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Abstract

Motivation: Understanding how proteins recognize their RNA targets is essential to elucidate regulatory processes
in the cell. Many RNA-binding proteins (RBPs) form complexes or have multiple domains that allow them to bind to
RNA in a multivalent, cooperative manner. They can thereby achieve higher specificity and affinity than proteins
with a single RNA-binding domain. However, current approaches to de novo discovery of RNA binding motifs do
not take multivalent binding into account.

Results: We present Bipartite Motif Finder (BMF), which is based on a thermodynamic model of RBPs with two co-
operatively binding RNA-binding domains. We show that bivalent binding is a common strategy among RBPs, yield-
ing higher affinity and sequence specificity. We furthermore illustrate that the spatial geometry between the binding
sites can be learned from bound RNA sequences. These discovered bipartite motifs are consistent with previously
known motifs and binding behaviors. Our results demonstrate the importance of multivalent binding for RNA-bind-
ing proteins and highlight the value of bipartite motif models in representing the multivalency of protein-RNA
interactions.

Availability and implementation: BMF source code is available at https://github.com/soedinglab/bipartite_motif_find
er under a GPL license. The BMF web server is accessible at https://bmf.soedinglab.org.

Contact: soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA in the cell is rarely naked but rather covered with numerous
RNA-binding proteins (RBPs) (Singh et al., 2015). These RBPs play
crucial roles in regulating the various steps of RNA biochemistry,
from RNA maturation and transport to cellular localization, transla-
tion and degradation (Gerstberger et al., 2014). RNAs can in turn
regulate RBP function by altering their stability, interaction partners
and localization (Hentze et al., 2018). These processes require spe-
cific binding of RBPs to their target RNAs. RBPs mostly achieve this
specificity through RNA-binding domains (RBDs) that engage with
specific RNA sequences or structures (Li et al., 2014). Unraveling
the target preferences of RBPs is therefore key to understanding cel-
lular regulation.

Many experimental techniques have emerged to generate system-
atic maps of protein-RNA interactions. To find in vivo binding sites,
many variants of RNA immunoprecipitation (RIP-seq) (Gilbert and
Svejstrup, 2006) and cross-linking immunoprecipitation (CLIP-seq),
such as PAR-CLIP (Hafner et al., 2010), iCLIP (König et al., 2010)
and eCLIP (Van Nostrand et al., 2016), have been proposed. In both
approaches, RNAs bound to the immunoprecipitated protein of
interest are sequenced and mapped to the genome. Deriving accurate
models of binding affinities from in vivo data is problematic because
RBP-RNA interactions are influenced by cooperativity and competi-
tion with other RBPs, by RNA localization, expression and folding
(Änkö and Neugebauer, 2012). Therefore, techniques have been
developed to measure binding affinities in vitro, in isolation from

other RBPs, using random libraries of RNA substrates: RNA Bind-
n-Seq (RBNS) (Lambert et al., 2014), RNAcompete (Cook et al.,
2017; Ray et al., 2013) and high-throughput RNA-SELEX (HTR-
SELEX) (Jolma et al., 2020).

A wide range of motif discovery tools have been developed to
learn models of sequence- and secondary structure-dependent bind-
ing affinties of RBPs based on datasets of sequences bound in vitro
or in vivo by an RBP of interest (Kazan et al., 2010; Maticzka et al.,
2014; Munteanu et al., 2018; Stra�zar et al., 2016). More recently, a
new wave of algorithms have been introduced that use deep neural
networks to predict RBP binding sites (Alipanahi et al., 2015;
Ghanbari and Ohler, 2020; Grønning et al., 2020; Pan and Shen,
2018; Yan and Zhu, 2020). One challenge is to explain what these
complex models have learned, although recently a multitude of
methods for interpreting the learned models have been developed,
for instance, based on in silico mutagenesis, predictions on synthetic
sequences, gradient tracing and analyzing the convolutional filters
(Alipanahi et al., 2015; Ghanbari and Ohler, 2020; Koo et al., 2020;
Pan and Shen, 2018). However, with the increasing number of
model parameters and network complexity, the risk grows that such
models could also learn experimental biases in the datasets. This is
particularly problematic for RBPs, since many of them show short
and degenerate sequence preferences. Moreover, RBPs often bind
low-complexity untranslated regions in the RNA (Dominguez et al.,
2018), unlike transcription factors, which usually bind to more com-
plex sequence motifs and have higher binding specificities.
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Around half of eukaryotic RBPs have multiple domains and a
majority of the remaining are estimated to have oligomerization ten-
dencies (Stitzinger et al., 2021). In line with this, RBPs have been
shown by spaced k-mer counting approaches to often bind with
multiple RBDs two separated cores with usually similar or identical
motifs (Dominguez et al., 2018; Jolma et al., 2020). Transcription
factor motif discovery tools have been developed to learn co-occur-
rence of motif pairs in genomic sequences (Toivonen et al., 2018,
2020), and more recently, it was shown that distance dependent
RNA motif pairs can be inferred from neural networks (Koo et al.,
2020; Quinn et al., 2020). However, transcription factor binding
fundamentally differs from RBP binding as DNA can mediate coop-
erativity by propagating structural deformations induced by binding
of proteins along the helix.

