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Abstract: Aspergillus conida are ubiquitous in the environment, including freshwater, water for
bathing, and in drinking water. Vulnerable patients and those suffering from allergic diseases are
susceptible to aspergillosis. Avoidance of Aspergillus is of paramount importance. Potential outbreaks
of aspergillosis in hospital facilities have been described where the water supply has been implicated.
Little is known regarding the risk of exposure to Aspergillus in water. How does Aspergillus survive in
water? This review explores the biofilm state of Aspergillus growth based on recent literature and
suggests that biofilms are responsible for the persistence of Aspergillus in domestic and healthcare
facilities’ water supplies.
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1. Introduction

Aspergillosis is caused by the filamentous mould Aspergillus. The term describes a wide spectrum
of diseases from invasive disease to evoking allergic responses [1,2]. The disease can occur in most
body organs in humans and animals. Humans have highly efficient innate and immune mechanisms
to prevent themselves from being infected by Aspergillus species. It is when these mechanisms
are defective or absent that Aspergillus can grow within the body. Most people who may develop
life-threatening aspergillosis are those with a weakened or compromised immune system due to
corticosteroid therapy, due to being managed in intensive care, following transplant surgery, or as a
consequence of cancer therapy. In contrast, aspergillosis can occur in immunocompetent individuals
with no known suppression of their immune system, where previous tissue damage has occurred
due to heavily scarred pulmonary tissue as a result of tuberculosis, chronic obstructive pulmonary
disease, bronchiectasis where the airways become abnormally widened, or some other underlying
pulmonary disease.

Many different manifestations of aspergillosis are well-described, including allergic aspergillosis
(rhinosinusitis and bronchopulmonary) (>10 million worldwide), chronic pulmonary aspergillosis
(~3 million worldwide), invasive aspergillosis (incidence >300,000 annually), and superficial disease
(notably keratitis, otomycosis, and trauma or burn wound infections) [1,2]. These conditions are seen
worldwide (https://www.gaffi.org/).

The genus Aspergillus includes over 300 species. Aspergillus spores (conidia) are commonly found
in outside air, water, food items, soil, plant debris, rotten vegetation, manure, sawdust litter, bagasse
litter, animal feed, bark chippings, on animals, and in the built environment. Exposure to Aspergillus
occurs worldwide, mainly by inhalation from the outdoor or built environment. Water may be an
alternative source of Aspergillus conidia. This will be explored in this review.

Around 20 species have so far been reported as causative agents of opportunistic infections in
humans, although many cryptic species are now implicated, so the term complex is added to species
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names, unless definitive identification has been conducted. Among these, Aspergillus fumigatus is the
most commonly isolated species, followed by A. flavus and A. niger. A. nidulans, A. terreus, A. calidoustus,
and A. versicolor are among the other species less commonly isolated.

Multi-locus DNA sequence analysis has enabled the description of previously unknown ‘cryptic’
Aspergillus species, whereas phenotypic-based identification of Aspergillus can only identify isolates
down to the species complex [3]. There are two main features of these ‘cryptic’ Aspergillus species.
Firstly, the prevalence of these in clinical samples is relatively high compared with other filamentous
fungal taxa, such as the agents of mucormycosis, Scedosporium, or Fusarium. Secondly, it is mandatory to
identify these species because of the high frequency of antifungal drug-resistance. Matrix-assisted laser
desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) enables the identification of
molds and yeasts with an accuracy similar to that of DNA sequence-based methods [4]. MALDI-TOF
MS is well-suited to the routine clinical laboratory workflow and facilitates the identification of
common and ‘cryptic’ Aspergillus species. However, more reliable databases have to be developed
to accommodate these. The fungal databases are the key components of commercial MALDI-TOF
platforms. Commercial databases contain a large collection of common fungi, but more unusual and
‘cryptic’ species are not well-represented. Open-source databases of unusual fungi are becoming more
accessible. Moreover, these databases have to contain fingerprints of multiple strains of the same
fungus. Further development of these and other platforms will lead to a better understanding of the
epidemiology and clinical importance of these previously unrecognized Aspergillus species.

