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Abstract

The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in
nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently
synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein
functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral
sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately
reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not
been investigated. Here, we show with simulations that utilizing information on species history using a model that
accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This
underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predic-
tions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial
phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny
results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments
with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral
protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in
future studies of protein resurrections to accurately define the genotype–phenotype space in which proteins diversify.

Key words: ancestral sequence reconstruction, protein resurrection, gene tree reconciliation, lateral gene transfer, protein
evolution, phylogeny.

Introduction

Prediction is very difficult, especially about the

future.

Niels Bohr

While commonly attributed to Niels Bohr, it is difficult to
determine with confidence the primary source of the above
quote, demonstrating that the statement is also true for pre-
dictions involving the past. Predicting the future is difficult
because, in lieu of direct observations, we must extrapolate
based on present-day information. For the same reason, it is
also difficult to reconstruct past events that occurred suffi-
ciently long ago that little or no direct record of them re-
mains. This is often the case in evolutionary biology, which
studies the past to understand the present. As the past
cannot be directly observed, we must rely on methods,

such as phylogenetics, that make inferences about the past
to describe the patterns and comprehend the processes that
have shaped biodiversity.

Reconstructing past evolution is hard because it is difficult
to disentangle signal from noise, and because our understand-
ing of the biological process is imperfect. Moreover, inferences
about the past can almost never be validated experimentally.
The validation of phylogenetic methods and evolutionary
models depends almost exclusively on simulations (Arenas
2012). Such in silico experiments can readily produce simu-
lated data based on models of evolutionary processes.
Phylogenetic methods or models can then be tested and/or
compared in their ability to accurately reconstruct evolution-
ary events or estimate parameters of the evolutionary process
that generated the simulated sequences. However, our
models of evolutionary process are overly simplistic and by
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extension limited in their ability to reproduce the emergent
properties of complex systems (Philippe and Roure 2011;
Anisimova et al. 2013).

For instance, phylogenetic methods and evolutionary
models can be used to infer the ancestral molecular se-
quences of extant protein-coding genes (at the DNA or pro-
tein level) (Pauling and Zuckerkandl 1963; Yang et al. 1995;
Harms and Thornton 2013). Although the performance of
these methods and models in terms of ancestral sequence
reconstruction (ASR) can be evaluated through simulation
experiments, current models cannot anticipate the emergent
properties of protein ancestors in their native state (correct
folding, 3D structure, enzymatic characteristics, etc). It is only
when these ancestors are resurrected in vitro or in vivo and
their functionality is verified that one can make an evaluation
of the performance of evolutionary models. In this article, we
experimentally validate the computational predictions of the
relative performance of evolutionary models in terms of ASR
accuracy in order to answer two questions: 1) are more com-
plex evolutionary models able to infer more accurate histor-
ical trajectories of proteins and 2) if so, do these improved
genotypes translate into more accurate phenotypes?

Ancestral protein resurrection holds great potential for
understanding how evolutionary processes and biochemical
properties interplay to produce the structures and functions
of extant proteins (Chang and Donoghue 2000; Harms and
Thornton 2010, 2013). Fifty years ago, Pauling and
Zuckerkandl (1963) proposed that the resurrection of ances-
tral sequences inferred in silico could open the possibility of
experimentally studying the ancestors of modern proteins.
This is possible because, given a set of homologous sequences,
a corresponding phylogenetic tree, and a model of sequence
evolution, one can infer ancestral sequences for any node of
the phylogeny. These putative ancestral sequences can then
be “resurrected” in the laboratory using standard molecular
biology techniques, giving access to extinct proteins and their
phenotypes. Since the work of Malcolm et al. (1990) and
Stackhouse et al. (1990), who first implemented this idea in
practice, numerous studies combining ASR with experimental
resurrection have investigated diverse biological questions,
ranging from ancient adaptations to temperature (Gaucher
et al. 2003, 2008; Hobbs et al. 2012), to ancestral ecological
adaptations (Chang et al. 2002; Mirceta et al. 2013), the emer-
gence of protein function (Benner et al. 2002; Ortlund et al.
2007), the influence of gene duplication on functional diver-
gence (Voordeckers et al. 2012), the evolution of molecular
complexes (Finnigan et al. 2012), and industrial, technological,
or biomedical applications of ancestral proteins (Kodra et al.
2007; Chen et al. 2010; Cole and Gaucher 2011).