In this work, we present Bipartite Motif Finder (BMF), a tool for
learning bipartite RNA motifs in RNA–protein interaction datasets.
BMF sums up the contribution of all alternative binding conforma-
tions, and not just the best binding configuration. This is critical to
accurately model the binding affinity of RBPs, which often have low
information content to their many potential binding sites, because
combinatorially many binding configurations can have similar total
binding energies and thus contribute to the binding probability
(Forties and Bundschuh, 2010). It is particularly critical for model-
ing bipartite binding, and to the best of our knowledge, BMF is the
first thermodynamic approach to de novo motif discovery for bipart-
ite RNA binding. We demonstrate that BMF is able to detect short
and degenerate motifs and to learn the spatial relationship between
them. We furthermore show that around half of RBPs manifest
multivalent binding with a preferential linker distance between the
two binding sites.

Benchmarking the performance of learned binding site models
by cross-validation can be problematic when testing methods that
train highly parameterized models such as deep neural networks, as
these methods can learn biologically irrelevant sequence biases in-
herent to the experimental method. To compare BMF to existing
tools and assess their capacity for learning relevant motif sequences
that predict binding events in the cell, we built a cross-platform val-
idation benchmark, training models on HTR-SELEX data and test-
ing on in vivo CLIP data. Despite the many complicating effects
in vivo, we find that the motif and distance preferences learned by
BMF can predict RBP binding in the cellular context and that high-
quality motifs learned in vitro are often very similar to the motifs
learned on in vivo data. Moreover, BMF can predict binding sites on
par with or even better than existing tools.

2 Materials and methods

Most RBPs can bind RNA using several structured RBDs and often
also using disordered regions, some of which contain typical RGG/
RG and RS motifs, which can modulate RNA-binding activity
(Calabretta and Richard, 2015; Lunde et al., 2007; Ozdilek et al.,
2017). Furthermore, many RNA-binding proteins dimerize or
homo- and hetero-oligormerize. This effectively leads to two and
more RBDs binding cooperatively to RNA molecules. Here, we pre-
sent Bipartite Motif Finder (BMF), a motif search tool and algorithm
to describe the sequence specificity of monovalently and multiva-
lently binding proteins or protein complexes.

2.1 Thermodynamic model for bivalent RNA binding
We consider the simple case in which the RBP consists of two RBDs,
A and B (Fig. 1A). We describe the binding of proteins at concentra-
tion cAB to a single, specific RNA sequence x ¼ ðx0 . . . xL�1Þ ¼
x0:L�1 composed of nucleotides xi. We consider not only the most
likely binding configuration but rather all possible binding configu-
rations, involving zero, one or more proteins bound to the RNA
(Fig. 1B). According to Boltzmann’s law, each binding configuration
c has a probability pðcÞ proportional to its so-called statistical
weight eð�EðcÞ�TDSðcÞÞ=kBT , where FðcÞ ¼ �EðcÞ � TDSðcÞ is the free
energy composed of the binding enthalpy �EðcÞ and a part related
to the change in entropy DSðcÞ between the completely unbound and

bound states. To obtain probabilities, the statistical weights need to
be normalized at the end by dividing by their total sum, the partition
sum ZðxÞ.

The change in entropy due to the binding of a single protein that
is present at concentration cAB is equal to its chemical potential,
which is DS ¼ kB log cAB. In the following, we compute all energies
in units of kBT, so we set kBT ¼ 1. In our model, the concentration
cBðdÞ of the downstream domain B at the RNA depends on the dis-
tance d to the binding site of the upstream domain A (see next
section).

We compute the statistical weights of all binding configurations
iteratively using dynamic programming. We split the configurations
into two sets, A and B, and define ZAðiÞ to be the sum of statistical
weights of all binding configurations on the RNA up to position i,
x0:i, for which domain A is bound at position i� kþ 1 to i, where k
is the length of RNA bound by the domains. Similarly, we define
ZBðiÞ to be the sum of statistical weights of all binding configura-
tions on the RNA sequence x0:i for which no domain is bound or do-
main B is bound with its right edge upstream of or at position i.
With the knowledge of ZAði0Þ and ZBði0Þ for 0 � i0 < i, we can
compute ZAðiÞ and ZBðiÞ (Fig. 1B):

ZAðiÞ ¼ ZBði� lÞ þ
Xi�l

j¼0

ZAðjÞ

0
@

1
AcABe�EAðxi�kþ1:iÞ; (1)

ZBðiÞ ¼ ZBði� 1Þ þ
Xi�l

j¼0

ZAðjÞ cBði� k� jÞ e�EBðxi�kþ1:iÞÞ

þZBði� lÞcABe�EBðxi�kþ1:iÞ;