The mycobiome of indoor and external environments, for example, air, dust, and soil, has been
studied in some detail and comparisons have been made with the mycobiome of the respiratory
tract [5]. Aspergillus species have been found in varying proportions in both, but no one study has
focussed on the link between the mycobiome of water and human disease.

2. Water as a Reservoir for Aspergillus

Water entering a building is not sterile. Homes and healthcare facilities typically receive potable
water from their local public water system or municipality. Potable water is used extensively in the
healthcare environment. It is used for drinking, patient bathing and showering, handwashing, rinsing
medical devices, hydrotherapy pools, and to make ice. Potable water is not sterile. It contains a
high bacterial load. Fungi also have frequently been isolated from drinking water [6]. Opportunistic
pathogens represent a significant proportion of the microbiome of drinking water and have emerged as
a significant public health issue. Drinking water also contains fungi pathogens, such as Aspergillus spp.
and Fusarium spp. [6]. However, little is known about the dynamics of fungal communities during the
treatment of drinking water. Studying fungal populations in drinking water over time should identify
areas and times where Aspergillus may proliferate. There are large gaps in our knowledge regarding
the dynamics of fungal ecology during the drinking water treatment process and final delivery, and
operational factors that shape the community structure. Contaminated water presents a number of
exposure pathways. Water-related fungal infectious risks exist in both healthcare and community
environments. Individuals can be directly exposed to these organisms either through bioaerosols and
water, after ingestion, inhalation, and skin contact, and through mucous membranes.

In 2016, the present authors highlighted the scarcity of studies on the topic of Aspergillus in
drinking water and that there were a number of aspects that remained poorly understood [7]. There was
a plea for research to further explore the importance of drinking water as an environmental source of
fungi in vulnerable or at-risk population groups. The expectation was that greater knowledge on the
importance of the ingestion of Aspergillus in drinking water, as opposed to inhalation, as an exposure
pathway, will ensure that mitigation measures for at-risk patients are appropriate.

In 2017, an in-depth, exhaustive review on fungal contaminants in drinking water was
published [6]. Here, we summarize the body of knowledge reviewed by these authors, and others,
in relation to Aspergillus spp., followed by a focus on biofilms in domestic and healthcare facility
water supplies.
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Babić and colleagues reviewed how the chemical properties of water influence the growth and
survival of fungi in water systems, and vice-versa [6]. Fungi are actively involved in the dissolution
and corrosion of rocks and the precipitation of minerals. In general, rocks with an alkaline pH are
more susceptible to fungal colonization than rocks with an acidic pH. In addition to limestone, a range
of other rock types positively influence the growth of A. niger. Surface water is rich in the products
of organic matter degradation, which promotes the growth of plant degrading filamentous fungi,
including Aspergillus spp. In comparison, groundwater contains more inorganic ions and less organic
matter and therefore fungi have not been isolated so frequently. Environmental water in areas that
are densely populated contain high amounts of organic waste, as well as a number of pollutants,
including organo-halogens, pesticides, and long-chain aromatic hydrocarbons such as benzene and
xylene. Aspergillus species are able to break-down long-chained pollutants and have been isolated from
contaminated waters. Aspergillus has also been isolated from waters heavily contaminated with bacteria
and algae, which results in low oxygen concentrations. Aspergillus can grow under hypoxic conditions.

The effect of sunlight and water temperature on fungi is not well-documented. Babić and
colleagues have reviewed the few studies that have been conducted [6]. The effect of solar-UV-radiation
varies with the time of day, and is lower during cloudy days, in large volumes of water, and in water
with high amounts of organic matter with increased turbidity. UV-radiation will also raise the water
temperature. High levels of Aspergillus have been found in surface water during summer months,
being replaced by other filamentous fungi during the cooler seasons.