With the increase in popularity of the ASR approach, sev-
eral methodological improvements have been proposed
(Yang et al. 1995; Koshi and Goldstein 1996; Pupko et al.
2000; Williams et al. 2006; Pupko et al. 2007). Using maximum
likelihood (ML), Yang et al. (1995) proposed the marginal
reconstruction algorithm that we have employed in this
study and which is used in almost all modern ASR studies.
With this approach, at a given site in the sequence alignment
and at a given internal node, posterior probabilities (PPs) for

all possible states are computed. The state having the highest
PP is considered as the ancestral state. It is worth noting that
PPs provide confidence in the reconstruction inference (Yang
et al. 1995). Despite the flexibility afforded by such a prob-
abilistic approach, and the correspondingly wide range of
available tree reconstruction algorithms, few studies
(Hanson-Smith et al. 2010) have focused on the effect of
the phylogenetic tree on ASR.

In most, if not all, previous studies where ASR and protein
resurrection have been performed, ancestral sequences were
inferred using a gene tree reconstructed using only the mul-
tiple sequence alignment of existing sequences (Harms and
Thornton 2010); we refer to such gene trees as Species-tree-
unaware trees, thereafter named S-unaware trees. Individual
sequences alone contain limited signal, and as a result phylo-
genetic reconstruction almost always involves choosing be-
tween statistically equivalent or weakly distinguishable
relationships. Furthermore, while each set of homologous
genes has its own unique story, they are all related by a
shared species history, which could be helpful for gene tree
inference. To exploit this possibility, genome evolutionary
processes such as duplication, horizontal transfer, and loss
must be modeled to reconcile the gene tree with the species
tree (Szöllo00 si, et al. 2012). The advantage of such “species tree
aware” methods is that they allow the detection and the
correction of tree reconstruction errors resulting from the
finite size of alignments or the inadequacy of the substitution
model employed, while at the same time retaining bona fide
phylogenetic discord produced by genome evolutionary pro-
cesses (fig. 1). In many simulation studies, methods that com-
bine the substitution model with models of genome
evolution to reconstruct Species-tree-aware trees, thereafter
named S-aware trees, have been proved to increase the accu-
racy of gene trees (Åkerborg et al. 2009; Rasmussen and Kellis
2012; Boussau et al. 2013; Szöllo00 si, Rosikiewicz, et al. 2013; Wu
et al. 2013).

The purpose of this study is to investigate to what extent
both ASR and protein resurrection can benefit from the use
of such biologically realistic models of tree reconstruction.

Results

Impact of the Phylogenetic Tree on ASR

We first investigated the influence of the phylogenetic tree
reconstruction method on ASR accuracy through simulation
experiments. We evaluated the impact of using S-aware trees
in comparison with S-unaware trees on ASR accuracy. To do
so, we made use of the data set of Szöllo00 si, Rosikiewicz, et al.
(2013), comprising 1,099 gene families from 36 cyanobacterial
genomes. For each of these biological gene families, a recon-
ciled tree was computed in their original study (Szöllo00 si,
Rosikiewicz, et al. 2013). In this work, we randomly chose
100 families out the 1,099 and we simulated sequences
along these reconciled tree topologies, thereafter considered
as “true” gene trees. To measure reconstruction accuracy, we
considered both the raw and Grantham (Grantham 1974)
distances when comparing inferred ancestral sequences to
true sequences recorded during simulations (see Material
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and Methods). As the patterns between the two distance
metrics were highly similar, only raw distances are discussed
in this article.

With the 100 simulated alignments, the corresponding S-
unaware trees were reconstructed either with PhyML
(Guindon et al. 2010) and the site-homogeneous LG model
(Le and Gascuel 2008) or with PhyML-CAT (Le, Gascuel, et al.
2008) and the site-heterogeneous C60 model (originally used
to simulate sequences, see Material and Methods). To com-
pute the S-aware trees, that is, reconciled gene trees that
maximize the joint sequence-reconciliation likelihood, the
amalgamated likelihood estimation (ALE) program (Szöllo00 si,
Rosikiewicz, et al. 2013) was used, with the cyanobacterial
species tree computed by Szöllo00 si et al. (2012). Ancestral se-
quences were then inferred along these reconstructed
S-unaware or reconstructed S-aware trees, as well as along
the “true trees.” For nodes defining similar monophyletic
clades between the S-unaware or S-aware tree and the true
tree, these ancestral sequences were compared with the true
ancestral sequences recorded during the simulation.

Figure 2a shows that, on average, the S-unaware trees re-
constructed either with LG or with C60 contain significantly
more topological errors than the S-aware trees, in comparison
with the true trees. These results confirm the findings of
Szöllo00 si, Rosikiewicz, et al. (2013), showing that S-aware
trees are more accurate than S-unaware trees, even when
they are reconstructed with the complex model used to sim-
ulate the sequences (C60). Furthermore, this has a direct
impact on the ASR accuracy: When ancestral sequences are
reconstructed along the S-aware trees, the accuracy is greatly
and significantly improved (fig. 2b) and is close to the accu-
racy obtained with the true trees.