(2)

where EAðxi�kþ1:iÞ and EBðxi�kþ1:iÞ represent the binding energies of
domains A and B to the RNA sequence xi�kþ1:i. The concentration
of the single B domain, defined as expected number of B per volume,
is simply its probability density. The dynamic programming is ini-
tialized using

ZAðiÞ ¼ 0foralli 2 f0; . . . ; k� 2g; (3)

ZBðiÞ ¼ 1foralli 2 f0; . . . ; k� 2g: (4)

The first equation follows from requiring all k positions in the
binding motif to be part of sequence x0:L�1. The second equation
follows from the fact that ZBðiÞ for i < k� 1 sums up only the stat-
istical weight of the unbound configuration.

The partition sum ZðxÞ for RNA sequence x is the sum of statis-
tical weights of all configurations,

ZðxÞ ¼ ZBðL� 1Þ þ
XL�1

i¼0

ZAðiÞ : (5)

The probability for an RNA to not be bound by any protein (nei-
ther A nor B domains) is just the statistical weight of the unbound
configuration, set to 1, times the normalization factor 1=ZðxÞ, so
the probability for a RNA x to be bound by a protein is
pðboundjxÞ ¼ 1� 1=ZðxÞ.

By taking the partial derivatives of equations (1) and (2) with re-
spect to the model parameters (Supplementary Methods), we obtain
update equations for the partial derivatives with which we can in
turn compute the partial derivatives of ZðxÞ; pðboundjxÞ, and the
log likelihood in equation (8). These allow us to find optimum
model parameters by gradient-based maximization of the log-
likelihood.

2.2 Motif model of a single RNA-binding region
Position weight matrices (PWMs) and Bayesian Markov models
(BaMMs) have been used to represent RBP binding preferences
through positional or conditional probabilities of observing each nu-
cleotide at a given position (Hartmann et al., 2013; Siebert and
Söding, 2016). Since RBPs are known to bind shorter and more re-
petitive sequences, we learn binding energies for all 4kk-mers at
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each motif core, EAðk-merÞ and EBðk-merÞ. The length k of the
motif can be set by the user.

2.3 Model for the effective concentration cBðdÞ
Spaced k-mer analyses on high-throughput RNA-binding datasets
pointed to a length preference of the RNA linker connecting two
motif cores (Dominguez et al., 2018; Jolma et al., 2020; Schneider et
al., 2019). The concentration of domain B after domain A binds the
RNA molecule is equal to its probability distribution. While accord-
ing to the flexible chain model of the RNA fragment the concentra-
tion should be a Gaussian distribution centered on domain A
(Rubinstein et al., 2003), for short RNA linkers the concentration
can peak some distance away from domain A. To describe multiva-
lent binding for both short-range and long-range co-occurrence of
motif sequences, we model the effective concentration at the second
binding site with a negative binomial (NB) distribution,

cBðdÞ ¼ cAB þ S � d þ r� 1
d

� �
� prð1� pÞd ; (6)

where d represents the the number of nucleotides between the bind-
ing sites of A and B on the RNA, and r and p are parameters of the
negative binomial distribution. The total concentration of B is the

cellular concentration (cAB) plus cBðdÞ, the local concentration of B
linked to a bound A. We scale the negative binomial with the factor
S as a conversion to protein concentration values. Since only the
ratio between S and cAB determine the binding dynamics, we fix cAB

to one and optimize our bipartite model for S, r and p.

2.4 Parameter initialization
The absolute values of the energy parameters in our model do not re-
flect the physical binding energies, however their relative values deter-
mine the probability of binding to a given sequence. We therefore
draw initial energy parameters randomly (in units of kBT) from a nor-
mal distribution with the average of 12 and standard deviation of one.
The initial value of 12 kBT was chosen based on experimentally deter-
mined binding energies (Yang et al., 2013) and additionally ensures
that the algorithm does not overflow. The scaling factor S is initialized
as 104. The spacer parameter r is drawn from a uniform distribution
from one to five and p is randomly drawn between zero and 0.5.