Drinking water quality deteriorates during transportation through drinking water distribution
systems (DWDS), reviewed in reference [8]. Microbial activity and ecology, particularly within biofilms
that occur on the inner-pipe surface of DWDS, are emerging as important drivers in the degradation
process. More recent reviews, for example, by Douterelo and colleagues [9,10], reinforce the view that
the delivery of high-quality, potable drinking water primarily depends on the optimal operation of the
DWDS. DWDS are complex pipe networks which function as discrete ecosystems which are dominated
by microorganisms that are attached to the inner pipe surfaces and grow into the lumen of the pipes.
Microbial dynamics in any ecosystem are determined by interactions between microorganisms and
the surrounding environment. However, within these water transportation systems, the dynamics of
microbial populations and a change in their composition over time remain largely unexplored.

Water after filtration is usually still not suitable for human drinking. Additional primary and
secondary disinfection, such as UV-irradiation and ozonation, is often used. UV-irradiation does not
appear to be optimal for A. fumigatus. Ozone does appear to be effective against a range of fungi,
including A. fumigatus. Both processes are usually combined with chlorination. However, A. fumigatus
appears to be resistant to calcium hypochlorite in some studies [6].

Despite well-developed raw water cleaning processes, fungi have been discovered in tap water
systems as single cells or hyphal fragments, and as a part of biofilms, reviewed in reference [11].
An accumulation of research studies from 19 European countries has shown the difference between
fungi communities in surface water and groundwater versus tap drinking water [11]. More than 400
different species have been found to inhabit different water sources: Aspergillus species were reported
from 17 out of 19 countries (89.5%), followed by Cladosporium and Penicillium (both were reported from
84.2% of countries), Trichoderma (73.7%), Alternaria and Fusarium (both 68.4%), and Aureobasidium and
Mucor (both 52.6%). Most fungi were isolated from both raw water sources (surface- and groundwater)
and tap water, while species from the genera Mucor, Trichoderma, and Penicillium were found more
often in surface water samples. These studies were carried out mainly using traditional cultivation
techniques and may thus not be inclusive. Next generation sequencing techniques have the potential
to elucidate the mycobiome of water supplies even further.

When employing direct microscopy, fungal elements can be seen in biofilms; however,
it is virtually impossible to definitively identify the species unless the mould is sporulating.
Next-generation sequencing of biofilms has identified opportunistic yeasts such as Candida albicans,
C. parapsilosis, and Exophiala dermatitidis, but has scarcely mentioned Aspergillus species [11,12].
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An understanding of fungal biofilms in water supplies has been the main focus of water mycology
over the past two years [11,12]. Because of the expected climate change, it is probable that in the
future, the earth’s warming will lead to a rise in the temperature of surface water, water distribution
systems, and pipe networks. Opportunistic fungi, including Aspergillus species, which are capable of
growing in drinking water, are often adapted to higher temperatures. Several species of Aspergillus are
thermotolerant. As temperatures rise, these organisms could therefore occur more frequently in the
microbial populations in drinking-water-related environments.

2.1. Diversity of Fungi in Water—Regional

As an illustrative example, the load and presence of environmental, mycotoxin-producing,
and potentially pathogenic fungi in man-made water systems (domestic dwellings, hospitals, and
shopping centers) connected to the municipal water distribution network in Istanbul, Turkey, was
investigated [13]. The mean fungal load found in different water samples was 98 colony-forming
units (CFU)/100 mL of water in shopping centres, 51 CFU/100 mL in hospitals, and 23 CFU/100
mL in homes. The dominant fungal species were Aureobasidium pullulans and Fusarium oxysporum.
Aflatoxigenic A. flavus and ochratoxigenic A. westerdijkiae were only detected in hospital water samples.
Alternaria alternata, A. clavatus, A. fumigatus, and Cladosporium cladosporioides were also detected in
the samples. This study demonstrated that in a big metropolitan area, water supplies contained
environmental, pathogenic, allergenic, and mycotoxin producing fungi. It was concluded that the
current disinfection policies and procedures in place were inadequate.