We then investigated the patterns of incorrectly inferred
sites. We only report results with the LG S-unaware trees and
ALE S-aware trees, as results obtained with trees

reconstructed with the C60 model are highly similar to
those obtained with LG S-unaware trees. We used the
Grantham matrix to measure the biochemical properties of
the differences between inferred and true amino acids. The
average Grantham scores of amino acid differences are 66.0
and 64.8 for the S-unaware and S-aware tree, respectively, and
the overall distributions of Grantham Scores between S-un-
aware and S-aware trees are very close to each other (supple-
mentary fig. S1, Supplementary Material online). Nonetheless,
this difference is statistically significant (Wilcoxon test, P
value< 0.001), indicating that S-unaware trees tend to lead
to inference errors with more important biochemical conse-
quences than S-aware trees. The average score (65) corre-
sponds to pairs of amino acids that have either a similar
polarity and different molecular volumes (e.g., M–W) or the
opposite case (e.g., S–D). As expected, supplementary figure
S1 and table S1, Supplementary Material online, show that a
large proportions of amino acid differences concern amino
acids with very similar properties (e.g., L–I or F–Y). However,
they also show that many reconstruction errors involve pairs
of amino acids that are biochemically dissimilar, for example,
L–H or A–Q. We observed that biochemical differences in-
crease with the height of the internal node. For instance, the
average Grantham score par quartile of node height is 64.5,
65.0, 66.2, and 68.1 for the S-unaware trees. All these charac-
teristics of the distributions of Grantham scores highlight the
impact that inference errors may have on the biochemical
properties of resurrected proteins and the importance of
favoring methods that increase the accuracy of the
reconstruction.

Reconstruction errors were also investigated in light of site-
specific evolutionary rates. With both S-unaware and S-aware
trees, reconstruction errors occur more frequently in fast-
evolving sites (Correlation test, r2 ¼ 0:2, P value< 0.001).
However, figure 3 clearly shows that the excess of errors

FIG. 1. Schematic illustration of the impact of gene tree/species tree reconciliation on the topology of the gene tree. The gene family under consid-
eration evolves along the species tree shown in (a). In this example, two copies of a gene are present in each of the species, genes in species A are
denoted a1 and a2, genes in B by b1 and b2 etc. The gene tree reconstructed using the traditional S-unaware method that optimizes a sequence
evolution-based score is shown in (b). It contains poorly supported phylogenetic relationships, including branches in red that conflict with the species
tree. On the left part of the tree in (b), the conflict is strongly supported by the sequence information and conserved in the reconciled tree shown in (c),
suggesting that a horizontal gene transfer likely occurred between species B and C. In the middle part of the tree in (b), the support for a possible
transfer is low (30/100), indicating that a gene tree with a higher joint likelihood probably exists. In the reconciled S-aware tree (c) that optimizes a joint
sequence evolution and gene family evolution score (here the joint likelihood that considers both the sequence substitutions and the duplication,
transfer, and loss of genes), some of the conflicts are resolved (blue branches), because, while the sequence evolution component of joint likelihood is
slightly lower, the gene family evolution component is significantly improved. Reconciling the gene tree (c) with the species tree (a) requires a horizontal
transfer and a gene duplication predating the divergence of species A, B, and C. In contrast, the reconciliation of the gene tree (b) requires, beside the
statistically supported gene transfer, at least two losses, another transfer, and a duplication.
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obtained with S-unaware trees is not distributed uniformly
with evolutionary rates. Reconstruction errors tend to occur
more frequently at slow-evolving sites (average posterior rate
of 1.3) with the S-unaware trees in comparison with the S-
aware trees (average posterior rate of 1.46, P value< 0.001).
This demonstrates how topological errors can have a pro-
found impact on ASR, as even conserved sites can be subject
to wrong ancestral amino acid inferences.

We finally examined the PP for residues inferred differently
with the S-unaware trees and with the S-aware trees. The
average PP reaches 0.82 and 0.81 for the S-unaware trees
and S-aware trees, respectively. This shows that the difference
in inferences can involve residues that are unambiguously
reconstructed with the S-unaware trees, and that the use of
S-aware trees can radically change ancestral predictions.