2.5 Likelihood estimation for HTR-SELEX

measurements
In HTR-SELEX experiments (and similarly for bind-n-Seq), we have
input (background) library sequences x 2 Xbg and sequences

Fig. 1. BMF can learn multivalent binding preferences for RBPs. (A) RBP-RNA interaction model for a protein with two RBDs. BMF optimizes the binding energies of each domain

to all possible RNA k-mers (k¼ 3 here) and learns the distance distribution between the motif cores. BMF models the high RNA local concentration at the second binding site,

when the first domain is bound to the RNA. (B) BMF calculates binding probabilities for all binding configurations of one or several proteins to the RNA sequence. ZAðiÞ is the sum

of statistical weights of all binding configurations on the RNA up to position i, for which domain A is bound at position i. Similarly, ZBðiÞ is the sum of statistical weights of all bind-

ing configurations on the RNA subsequence for which no domain is bound or domain B is bound with its right edge upstream of or at position i. ZA and ZB are calculated iteratively

(right panel). The first term in the second equation accounts for configurations for which position i is not bound by anything, the second term accounts for configurations for which

domain A of the same protein is bound at j (as seen in the example illustration) and the last term accounts for configurations for which domain B binds whose A domain is not

bound upstream of i. (C) BMF recovers the correct RNA motifs implanted in synthetic datasets for all tested cases. Here and in the following figures, the two learned core motifs are

visualized by plotting the energies of the top five k-mers, converted to k-mer probabilities according to Boltzmann’s law and normalized to 1
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enriched after competitive binding, x 2 Xþ. We denote with pbðxÞ
the fraction of sequence x in the input library. To find a sequence in
x 2 Xþ, it must have first been present in the input library (probabil-
ity pbðxÞ) and then have been bound to the RNA (probability
pðboundjxÞ). The probability to find a sequence x 2 Xþ after the se-
lection is therefore, according to Bayes’ theorem,

p
�
xjboundÞ ¼

p boundjxð Þpbg xð ÞP
x �2Xbg p boundj�xð Þpbg �xð Þ

; (7)

and, using p boundjxð Þ ¼ 1� 1=Z xð Þ, the log-likelihood is

LL ¼ ln
Y

x2Xþ
p
�
xjboundÞ ¼

X
x2Xþ

lnpbg

�
x
�
þ ln 1� 1

Z xð Þ

� �� �

�Nþln
X

�x2Xbg

pbg �xð Þ 1� 1

Z xð Þ

� �
:

(8)

2.6 Parameter optimization
We learn the model parameters by maximizing the likelihood func-
tion (eq. 8). For an efficient optimization using stochastic gradient
descent, we computed the partial derivative of the likelihood func-
tion with respect to all of the model parameters (Supplementary
Methods). For parameter optimization, we used ADAM (Kingma
and Ba, 2014) with its default hyperparameters a ¼ 0:01; b1 ¼
0:9; b2 ¼ 0:999 and e ¼ 10�8, and a minibatches size of 512. We
parameterized r ¼ eq and p ¼ 1=ð1þ e�pÞ to ensure that r and p
stay within bounds. Optimization was terminated when 1000 itera-
tions were reached or when the variation vh for the best bound k-
mer of each domain as well as for p and r fall under a threshold of
0.03. The variation for the parameter h up to iteration t was defined
as vh ¼ ðmaxfht�4:tg �minfht�4:tgÞ=ht. We stop BMF after 1000
iterations since continuing for another 500 iterations did not change
the prediction performance of MBF models in a cross-validated
HTR-SELEX dataset (Supplementary Fig. S1).

2.7 Evaluating the performance of BMF on synthetic

data
In order to evaluate BMF’s ability to learn bipartite motifs, we gen-
erated two sets of 2000 RNA sequences, an artificial input set and
an enriched set. For the enriched set, we inserted the first core of the
simulated bipartite motif at random positions. The second core was
inserted with a linker length drawn from a binomial distribution
with a specific p and r. We ran BMF 10 times with random param-
eter initializations to assess its robustness.

2.8 HTR-SELEX datasets
We obtained 177 HTR-SELEX datasets of 86 distinct factors from
(Jolma et al., 2020, Supplementary Table S1). The longer length of
oligomers used in this dataset (40 nucleotides) enables the search for
co-occurrence of motif pairs with longer spacers. We used sequences
of the input library and the last cycle to train BMF. Even though our
model describes one cycle of selection, the retrieved motifs were
more prominent in the later cycles. Moreover, the cross-platform
validation discussed below resulted in slightly better performance
for all the tools when choosing the input and last cycles for motif de-
tection in comparison to second and third cycles. Whenever several
experimental or technical replicates were available, we built a separ-
ate model for each replicate and averaged the corresponding metric
over all replicates of an RBP at the end. We used BMF’s default
hyper-parameters throughout the manuscript.

2.9 Cross-platform validation of in vitro motifs
Each experimental technique for measuring RNA binding has its
own biases. When measuring the quality of predictions of motif
models by cross-validation, methods can learn these biases to distin-
guish bound from background sequences. Highly parameterized
models could learn such subtle, complex biases. These platform-de-
pendent biases can be a result of library preparation, amplification,

or can depend on the type and concentration of RNase that is used
(Kishore et al., 2011; Orenstein and Shamir, 2014). There have been
efforts to reduce the effect of such biases when training motif mod-
els, e.g. by learning binding models for many RBPs at the same time
(Ghanbari and Ohler, 2020). In order to ensure that BMF does not
over-train on the in vitro HTR-SELEX data, we performed cross-
platform validation: We trained BMF on HTR-SELEX datasets and
used the resulting models to predict binding sites in in vivo CLIP
data.