A number of studies from different regions of Europe have underscored the great biodiversity of
fungi surface sources and groundwater, reviewed in [12]. Several pathogenic species have been found,
including A. fumigatus, and rarer species known to be less sensitive to antifungal agents, including
A. calidoustus and A. viridinutans. The dominance of Aspergillus species in these and other studies could
reflect their high frequency in the surrounding air, reviewed in [6].

2.2. Water Systems—Freshwater

Fungi are much less common in freshwater biomes predominated by bacteria (often present
as biofilms), cyanobacteria, archaea, algae, viruses, and protozoa, reviewed in [14]. Nonetheless,
microscopic fungi are present in freshwater communities, although they exist in relatively lower
concentrations, are rarely planktonic (free-living), and are even more rarely pathogenic.

Water could be the preferred habitat of certain fungal species. A quantitative evaluation of the
taxa isolated from water was shown to depend on its origin: surface water presents a higher risk of
colonization compared to deeper samples, such as groundwater [15].

Potentially pathogenic fungal microorganisms are found in a variety of freshwater sources,
including surface waters, drinking water, and public bathing and swimming facilities. Fortunately,
fungal infections as a result of freshwater exposure or trauma are rare. The most common entities
appear to be fungal keratitis, otitis externa, and tinea pedis. Well-documented reports describe deep
fungal infections resulting from freshwater exposures following natural disasters or near-drowning
episodes. As with most cryptic fungal infections, freshwater-related or otherwise, this etiology should
be suspected when bacterial cultures or molecular tests are normal or when the infection inexplicably
worsens or fails to resolve with appropriate antibacterial therapy.

Like Legionella pneumophila and other bacteria, fungi may be associated with or be harbored
by free-living amoebas in freshwater, including tap and potable water [16]. The importance of this
association is still being elucidated. In addition to adjacent soil, one source of freshwater fungi
contamination by fungi is atmospheric dust (dispersed by wind, excavation, and other soil-disturbing
activities) [5]. It is to be expected that there are regional variations in species diversity. A variety
of potentially pathogenic fungi may be found in various bodies of water, sometimes as the result of
runoff or sewage contamination. The presence of some fungal contaminants in drinking water may
be related to their establishment of biofilms in portions of the water distribution system upstream
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from household or commercial establishment plumbing systems, as discussed below. Hageskal
and colleagues provided an informative review of the methodological challenges and difficulty in
interpretation of microbiological assessments [17].

3. Aspergillus Biofilms

There are a number of key factors to consider [11]: (1) Water entering a home or healthcare
facility is not sterile; (2) the design of a domestic or hospitals plumbing system and patterns of
water use allow biofilms to form; (3) fungal pathogens establish themselves as biofilms in plumbing
networks; (4) fungal pathogens associated with plumbing biofilms have been epidemiologically linked
to healthcare acquired infections; and (5) risk of infection can be reduced through the development
and implementation of a water management program.

Recent studies have suggested that biofilm formation by A. fumigatus in humans may be one
of the most important virulence factors in chronic pulmonary aspergillosis, invasive disease, and
fungal balls in the sinuses and lungs (aspergilloma) [18]. Fungal biofilms forming on host surfaces or
cells are comprised of whole cells, cell wall components, secondary metabolites, drug transporters,
and extracellular material. The biofilm phenotype of the fungus is refractory to most conventional
antifungals. Thus, over the past few years, an in-depth analysis and understanding of A. fumigatus
biofilms has been carried out to devise newer and better antifungal targets for treating complex
A. fumigatus biofilm-associated diseases. Does what we know about Aspergillus biofilms in the clinical
setting translate to Aspergillus biofilms in water delivery systems in the home and healthcare facilities?