Resurrection and Experimental validation

We previously used the biochemical and biophysical proper-
ties of reconstructed ancestral LeuB enzymes to investigate
thermal adaptation in Bacillus (Hobbs et al. 2012).
Furthermore, we used the biochemical and biophysical prop-
erties of the resurrected enzymes as a measure of their accu-
racy (e.g., a high Michaelis–Menten constant suggests a
biologically unrealistic, and therefore inaccurate, ancestral
enzyme). Here, we have used the same approach to compare
two versions of the same ancestral LeuB enzyme from the last
common ancestor of the Firmicutes, the bacterial phylum to
which Bacillus belongs. These enzymes were inferred and res-
urrected to investigate the influence of the phylogenetic tree
on potential biological conclusions regarding protein pheno-
types. The two enzymes were reconstructed either with the
LeuB S-aware tree or with the LeuB S-unaware tree and are
named LeuBS–aw and LeuBS–unaw, respectively. The ALE pro-
gram, which was used to reconcile sequence and species in-
formation, detected 0 duplications, 14 lateral gene transfers,
and 15 losses. The S-aware tree has a Robinson–Foulds dis-
tance with the S-unaware tree equal to 32, which is very high.
The LeuBS–aw and LeuBS–unaw sequences differ by approxi-
mately 10% (36 amino acids). Note that LeuB is the only
enzyme on which we performed resurrections.

The Michaelis–Menten constant (KM) for the substrate
isopropylmalate (IPM) with LeuBS–aw is similar to those mea-
sured for other thermophilic LeuB enzymes, such as the con-
temporary BCVX enzyme and the previously reconstructed

(a) (b)

FIG. 2. Impact of the phylogenetic tree on ASR. (a) Phylogenetic reconstruction accuracy. Robinson–Foulds distances were computed between S-
unaware trees (LG or C60) or S-aware trees and the “true” tree. The exODT model is the reconciliation model described in Szöllo00 si, Tannier, et al. (2013)
(b) ASR accuracy depending on the phylogenetic tree. Distances between inferred and true ancestral sequences were computed for nodes defining
similar monophyletic clades between the S-unaware or S-aware tree and the true tree. ***P value< 0.001; NS, nonsignificant.
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thermophilic ancestors ANC1, ANC3, and ANC4 (table 1). In
contrast, the KM(IPM) for LeuBS–unaw is about 4-fold higher,
indicating its poorer affinity for this substrate (table 1).
Replicate KM determinations could not be performed for
LeuBS–aw and LeuBS–unaw due to the expense of the substrate
and the relatively high KM (IPM) of LeuBS–unaw, therefore we
are unable to say whether the difference in KM(IPM) is statis-
tically significant; however, a comparison of the Michaelis–
Menten plots for these two enzymes (supplementary fig. S2,
Supplementary Material online) illustrates that the difference
in substrate affinity is considerable. Furthermore, the KM(IPM)
of LeuBS–unaw is substantially higher than the highest KM(IPM)
value in the BRENDA enzyme database (www.brenda-
enzyme.org). In terms of turnover rate (kcat), LeuBS–unaw ex-
hibits a greater than 2-fold higher kcat than LeuBS–aw.
Although LeuBS–unaw exhibits a high turnover rate, its high
KM for IPM suggests that the substrate would have to be
present at a very high concentration inside the cell for binding
to actually occur.

The thermoactivity profiles of the two resurrected en-
zymes reveal that they are highly thermophilic with Topt

values greater than 75 �C (table 1 and fig. 4a). We also deter-
mined the �GzN�U values for these enzymes, as we have pre-
viously found this parameter to be a useful measure of a
biologically realistic enzyme (Hobbs et al. 2012). �GzN�U in-
dicates the conformational stability of a protein between its
native (folded) and unfolded states and can be calculated
from the measured unfolding rates of a protein in different
concentrations of the denaturant urea. Both LeuBS–aw and
LeuBS–unaw are highly thermophilic, therefore they should
exhibit some resistance to unfolding and have relatively
high �GzN�U values (supplementary fig. S3, Supplementary
Material online). In accordance with its high Topt value,
LeuBS–aw is very kinetically stable with a �GzN�U value of
110.9 kJ mol�1. In contrast, LeuBS–unaw is thermophilic but
unfolds rapidly in comparison with LeuBS–aw (fig. 4b) and is

consequently kinetically unstable; its �GzN�U value of 91.4 kJ
mol�1 is lower than that of contemporary and ancestral psy-
chrophilic and mesophilic LeuB enzymes (table 1) and greater
than 13 kJ mol�1 lower than would be predicted from its Topt