We collected eCLIP datasets of 15 RBPs (Van Nostrand et al.,
2020) and PAR-CLIP datasets of 10 RBPs (Mukherjee et al., 2019)
for which we also have HTR-SELEX data. We used the pre-proc-
essed CLIP peaks as enriched sequences. Since the PAR-CLIP dataset
contained larger numbers of peaks, we restricted our analysis to the
top 2000 reported binding sites per RBP. For each eCLIP and PAR-
CLIP dataset, we created a background set of the same size by draw-
ing random PAR-CLIP or eCLIP peaks of other factors measured
with the same technique. We applied a sliding window with length
of 50 and a stride of 20 to generate same-size fragments that fully
cover each peak. The prediction scores were averaged over these
fragments when the region was longer than 50 bases. We compared
our simple model with deep learning approaches, the popular RBP
binding predictors iDeepE (Pan and Shen, 2018), DeepCLIP
(Grønning et al., 2020) and GraphProt (Maticzka et al., 2014).
iDeepE and DeepCLIP use deep learning to predict RBP binding,
while GraphProt’s model is based on Support Vector Machines
(SVMs). We had to use 40 nucleotide fragments for DeepCLIP as it
required the same length for training and testing.

2.10 BMF software and web server
The BMF command-line tool offers three commands: (i) learning a
BMF model given enriched and background sequences. Output is a
BMF model file. (ii) Bipartite motif visualization, given the BMF file
learned in step 1. (ii) Predicting binding scores for new sequences
with the BMF model trained in the first step. The first two function-
alities (de novo motif discovery) are also available on the BMF web
server.

3 Results

We present BMF, a method for de novo discovery of RNA-binding
motifs that uses a bipartite motif model capable of learning multiva-
lent binding specificities among RBPs. BMF models the protein
binding with up to two domains to its RNA substrate. We assume
that due to the structure of the RBP (or RBP complex), the distance
between the two binding sites is spatially constrained. BMF there-
fore consists of two short sequence motif models and a distance
probability distribution (Fig. 1A). Binding with just one domain is
modeled using a distance distribution peaked at 0 base pairs. In the
following sections we demonstrate that this model can reliably de-
tect bipartite motifs in synthetic and real sequences, and we evaluate
its performance at identifying binding sites compared to other mod-
els of RBP binding in HTR-SELEX, PAR-CLIP and eCLIP datasets.

3.1 BMF accurately discovers implanted synthetic

motifs
To test BMF’s ability to learn bipartite motifs, we generated 2000
artificial sequences containing first an AAA and then a CCC with a
distance distribution of around 3–5 bases between them (Fig. 1B,
top). BMF retrieved the implanted motifs and spacer distribution ac-
curately. The results were similarly accurate when sequence degener-
acy was introduced by flipping the last base (Fig. 1B, middle), or
when implanting the repeat sequence ACACAC (Fig. 1B, bottom).
This demonstrates that BMF can not only reveal multivalent specif-
icities but can also recover longer sequence motifs by placing the
two cores adjacent to one another.

The log-likelihood increases during stochastic gradient descent
and the optimization terminates when the log-likelihood has reached
a plateau (Supplementary Fig. S2A). The distance parameters and
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the binding energies of k-mers in the motif cores all reach a plateau
before termination (Supplementary Fig. S2B, C). To test robustness
to parameter initialization, we ran BMF ten times with random ini-
tial parameter values and verified that the k-mer energies and dis-
tance parameters match across all runs (Supplementary Fig. S2D, E).

3.2 Most RBPs show multivalent binding, often to

multiple occurrences of the same motif
We applied BMF to 177 HTR-SELEX datasets consisting of 86 dis-
tinct RBPs to investigate the importance of multivalent binding in
the formation of RBP target specificity. BMF detected bipartite bind-
ing for many RBPs including ELAVL1, KHDRBS3 and RBPMS (Fig.
2A). Interestingly, BMF restricted the distance of the motif cores
strictly to zero when the RBP binds repeat sequences (e.g. CELF1
binding GU repeats) or when the RBP binds a longer RNA sequence
that requires a longer motif core (e.g. RBFOX3 binding UGCAUG,
and PUM2 binindg UGUANA). The sequence and spacing preferen-
ces were also reproducible across experimental replicates
(Supplementary Fig. S3), and match for proteins that belong in the
same family (Supplementary Fig. S4, Supplementary Table S1). All

177 BMF models with core lengths of 3-5 can be found at BMF’s
GitHub repository. These results show that BMF can identify bipart-
ite motifs in HTR-SELEX data.