A number of laboratory studies may provide some pointers as to how Aspergillus biofilms
grow in the lumen of water distribution systems [19]. The formation of A. fumigatus biofilms is
similar, regardless of the provenance of the isolate, but differences are apparent according to the
ambient temperature. Stages of biofilm development include the following: Firstly, adhesion to an
inanimate surface (typically over a 4 h period) followed by cell co-aggregation and the formation
of extracellular matrix substance (EMS); secondly, conidial germination into germlings (8–12 h—for
example, A. fumigatus conidia will germinate within 6 h under favourable conditions), followed by
hyphal development, hyphal elongation, and expansion with channel formation (16–20 h); thirdly,
biofilm maturation as follows: mycelia development, stratifying of hyphal layers, channel formation
within these hyphal matrixes, and high structural arrangement of the mycelia that include anastomosis
of adjacent hyphae and extensive production of EMS (24 h). The EMS covers, surrounds, and
strengthens the mycelial meshwork, particular at 37 ◦C. When using clinical isolates, irregular fungal
structures, such as micro-hyphae that are short and slender hyphae seem to occur; finally, regarding
cell dispersion, soil isolates exhibit higher conidial formation than clinical isolates, which have the
capacity to germinate and generate new mycelia growth. Shedding of fungal elements from the biofilm
most likely occurs. It is highly likely that Aspergillus attaches to pre-existing bacterial biofilms, for
example, Pseudomonas aeruginosa, which is often considered as the architect of the biofilm, due to its
ability to produce an exopolysaccharide or glycocalyx matrix. It is highly likely that other filamentous
fungi form biofilms in a similar way, for example, Fusarium.

3.1. Optimal Conditions for the Formation of Aspergillus Biofilms

A report from the Netherlands has shown that the season of the year influences the growth of
Aspergillus fumigatus [20]. Using molecular tools, it was demonstrated that fungi, including A. fumigatus,
generally occur in drinking water in the Netherlands, and are capable of multiplying in distribution
systems and indoor installations. Drinking water temperatures between 5 ◦C and 22 ◦C had no
influence on the number of fungi. A. fumigatus appeared to be capable of multiplying in distribution
systems and/or indoor installations. Drinking water temperatures around 20 ◦C resulted in higher
counts of A. fumigatus than at temperatures around 7 ◦C. However, the authors emphasise that it
is still unclear whether the occurrence of the strains of A. fumigatus found in water would cause
clinical disease.
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Prior to the time period of the current review, the concept of fungal biofilms in water supply
systems was introduced [14]. The authors discussed the need for standardized methods to investigate
water for fungi and presented data showing that fungi did form biofilms. The major part of the fungal
biofilm biomass in drinking water distribution systems is attached to pipe surfaces. Several factors
influence biofilm development, including temperature, nutrients, residual disinfectant, the hydraulic
regime, and characteristics of the network surface/substratum. This work also demonstrated the
concept of mixed fungal biofilms, a situation well-recognised with mixed fungi-bacteria biofilms in a
number of clinical scenarios.

The materials used for manufacturing water supply networks have been shown to influence the
microbiological quality of water and the formation of biofilms [6]. Network pipe systems are constructed
from a range of materials which may interact with residual chlorine and chlorination by-products. These
materials may also influence the microbiological quality of the water by promoting biofilm formation.
In general, bacteria and fungi are more likely to form biofilms in pipe systems made from iron or steel,
in comparison to PVC [6]. The lumen of the pipes can become rough, inducing changes in water flow
and causing a reduction in shear forces, enabling the easy attachment of microbial cells. The number
of fungal cells inside biofilms may be 5000 times higher than in running water. Under experimental
conditions, Aspergillus biofilms were fully formed within 48 h from the start of an experiment mimicking
real conditions in tap systems [6]. Aspergillus biofilms have been found in taps in private homes, hospitals,
and industrial premises. Once established, fungal biofilms are difficult to eradicate from the pipe system,
resulting in altered taste, odor, the production of allergenic compounds, and mycotoxins [11,12].