(supplementary fig. S3, Supplementary Material online). As �
GzN�U is related to the unfolding rate of a protein via an
exponential function, a difference of 1 or 10 kJ mol�1 in �
GzN�U equates to a 1.5-fold or 48-fold difference in the rate of
unfolding, respectively. The low kinetic stability of LeuBS–unaw

suggests that, while it is adapted to function at high tem-
peratures, it would unfold rapidly in a thermophilic environ-
ment. The structural/molecular reason(s) for the differences
in �GzN�U and KM(IPM) between LeuBS–unaw and LeuBS–aw

remains to be elucidated (supplementary material and fig. S4,
Supplementary Material online). Nonetheless, the kinetic in-
stability of LeuBS–unaw which is not concordant with its ther-
mophilic adaptation, combined with its impaired KM for IPM,
suggests that this enzyme is not biologically realistic and
implies that its inferred sequence contains errors.

Discussion
Our in silico investigations support that the use of an S-aware
gene tree can have a profound impact on the inference of
ancestral sequences. This phylogenetic prediction is congru-
ent with the conclusions obtained with our resurrection ex-
periment, which suggest the need for reconciled gene trees
(maximizing the joint sequence-reconciliation likelihood) to
provide accurate substitution trajectories and ancestral pro-
tein phenotypes. When the gene family under study has ex-
perienced a complex evolutionary history involving gene
duplications, lateral transfers, and losses (such as LeuB), it
becomes necessary to account for these genomic events to
reconstruct the tree along which ASR is performed.
Numerous methods that implement models of duplication,
transfer, and loss of genes are now available to reconcile an S-
unaware tree with a species tree (Åkerborg et al. 2009; David
and Alm 2011; Doyon et al. 2011; Rasmussen and Kellis 2012;
Szöllo00 si, Rosikiewicz, et al. 2013; Wu et al. 2013). Here, we
demonstrate that the resulting gene tree is considerably
more accurate than the original S-unaware tree and allows
us to infer more accurately the history of protein evolution.

Although the present results highlight how more complex
evolutionary models improve ASR, potential limitations
remain regarding hypotheses made by some methods that
we used:

1) Ancestral sequences were reconstructed in ML, with the
marginal ASR approach (Yang et al. 1995). With this ap-
proach, at a given position and at a given internal node,
the state (amino acid in our case) having the highest PP is
chosen as the ancestral state. A well-known bias exists
with this approach. ML tends to assign to ancestral res-
idues the state having the highest frequency at a given
site (Yang 2006). With a simple contact potential used to
calculate the free energy of protein ancestors of the
purple acid phosphatase, Williams et al. (2006) high-
lighted with simulations that because of this bias, ML
may infer ancestral sequences that are biased toward

Table 1. Kinetic Constants, Thermoactivity, and Biophysical
Parameters for the Ancestral LeuB Enzyme from the Firmicutes
Ancestor.

Enzyme KðIPMÞ
M

(mM)
KðNADÞ

M

(mM)
kcat

ðs�1Þ

Topt

(�C)
"GzN�U ðkJ mol�1Þ

BPSYC 0.2 0.6 6.5 47 94.9� 0.2

BSUB 0.7 8.1 48.7 53 95.9� 0.5

BCVX 1.1 0.8 53.8 69 100.7� 0.2

ANC1 1.3 0.5 141.8 73 100.9� 0.5

ANC2 1.0 0.9 41.7 49 91.1� 0.4

ANC3 2.7 1.0 102.3 60 95.6� 0.1

ANC4 1.7 1.0 362.2 70 110.8� 0.4

LeuBS–aw 1.6 6.5 181.2 85 110.9� 1.6

LeuBS–unaw 6.8 5.5 441.2 78 91.4� 0.6

NOTE.—Values obtained in this study for the ancestor of the Firmicutes (italic char-
acters) were inferred using either the LeuB S-unaware tree or the LeuB S-aware
reconciled tree, with the site-heterogeneous EX_EHO model. Data for contemporary
(first three lines) and other ancestral LeuBs for Bacillus (ANC1-4) characterized in
Hobbs et al. (2012) are shown for comparison. Errors for �GzN�U are the standard
error in the calculation of �GzN�U from �5 measurements of the unfolding rate in
different urea concentrations.
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thermostability. Considering a Bayesian sampling ap-
proach, consisting of randomly drawing ancestral
amino acids in the posterior distribution (instead of se-
lecting the amino acid with the maximum probability),
may be an ideal approach to bypass this bias. Even
though this result would need to be confirmed with
further experiments (i.e., with a model allowing the 3D
structure to change overtime or with the use of a more
sophisticated energy potential capturing more appropri-
ately the complexity of protein folding), and while this
bias regarding thermostability has not been observed in
our previous resurrection study (Hobbs et al. 2012), we
cannot exclude that our results are not affected by a
similar bias. However, we do not anticipate any reason
for which this bias would lead us to question our pre-
dictions, as we expect that the increase in ASR accuracy
due to the use of S-aware trees would also apply with
another ASR method, such as Bayesian Inference.

