly affects estimates in the lower parts of the brain

near the air-tissue interfaces of the sinuses. Future work is to
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FIGURE 10 Comparison with standard clinical scans (slices approximately aligned). Note that T1 weighted images have inverted contrast to T1
maps as long T1 leads to low signal intensity on a T1 weighted image. In the T1 maps and T1 weighted images of (A) and (B) the caudate head
(white arrow) and putamen (white dashed arrow) can be seen on the quantitative T1 map, but the delineation is slightly obscured compared to the T1
weighted image. The bilateral thalami (blue arrows) are more conspicuously delineated on the quantitative T1 map. The quantitative T1 map in (C)
also demonstrates good gray-white distinction in the cerebrum as well as delineation of the hand-knob region (white asterisks). In (A) The striatum
(red arrow) and globus pallidus (red dashed arrow) is somewhat obscured on the quantitative T2 map compared to the T2 weighted image. In (B), the
quantitative T2 map distinguishes the caudate head and putamen well and the borders of the ventricles are well defined. In (C) the quantitative T2
map demonstrates clear borders of the ventricles. However the definition of the caudate head and insula (purple arrow) are somewhat obscured.

leverage a more advanced calibration scan, such as PhysiCal57

which aims to acquire 𝐵0, 𝐵+
1 , and coil sensitivity informa-

tion in less than 20 seconds. The 𝐵+
1 map will enable robust

parametric mapping, and the 𝐵0 information can be incor-

porated into the 𝐀 matrix in equation 2 to alleviate blurring

issues related to spiral imaging that is still present even in
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the highly accelerated spiral trajectory, particularly in regions

where the 𝐵0 is large12. This is a good fit for the Deli-CS

framework, as the network can potentially learn to predict a𝐵0

corrected image using the non-𝐵0 corrected input or multiple

frequency shifted inputs, which could result in fewer refine-

ment iterations (that would use the full forward model 𝐀 with

incorporated𝐵0). This is beneficial as𝐀 augmented with𝐵0 is

even more computationally challenging as discussed by Cao et

al.12, making the traditional LLR reconstruction even harder

to perform using realistic time and hardware constraints.

Finally, it would be ideal to port Deli-CS to a more effi-

cient compiled language, e.g. C, which is expected to provide

at least another 2 − 3𝑥 in speed improvement, moving the

application towards near real-time reconstruction.
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images recovered from the TGAS-SPI-MRF

data using various methods for one of the

healthy test subject. The first row denotes

the reference LLR reconstruction of the 6-

minute data acquisition, and the second row

denotes the LLR reconstruction of the retro-

spectively under-sampled 2-minute acquisi-

tion. The remaining rows depicts the various

steps of the Deli-CS pipeline. The third row

shows the initial adjoint reconstruction, the

fourth row shows the model inference, and

the fifth row shows the reconstruction after

iterative refinement. . . . . . . . . . . . . . 14

6 In this axial view of test subject 2 of the

fifth (lowest energy) coefficient using the un-

balanced basis that contains much of the

white and gray matter contrast of the contrast

of the putamen (denoted with a red arrow) is

somewhat reduced using the Deli-CS infer-

ence but restored to the same level of contrast

as the 2-minute acquisition by the refine-

ment step. It is also noticeable just how much

denoising the network performs. . . . . . . . 15

7 The quantitative maps of test subject 2 show

high sharpness and contrast in both T1 and

T2 maps with half the number of iterations

when initialized with Deli-CS. T2 estimates

benefit more than T1 estimates from Deli-

CS initialization as they depend more on the

lower energy coefficients. . . . . . . . . . . . 15

8 In this axial view of the subspace coeffi-

cients of a 75 year old male patient with
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T1 and T2 in the deep white matter of the

bilateral centrum semiovale (left side shown

in the inset) is clear. Even though the orig-
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the Deli-CS prediction step and the refine-
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9 The refined quantitative maps in this patient

(75 y/o male with chronic small vessel dis-

ease) show high sharpness and contrast in

both T1 and T2 maps. Some areas are biased

and blurred after the network inference (cere-
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arrows), but recovered by the iterative refine-
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10 Comparison with standard clinical scans

(slices approximately aligned). Note that T1

weighted images have inverted contrast to T1

maps as long T1 leads to low signal intensity

on a T1 weighted image. In the T1 maps and

T1 weighted images of (A) and (B) the cau-

date head (white arrow) and putamen (white

dashed arrow) can be seen on the quantita-

tive T1 map, but the delineation is slightly

obscured compared to the T1 weighted image.

The bilateral thalami (blue arrows) are more

conspicuously delineated on the quantitative

T1 map. The quantitative T1 map in (C) also

demonstrates good gray-white distinction in

the cerebrum as well as delineation of the

hand-knob region (white asterisks). In (A)

The striatum (red arrow) and globus pallidus

(red dashed arrow) is somewhat obscured on

the quantitative T2 map compared to the T2

weighted image. In (B), the quantitative T2

map distinguishes the caudate head and puta-

men well and the borders of the ventricles

are well defined. In (C) the quantitative T2

map demonstrates clear borders of the ven-

tricles. However the definition of the caudate

head and insula (purple arrow) are somewhat

obscured. . . . . . . . . . . . . . . . . . . . 17
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