We then looked for the frequency of such multivalent, bipartite
motifs and calculated the probability of observing the two core
motifs at distances beyond zero for each motif model (Fig. 2B). At
two extremes, this probability would be zero for RBPs like
RBFOX3, which consist of a larger binding sequence, and one for
RBPs like KHDRBS3, which prefer a larger spacer between the
motif cores. Interestingly, the majority of RBPs lie at the two
extremes, and about half of them show a bipartite binding behavior.
This ratio is higher than estimated in previous studies, which were
based on k-mer counting approaches (Dominguez et al., 2018;
Jolma et al., 2020). The number of bipartite motifs could be further-
more underestimated as some RBPs show bipartite binding only
when BMF’s core size is increased to four or five nucleotides
(Supplementary Fig. S5). Overall, these results highlight the import-
ance of multivalent binding as a common strategy to achieve high
specificity despite having individually small and weak binding sites.

We noted that many motif models (like ELAVL1 and
KHDRBS3) have similar sequence preferences on both cores. We

Fig. 2. Many RBPs are multivalent, bind low-complexity sequences and often bind two similar motif cores. (A) Examples of motifs that represent a wide range of binding

modes, learned by BMF on HTR-SELEX data. When the RBP has a larger motif than allowed by the core size (3 here), the distance between cores is learned to be zero to ac-

commodate a longer binding sequence (e.g. CELF1, RBFOX3 and PUM2). (B) Distribution of the probability of the spacer length between the two motif cores to be above 0.

As seen in the examples in A, most RBPs either clearly bind adjacent cores (distance¼ 0, turquoise) or have a multivalent binding mode with two non-adjacent cores (dark

blue). (C) and (D) Similarities between binding preferences of the two cores for RBPs with adjacent cores (turquoise) or multivalent non-adjacent cores (dark blue), according

to panel B. (E) Cumulative distribution of the entropy of BMF models for all RBPs in the HTR-SELEX dataset. In general the optimized bipartite motif models have much

lower complexity than randomly generated bipartite models (dashed black line). (F) Cumulative distribution of ‘sequence repetitiveness’ of BMF models for all RBPs in the

HTR-SELEX dataset. Overall, BMF models are more often repetitive that those of randomly generated bipartite models (dashed black line)
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quantified their similarity by the Pearson correlation between the
probabilities of observing each of the 4kk-mers. As expected from
the individual examples, the core motifs are mostly similar for RBPs
that exhibit bipartite binding (Fig. 2C) as opposed to adjacent motif
cores (Fig. 2D). This demonstrates that RBPs have often evolved to
bind multiple occurrences of the same or similar short sequence
motifs, either using multiple same-chain RBDs or by homodimeriza-
tion and oligomerization.

3.3 RBPs often bind low-complexity and repetitive

sequences
It has been shown that RBPs bind sequences of lower complexity
than DNA-binding transcription factors (Dominguez et al., 2018;
Singh and Valcárcel, 2005). This can be seen at its extreme for some
of our binding models, which are composed of only one to two types
of nucleotides (Fig. 2A). Looking at all 78 RBP binding models, we
observed that many proteins bind repetitive sequences or have the
same simple k-mer affinities for each of their valencies. In order to
quantify this, we calculated the entropy of the motif sequences as a
measure of sequence complexity (Fig. 2E, Supplementary Methods)
(Dominguez et al., 2018). For highly complex sequence affinities
(e.g. RBFOX3), the entropy gets close to two, while this value is
closer to zero for degenerate and repetitive sequences (e.g.
ELAVL1). A similar trend is visible when quantifying the repetitive-
ness of BMF models, resulting in high scores when both cores consist
of mono- or di-nucleotide repeats (Fig. 2F, Supplementary
Methods). Overall, more than half of RBP motifs show levels of de-
generacy that are highly unlikely in artificially generated random
motif models. This binding preference toward low complexity
sequences fits to the previous observation that bipartite motifs tend
to bind multiple occurrences of the same sequence.

3.4 Including all binding configurations and

cooperativity enhances the accuracy of RBP binding

predictions
To assess the value of cooperativity and multivalency, we compared
BMF to a spaced k-mer motif model which scores the sequences by
finding the best binding site (Supplementary Fig. S6, Supplementary
Methods). Interestingly, for all RBPs but particularly for those that
show bipartite binding, BMF’s performance is superior to that of the
k-mer enrichment model. This highlights the value of two distinct
BMF features: considering all binding configurations, and including
the cooperative effect of multi-domain binding.