2) To reconcile species and gene information, we used the
ALE program (Szöllo00 si, Rosikiewicz, et al. 2013). For the
moment, different uncertainties are not accounted for in
the reconstruction of ancestral sequences along S-aware
trees. For instance, to what extent species tree recon-
struction or incomplete lineage sorting impact ASR in
our new methodology is currently unknown. Plus, ALE
makes use of a time-calibrated species tree to compute
the probabilities of horizontal gene transfers during the
reconstruction of S-aware trees. The uncertainty in the
estimation of species divergence times should also be
accounted for in the reconstruction of ancestral se-
quences along S-aware trees. Finally, despite the substan-
tial increase in accuracy in gene tree reconstruction
offered by ALE, we previously observed cases where S-
unaware trees were more accurate than S-aware trees, in
part due to overfitting of the species tree (Szöllo00 si,
Rosikiewicz, et al. 2013). Although this occurred in a mi-
nority of cases (S-unaware trees were more accurate in
22.9% of cases), it could potentially impact ASR.

Additional experiments are required to investigate
these specific issues.

To date, protein resurrection studies have used species
tree unaware methods of phylogenetic reconstruction meth-
ods—often producing unreliable gene trees. Although these
shortcomings did not necessarily prevent the resurrection of
functional ancestors, this study suggests the potential depen-
dence of biological conclusions regarding the phenotype of
protein ancestors on the accuracy of the reconstructed phy-
logeny. Further in vitro and/or in vivo investigations are
needed to statistically confirm our preliminary results on ad-
ditional proteins. However, our study advocates the use of
information on species history, in combination with state-of-
the-art sequence evolution models (Groussin et al. 2013) to
accurately predict ancestral protein function and structure.

Materials and Methods

Data Used for In Silico Experiments and Substitution
Models

To perform in silico experiments to investigate the influence
of the phylogenetic tree on ASR, we used the data set from
Szöllo00 si et al. (2012). This data set comprises 1,099 gene fam-
ilies from 36 cyanobacterial genomes available in the
HOGENOM database (Penel et al. 2009). The phylogenomic
species tree of these 36 species that Szöllo00 si et al. (2012) re-
constructed was also used in the present study. With this
species topology and a newly described model of gene tree/
species tree reconciliation, Szöllo00 si, Tannier, et al. (2013) com-
puted the reconciled S-aware trees for the 1,099 families. Here,
we randomly chose 100 families out the 1,099 and we simu-
lated sequences along their corresponding S-aware tree to-
pologies, that we considered as true gene trees. On average,
2.17 duplications, 3.37 transfers, and 6.39 losses occurred
along these true trees. We added an outgroup species to
both the species tree and true topologies. The branch
length leading to the outgroup species was set to one-half
of the S-aware tree height.
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All models employed in this study are empirical Markovian
substitution models and were all used in combination with a
discrete G distribution to model the site-specific rate varia-
tion, with four categories.

Simulations

Available substitution models may contain several parame-
ters aiming at capturing molecular footprints left by biological
processes during evolution. Even so, they are too simplistic in
comparison with the complexity of processes acting on bio-
logical data. To mimic this gap between simplicity of substi-
tution models and complexity of biological data, we used a
relatively complex model to simulate sequences along the 100
true S-aware gene trees, and reconstructed phylogenetic trees
and ancestral sequences with simpler models, described by a
fewer number of parameters and constructed along different
mathematical settings. The site-heterogeneous C60 model
(Le, Gascuel, et al. 2008), which is the most complex empirical
substitution model currently available in the literature, was
used to simulate data. This model is a mixture of profiles, with
a single Poisson exchangeability matrix that is assigned to all
components (profiles) of the mixture (see supplementary
material, Supplementary Material online). Consequently,
this model contains 60� 19 + 59 = 1,199 empirical parame-
ters to describe the substitution process. Alignments were
simulated using the original alignment sizes of the 100 cya-
nobacterial families. Simulations were performed with our
own C++ program depending on Bio++ libraries (Gu�eguen
et al. 2013). For a given alignment, because sites are supposed
to evolve independently, all 60 components of the mixture
were used to simulate subalignments with a number of sites
proportional to their empirical weight, with all subalignments
being subsequently concatenated to produce the final
alignment.