3.2. Implications of Aspergillus Biofilms in Drinking Water Distribution Systems

Fungi growing as biofilms inside taps and in drinking and cooking water will affect the taste and
produce an odor which will directly impact the chlorination process in use, due to the release of a
large number of products known as secondary metabolites (extrolites) [11]. These are very diverse
and specific for different fungal species and some are known mycotoxins. It is clear that the role
of secondary metabolites in specific ecological niches is to defend their habitat and suppress the
growth of competitors. However, a number of mycotoxins may be detrimental to human health in
higher concentrations or as a result of prolonged, chronic exposure. Fungal cell wall components,
fungal allergens, and the fungal biomass itself may drive allergies and result in opportunistic and
systemic infections, mainly in profoundly immunocompromised individuals [1]. Even though fungi
are recognized as causative agents of systemic respiratory, mucosal, rhinocerebral, cutaneous, and
subcutaneous infections, they remain largely overlooked in the regulations of water quality and
human consumption. There are many possible reasons for this, including: a lack of knowledge of the
concentration of fungi in water, different culture methods, and the low number of reports making
connections between the presence of fungi in tap water and the occurrence of diseases in humans.
Recent natural disasters, such as tsunamis and hurricanes, have highlighted the possibility of drinking
water contamination with pathogenic fungi, including Aspergillus.

The identification of pathogenic fungi from water in healthcare facilities such as Aspergillus,
Fusarium, Penicillium, Scedosporium, and agents of mucormycosis and the unavoidable formation of a
polymicrobial biofilm in waterlines is of concern. To prevent a risk of fungal infection in this setting,
health authorities have implemented a number of measures to mitigate this: ultraviolet radiation to
treat the incoming water, continuous chemical treatment or thermal shock within the pipe network,
or filtration at points of use, reviewed in [11]. It is highly likely that Aspergillus conidia are released
from contaminated water in bioaerosols, or the aerosolization of a moldy aquatic niche (wet cell)
constituting additional exposure pathways in addition to the familiar dispersal of conidia from visible
and interstitial mould growth.

Following on from our understanding of how Aspergillus biofilms form and resist antifungal
treatment in the human respiratory tract, an additional concern when discussing biofilms in water
distribution systems is that within a biofilm, sessile microorganisms become less susceptible or
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sometimes totally resistant to different antimicrobial compounds, compared to microorganisms growing
planktonically. This resistance is partially explained by the presence of persister cells, which are highly
tolerant to biocides, antibiotics, and antifungals, especially in the deeper layers of the biofilms [11].
Persisters are dormant variants of regular conidia and hyphal structures that form stochastically in
biofilms and are highly tolerant to antifungals. Aspergillus biofilms can be considered as reservoirs of
fungal contamination of water systems by the periodic or sustained release of hyphal fragments or longer
lengths of hyphae which are isolated or in clusters embedded in an extracellular matrix. Biofilms grow
at an interface such as the one existing between air and water, and may sporulate. These conditions are
found in water systems, and in community and hospital environments, for example, in shower heads.
This is also the case in endoscopy reprocessing units, dialysis units, and dental units.

4. The Medical Implications of Exposure to Aspergillus in Water in Indoor Environments

It is clear that water constitutes an exposure pathway. Individuals are exposed to pathogenic fungi,
including Aspergillus, in a number of different situations: drinking water; bathing and showering; or
indirectly due to the use of household appliances connected to the water supply, such as dishwashers
and washing machines (Figure 1). Increasingly, a number of other environments are being recognised
as potential sources of Aspergillus, such as bottled water, dental lines, and haemodialysis units
(reviewed below).