3.5 In vitro bipartite models learned by BMF can predict

in vivo binding
Experimental techniques for measuring RNA binding have individ-
ual biases that can be learned by motif discovery tools. This is par-
ticularly problematic when evaluating computational methods with
many model parameters that can capture complex structures in their
input datasets (Ghanbari and Ohler, 2020). Cross-platform valid-
ation, i.e. using binding models trained on an experimental dataset
to predicting binding sites in another experimental platform ensures
a fair assessment of the quality of motif models. We therefore
trained models on HTR-SELEX data to predict binding sites on
sequences derived from PAR-CLIP and eCLIP experiments
(Mukherjee et al., 2019; Van Nostrand et al., 2020). We compared
the performance of BMF to iDeepE (Pan and Shen, 2018),
DeepCLIP (Grønning et al., 2020) and GraphProt (Maticzka et al.,
2014) (Fig. 3A–E). iDeepE and DeepCLIP are deep learning tools
and GraphProt is based on support vector machines. Thanks to their
more complex architecture and higher number of parameters, these
models are able to learn more complex aspects of the training data,
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eCLIP

PAR-CLIP
eCLIP

PAR-CLIP
eCLIP

PAR-CLIP
eCLIP

D FE

Fig. 3. Cross-platform validation shows in vitro BMF motifs can predict in vivo binding sites in transcriptomes. We used BMF, iDeepE, DeepCLIP and GraphProt to identify

eCLIP and PAR-CLIP RBP binding sites after training their motif models on HTR-SELEX datasets. (A) AUROC distribution for iDeepE, DeepCLIP, GraphProt and BMF with

motif sizes ranging from 3 to 5. The tools are sorted based on their median AUROC performance. The values for each RBP dataset is shown with a black dot. (B–E) AUROC

from BMF (core size 3) compared to GraphProt, iDeepE, DeepCLIP and BMF with core size 5. Statistical significance was assessed through Wilcoxon signed-rank tests. (F)

BMF AUROC values from cross-validated HTR-SELEX analysis correlate with cross-platform benchmark performance. Both BMF models are built with core size 3. Linear re-

gression line is shown in black. In all plots AUROC values are averaged over all replicate combinations wherever replicates were available
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while GraphProt additionally takes the RNA structure as an input.
Interestingly, despite these advantages, BMF showed a competitive
prediction quality as measured by the area under the receiver operat-
ing characteristic curve (AUROC), with a better median AUROC
than iDeepE, DeepCLIP and GraphProt. Simlar results are obtained
when replacing AUROC with the area under the precision recall
curve (AURPC, Supplementary Fig. S7).

Interestingly, generally performance of BMF is best for k¼3, al-
though it changes little between core size of k¼3, 4 or 5 (Fig. 3A,
Supplementary Fig. S8). For some RBPs increasing the core size
reduced the predictive power for the resulting models. This could be
due to over-fitting on biases of the HTR-SELEX data and might be a
reason for why the more highly parameterized RNA motif models of
GraphProt, DeepCLIP and iDeepE often do not perform as well as
the simpler ones of BMF. On the other hand, longer BMF models, as
well as other tools in the benchmark, could better learn binding
preferences for factors such as CSTF2T that bind more complex
RNA sequences. To summarize, BMF can capture RBP specificities
with reduced risk of overfitting.

A comparable trend emerges when predicting bound
RNAcompete sequences from Ray et al. (2013) using HTR-SELEX
models. Again, the median performance is best for Graphprot and
BMF, followed by DeepCLIP and iCLIP (Supplementary Fig. S9).
Larger BMF models perform slightly better than smaller ones, per-
haps because these in vitro assays enrich for the best RNA binding
sequences and therefore might yield motifs of higher information
content than those relevant in the cell.

To see whether the core spacing of HTR-SELEX motif models
exist in in vivo data, we trained BMF models on the CLIP data and
compared them to their in vitro counterparts. Interestingly for the
models that were learned well on the HTR-SELEX data (tool-aver-
aged AUROC � 0:75), both the motif core sequences and their dis-
tance distribution match between the two experimental platforms
(Fig. 4). The sequence and/or spacer length preferences do vary for
other factors with lower AUROC values (Supplementary Figs S10
and S11).

A comparison of the AUROC values from the cross-validated
HTR-SELEX data (Supplementary Fig. S6) and those from the
cross-platform validation shows a correlation between BMF motif
quality and its performance in the cross-platform benchmark (P-val-
ue¼0.0018, Fig. 3F). It could help explain why some HTR-SELEX
models fail at predicting binding to new sequences, possibly as they
have little sequence preference for their target RNA or due to the ab-
sence of this information in the HTR-SELEX data. Overall, this
shows that BMF can be used to learn RNA motifs from in vitro data
to predict binding sites of the protein in the cell despite numerous
factors confounding binding in vivo.