Ancestral Sequence Reconstruction

With the simulated data, ASR was performed with the UL3
mixture model Le, Lartillot, et al. (2008), which is a mixture
model containing fewer empirical parameters. Indeed, contra-
rily to C60, which is a mixture of profiles, UL3 is a mixture of
matrices (see supplementary material, Supplementary
Material online). Each component of the UL3 mixture pos-
sesses its own exchangeability matrix and its own set of equi-
librium frequencies. This model possesses
3� (19�20

2 � 1) + 3� 19 + 2 = 626 empirical parameters,
which is far less than the number of empirical parameters
describing the C60 model.

For both simulated and LeuB data, ML estimates of branch
lengths and parameters of the substitution model were in-
ferred with bppML, which belongs to the bppSuite of pro-
grams (Dutheil and Boussau 2008) and depends on Bio++
libraries (Gu�eguen et al. 2013). The weight of each compo-
nent of the mixture model was optimized by ML. With all
these ML estimates, ancestral sequences were then inferred
with bppAncestor (Dutheil and Boussau 2008) using the mar-
ginal ASR approach (Yang et al. 1995). A posteriori weight
values of the mixture are used to perform ASR. For a given site

at a given internal node of the tree, the state having the
maximum PP was inferred as the putative ancestral state.

ASR Accuracy Measurement

Inferred ancestral sequences were compared to true internal
sequences by computing two distances: 1) the raw distance,
which is simply the number of amino acid differences divided
by the length of the sequence and 2) the Grantham distance
(Grantham 1974), defined as the amino acid pair distance
computed with the Grantham distance matrix, which takes
into account biochemical similarities between amino acids in
terms of polarity and volume.

Gene Tree/Species Tree Reconciliations

Szöllo00 si, Tannier, et al. (2013) recently described a probabilistic
reconciliation model that accounts for the duplication, trans-
fer, and loss of genes along a species tree. Given a fixed species
tree, the model allows exploring possible paths along which a
gene tree may have been generated by a series of speciations,
duplications, transfers, and losses. To efficiently explore the
space of all reconciled trees according to the joint sequence-
reconciliation likelihood that combines sequence information
and information on the species phylogeny, Szöllo00 si,
Rosikiewicz, et al. (2013) proposed the ALE algorithm. ALE
makes use of a sample of S-unaware gene trees (for instance, a
sample of posterior trees produced by a Bayesian program
such as PhyloBayes (Lartillot et al. 2009)) to compute condi-
tional clade probabilities (Höhna and Drummond 2012),
which are used to approximate the PP of all gene trees that
can be amalgamated from clades present in the sample.

ALE was used to perform all S-unaware gene tree/species
tree reconciliations for both simulated and biological (see
below) data sets. For each simulated alignment, PhyloBayes
(version 3.3f) was run to obtain an MCMC sample of trees
using a simple F81 (Poisson) substitution model. Two chains
were run in parallel to check for convergence, with a burn-in
of 1,000 samples followed by at least 10,000 samples. These
MCMC samples were then used by ALE to explore the space
of reconciled trees in combination with the ML estimation of
duplication, transfer, and loss rates, to eventually propose the
S-aware tree—the reconciled gene tree that maximizes the
joint sequence-reconciliation likelihood. ALE calculations
were performed with the calibrated species tree initially
used to compute the true gene trees (see above).

Experimental Resurrection of LeuB Enzymes
Firmicutes Species Tree and LeuB S-Unaware Tree
Reconstructions
Firmicutes genomic sequences were downloaded from the
NCBI, as of April 2012. Orthologous gene families correspond-
ing to all 53 bacterial ribosomal proteins were constructed
with BLAST. Each individual gene was aligned with Mafft
(Katoh and Standley 2013) and ambiguous sites were
trimmed by BMGE (Criscuolo and Gribaldo 2010), using the
BLOSUM30 matrix. Only 46 out of the 53 ribosomal gene
alignments were then concatenated. The remaining seven
genes (L25, L30, L32, L33, S4, S14, S21) were discarded
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owing to either the presence of paralogs or a patchy distri-
bution over Firmicutes species. To root both the species tree
and the LeuB tree, we incorporated two outgroup LeuB se-
quences from two Actinobacteria species, Corynebacterium
glutamicum, and Streptomyces coelicolor. The final alignment
contains 68 Firmicutes species, and the species tree (supple-
mentary fig. S5, Supplementary Material online) was com-
puted with PhyloBayes (Lartillot et al. 2009) using the CAT
model (Lartillot and Philippe 2004). Two independent chains
were run in parallel to check for convergence. The model of
Szöllo00 si, Tannier, et al. (2013) used by ALE (Szöllo00 si,
Rosikiewicz, et al. 2013) to search for the S-aware gene tree
needs divergence times between speciation nodes to com-
pute the probabilities of gene transfers between branches.
Therefore, the species tree was calibrated with relative
times using PhyloBayes and an arbitrary calibration of 1,000
time unit at the root. The Log-normal autocorrelated relaxed
clock model (Thorne et al. 1998) was chosen to allow substi-
tution rates to vary in time.