4.1. Direct Contact with Aspergillus

Many fungi survive in moist environments. Aspergillus conidia can survive for many years when
stored in water in the dark (unpublished data, M Richardson). Aspergillus biofilms can develop
in shower hoses and shower heads. An association has been claimed between showering and
the effect of bioaerosols containing Aspergillus, and exacerbation of asthma and hypersensitivity
pneumonitis (extrinsic allergic alveolitis) [6]. Hospital water may also act as a source of hospital
outbreaks of aspergillosis.

4.2. Indirect Contact with Aspergillus

Dishwashers and washing machines harbor a variety of filamentous fungi and black yeasts, but
Aspergillus does not appear to feature in the mycobiome surveys of these appliances [11].

5. Potential Exposure to Aspergillus in Special Aqueous Environments

5.1. Swimming Pool Facilities

Contamination of swimming pools with pathogenic organisms and impact on human health has
long been of concern. The possible transmission pathways of fungi in indoor swimming pool facilities
have been assessed in different areas of swimming pool facilities by the culture and typing of the fungal
isolates [21]. Air, water, and surface samples were collected from seven different indoor swimming
pools. Species identification was based on DNA internal transcribed spacer (ITS) sequences. The
maximum concentrations were found on surfaces, in water and air. Over 450 isolates were recovered,
belonging to 111 fungal species, of which 50 were clinically relevant. Phialophora oxyspora (13.3%) and
Trichosporon dohaense (5.0%) were the most frequently isolated species and mainly detected on floors, as
were Trichophyton interdigitale and T. rubrum. Penicillium spp. and Aspergillus spp. were the dominant
molds in water and air. The highest fungal concentrations posing the highest risk of contamination
were areas where swimming pool visitors converged while moving from one room (e.g., dressing
room) to another (e.g., shower room) and walking barefoot. As suggested in numerous other studies,
the dispersal of fungi on floors is most likely facilitated by the pool visitors and cleaning machines of
various types. The authors advocate that preventive measures such as cleaning should minimize the
burden of clinically relevant fungi in swimming pools and similar ‘sub-tropical paradises’ since these
potentially pose a health risk to vulnerable individuals, especially children and the elderly.
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Figure 1. Abiotic, biotic, and anthropogenic factors influencing fungal presence in groundwater, surface
water, tap water, and non-mineral bottled water, with a possible effect of fungi on human health via
different exposure points. The most common factors having an influence on the fungal presence and
diversity in different water sources are divided into factors influencing fungal presence, mainly in
raw water sources in the natural environment (indicated with green colour), anthropogenic factors
influencing fungal presence during the production of tap and non-mineral bottled water, and exposure
points of fungi via water-related activities (indicated with blue colour). Red colour indicates the most
frequently detected fungal genera from tap and bottled water with their possible effects on human
health. Reproduced from [6], open access and with authors’ permission.
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5.2. Haemodialysis Units

Haemodialysis is a type of treatment for kidney failure. It uses a haemodialysis machine, dialyzer,
dialysis solution, catheters, and needles, all of which favor biofilm formation. Do pathogenic fungi
form biofilms in dialysis equipment? To explore this, Aspergillus and Fusarium biofilms were grown in
liquid culture containing dialysate or dialysate supplemented with glucose [22]. The biofilms were
incubated at 30 ◦C for 72 h, quantified using violet crystal staining, and viewed under the transmission
electron microscope. All the fungi formed biofilms under all test conditions. However, Bonferroni
analysis (an adjustment made to P values when several dependent or independent statistical tests
are being performed simultaneously on a single data set) revealed that the dialysate supported the
growth of Aspergillus, whereas both the dialysate and dialysate supplemented with glucose promoted
the development of Fusarium oxysporum biofilms. Scanning electron microscopy of biofilms that
grew on catheters after 72 h revealed that Aspergillus had germinated and formed abundant hyphae;
when Aspergillus was grown in the dialysate, an extracellular matrix was visible on the surface of
some hyphae. The authors conclude that their study may contribute to the formulation of new
strategies to monitor biofilm formation and to increase knowledge associated with fungal biofilms in
the dialysis environment.