4 Discussion

We present BMF, the first bipartite motif model to describe multiva-
lent binding preferences in RBPs. The motif models learned on
in vivo and in vitro datasets imply the following multipartite binding
strategy is common—adapted by about half of RBPs in our data-
sets—to bind their target RNA molecules: First, these RBPs bind
multiple short (3–4 nucleotides) RNA segments simultaneously and
cooperatively with their multiple RBDs, which can be either on a
single chain or part of dimer or oligomer complexes (Lunde et al.,
2007; Wang et al., 2002). Second, the recognition motifs of their
single RBDs are usually similar (Fig. 2). These two aspects make it
simple to evolve the sequence features in the target RNAs required
for highly specific cooperative binding: a sufficient density of the
simple core recognition motifs. We have recently shown that the
RBP binding affinity through cooperative binding of multiple RBDs
depends on the motif density on the target RNA with a Hill-like co-
efficient that is similar in size to the number of binding domains
(Stitzinger et al., 2021, Fig. 4D). Via di- and oligomerization of
RBPs the number of cooperatively binding domains and thereby the
Hill-like coefficient can be further increased, by which it is possible
to distinguish between targets with, say, a core binding motif every
20 versus every 30 nucleotides (e.g Schulz et al., 2013, Fig. 3E, F).

An encoding of binding affinity via the density of motifs makes sense
for the many RNA-binding proteins for which the precise binding
sites on their target RNAs is not important to perform their
function.

Mono- and dinucleotide repeats are particularly attractive as tar-
get motifs because they possess one binding site per position and per
two positions, respectively. The high density of motifs gives rise to
high affinities through the combinatorially many possible binding
configurations of two or more RBDs. BMF takes full account of this
combinatorial complexity.

A limitation of the evolutionary strategy to bind low-complexity
sequences using multiple domains with near-identical motifs is the
much smaller number of motifs than can be distinguished, only 64
for length-3 cores. This low number might be sufficient, however,
for targeting such RBPs to their RNA targets because specificity is
enhanced by compartmentalization—an RBP occurring only in the
nucleus cannot bind to cytosolic mRNAs, for example.
Furthermore, only a fraction of RBPs is expressed in any one cell
type at any one time, in a similar way as the many transcription fac-
tors having the same binding affinities are usually expressed in dif-
ferent cells or at different times.

Our results agree with previous studies that reported bipartite
motifs in HTR-SELEX and RBNS datasets by counting spaced k-
mers of various linker lengths (Dominguez et al., 2018; Jolma et al.,
2020). The motifs we report are congruent with those reported be-
fore and additionally provide a distance distribution to describe the
best binding geometry. The observation that motifs are repetitive

Fig. 4. Bipartite motif models learned on in vitro data match their in vivo counter-

parts. Bipartite motifs are shown for those RBPs in Figure 3 whose best replicate has

a tool-averaged AUROC of at least 0.75. The models learned in vitro and in vivo

match not only in the sequence preference but also the relative positioning of the

two motif cores, with the exception of KHDRBS1, which shows a bipartite motif

only in the HTR-SELEX data
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and degenerate is also consistent with previous high-throughput
studies (Dominguez et al., 2018).

Interestingly, BMF motifs were shorter and less complex than
those reported by Jolma et al., 2020. For RBPs for which Jolma et al
obtained long motifs (i.e. PCBP1, PUM1 and TARDBP), longer
motif cores than 3 nucleotides in BMF could not improve prediction
performance in the cross-platform benchmark. This indicates that 3-
6 base long motifs would suffice in explaining the sequence specific-
ities for the majority of RBPs.

BMF does not take RNA secondary structure into account, both
the change of total energy upon binding by modifying or breaking
secondary and tertiary structure interactions and their associated en-
tropy changes. It has been shown that some RBPs at least partially
identify their target RNA molecules through binding specific struc-
tural elements (Jones et al., 2001; Mackereth and Sattler, 2012).
This could further narrow the search space of proteins to fewer po-
tential binding partners and open new ways for cellular regulation.
Despite ignoring structure, BMF’s performance is comparable if not
better than GraphProt, a tool that includes detailed modeling of sec-
ondary structure. We expect that expanding our bipartite motif
model to include RNA structure could further improve its predictive
power. We also simplify BMF by assuming that proteins bind as
constitutive complexes. This does not describe well proteins that
interact more weakly and, for example, oligomerize only upon bind-
ing to nearby RNA segments.

Overall, BMF’s performance is promising in the following
regards: Owing to its multi-domain binding model BMF can (i) find
pairs of sequence motifs over-represented in a sequence set, and can
(ii) learn the distance between the motif pairs, reflecting the best
binding configurations. This information can be further used to (iii)
asses whether or not an RBP displays bipartite binding. We believe
that looking at RNA motifs as combinations of individual low-affin-
ity interactions can improve our understanding of RNA regulation
in the cell and shed a new light on how some RBPs can find their tar-
gets despite the weak sequence and structural preferences of individ-
ual domains.
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(https://www.ebi.ac.uk/ena/browser). The preprocssed eCLIP data-
sets were collected from the ENCODE at https://www.encodepro
ject.org (Van Nostrand et al., 2020). PAR-CLIP peaks were
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lysis (Mukherjee et al., 2019). BMF source code, documentation
and motif models can be found at https://github.com/soedinglab/bi
partite_motif_finder.
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