The gene family corresponding to the 71 LeuB sequences
found in the 68 species was reconstructed and a preliminary
alignment was inferred using Muscle (Edgar 2004) and used to
build a preliminary S-unaware phylogenetic tree using PhyML
(Guindon et al. 2010) with the LG model and a G distribution
for rate variation. This preliminary S-unaware tree was used as
a guide tree in Prank (Löytynoja and Goldman 2008) to
realign LeuB sequences. The final LeuB S-unaware tree
along which ancestral sequences were reconstructed was
computed with PhyloBayes, using the LG+G(4) model, and
rooted on the branch between the Firmicutes and outgroup
LeuBs (supplementary fig. S6, Supplementary Material
online). Three chains were run in parallel to ensure that con-
vergence of the MCMC was reached.

LeuB S-Aware Gene Tree Reconstruction
We used the model described in Szöllo00 si, Tannier, et al. (2013)
and implemented in the ALE program (Szöllo00 si, Rosikiewicz,
et al. 2013) to search for the ML S-aware reconciled tree, that
is, the reconciled gene tree that maximizes the joint se-
quence-reconciliation likelihood (supplementary fig. S7,
Supplementary Material online). ALE used the sample of S-
unaware trees produced by PhyloBayes (see above) and the
calibrated species tree to compute the S-aware tree along
which ASR was performed. The S-aware tree was used as a
guide tree in Prank to compute the final alignment.

Model Selection, Fit to the LeuB Data, and ASR
ASR of LeuB was performed with the site-heterogeneous
EX_EHO mixture substitution model (Le and Gascuel 2010).
EX_EHO was deemed to be the best site-heterogeneous
model at fitting the LeuB data according to the AIC criterion,
in comparison with all other site-heterogeneous mixture
models currently available in the literature (Le, Gascuel,
et al. 2008; Le, Lartillot, et al. 2008; Le and Gascuel 2010)
and implemented in the Bio++ libraries (Gu�eguen et al.
2013). See supplementary materials, Supplementary
Material online, for information on the different site-homo-
geneous and site-heterogeneous mixture models. As with
simulations, ancestral sequences were inferred with

bppAncestor (Dutheil and Boussau 2008). When Prank was
used to compute the final LeuB alignment, we used the “-anc”
option to jointly infer ancestral gaps, which were subse-
quently incorporated into ancestral sequences inferred by
bppAncestor. This two-step approach mimics the one pro-
posed in a previous publication (Finnigan et al. 2012), which
makes use of the Fitch algorithm to a priori infer ancestral gap
positions and then incorporates these gaps into ancestral
sequences.

Protein Expression and Purification
Gene sequences for the two inferred versions of the ancestral
Firmicutes LeuB were codon optimized for expression in
Escherichia coli and chemically synthesised by Geneart (Life
Technologies) with a 50-NcoI site and a 30-PstI site. Following
ligation of the genes into the protein expression vector
pPROEX HTb, recombinant proteins were expressed in
E. coli DH5� with 1 mM IPTG induction at 37 �C for 24 h.
Proteins were purified to�95% purity by nickel affinity chro-
matography, and subsequent size-exclusion chromatography
using the buffers detailed in Hobbs et al. (2012). Protein con-
centrations were determined using a NanoDrop 2000
(Thermo Scientific) and extinction coefficients calculated
using ProtParam on the ExPASy server (web.expasy.org/prot-
param/).

LeuB Enzyme Characterization
LeuB activity was measured by following the reduction of
NAD at 340 nm as described in Hobbs et al. (2012). The
Vmax and Michaelis–Menten constants for both substrates
(IPM and NAD) were found using the Michaelis–Menten
nonlinear fitting function in Graphpad Prism 6.
Thermoactivity profiles were determined by measuring the
initial rate of activity at 1–5 �C intervals over a 20–30 �C
temperature range in triplicate. Thermoactivity profile reac-
tions contained 15 mM IPM, 50 mM NAD, and 10-50mM
LeuB enzyme. The free energy of unfolding, �GzN�U, for
each enzyme was determined from urea unfolding rates as
described in Hobbs et al. (2012).

Supplementary Material
Supplementary material, table S1 and figures S1–S7 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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