5.3. Showers

During showering, people are exposed to fungal propagules (conidia and hyphal fragments) via
bioaerosols released into the environment [11,23]. Inhalation of water droplets containing these fungal
components is the most relevant route of pulmonary and systemic infection for vulnerable patients.
Any situation that enhances the air-borne dispersion of mould propagules increases the exposure of
patients to such pathogens. Thus, special attention is paid to bioaerosols released in bathrooms in
hospital environments. Recent research conducted on shower hose biofilms revealed the presence of a
number of opportunistic pathogens: A. glaucus, Cladosporium spp., Exophiala mesophila, Fusarium fujikuroi
species complex, Malassezia restricta, Penicillium spp., and Schizophyllum commune [6,23]. In a seminal
study, Anaissie and colleagues reported a shift in the fungal population in the air and on surfaces
between and immediately after showering [5]. Showering increased the presence of filamentous fungi,
including Aspergillus. Molds were recovered in 70% of 398 water samples. The authors suggested that
hospital water distribution systems may serve as a potential indoor reservoir of Aspergillus and other
molds, leading to the aerosolization of fungal spores and potential exposure for patients.

5.4. Centralised Water Treatment Systems

Centralized water treatment plants are facilities where large volumes of water are treated at high
flow rates in a “central” location and the water is then distributed via networks of pipelines, channels,
and intermediate reservoirs. Centralized water treatment mainly operates in major urban areas of most
parts of the developed world. A number of studies suggest that centralized drinking water treatment
dictates the composition of the final drinking water microbial population via the selection of community
members and that the eukaryotic community is controlled by physical treatment processes [24].
The effect of centralized water treatment processes on the diversity of fungal populations in drinking
water has not been previously evaluated. Interestingly, it has been shown that the relative abundance
of Aspergillus spp. significantly increased through the water treatment process, especially following
disinfection, suggesting that this fungus is less efficiently removed by the conventional water treatment
process or is more resistant to the selection pressure posed by water treatment processes. The relative
abundance of Aspergillus spp. increased significantly from raw water to post-disinfection water.
Interestingly, there was an increase in the relative abundance in water samples from post-filtration to
post-disinfection. ‘Linear discriminant analysis Effect Size’ analysis also showed that Aspergillus spp.
were significantly enriched post-disinfection.
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5.5. Bottled Water

Ribeiro and colleagues conducted a 12-month survey of a drinking water bottling plant in Portugal
to evaluate the diversity of the mycobiota [25]. The predominant fungal genera ranked in order of
the highest numbers isolated were Penicillium, Cladosporium, and Trichoderma, followed by Aspergillus,
Paecilomyces, and others. As expected, the highest numbers of isolates were collected during the
warmer, late spring, and early summer months of the year. The authors advocated that during those
times of the year when fungal contamination is high, filters should be changed on a regular basis.
In order to assess whether contamination was from a focal or multiple points in the bottling facility,
molecular methods were used specifically to identify Penicillium brevicompactum. Fungal contamination
arose from multiple sources. Some P. brevicompactum strains were very similar in profile and were
detected at different sampling times, indicating that they were endogenous to the bottling plant.
There was no evidence to suggest that fungi detected in the source water contaminated other parts of
the bottling plant. However, there was evidence that P. brevicompactum strains isolated from water
filters were detected elsewhere in the plant, underscoring the importance of changing filters on a more
regular basis during periods of high fungal contamination.

6. Conclusions

The recognition of Aspergillus biofilms in water delivery systems over many years has more
recently helped to understand the formation of these fungal communities on and in various body
spaces, leading to aspergillosis and presenting a formidable target for antifungal therapy. Aspergillus
has been found to contaminate water supplies throughout Europe and beyond. It is not surprising
that this filamentous fungus has the propensity to form communities on abiotic surfaces, such as
water pipes. Furthermore, fungal biofilms have been seen to increase in complexity over time in water
supplies, making them more difficult to eradicate.
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