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Abstract: The description of Gardnerella vaginalis was recently updated and three new species, includ-
ing nine genome species within Gardnerella, were defined using whole genome sequences and matrix
assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. A fast and simple
method based on readily available techniques would be of immense use to identify Gardnerella species
in research and clinical practice. Here we show that 34 previously characterized Gardnerella isolates
were assigned to the species using partial chaperonin cpn60 sequences. The MALDI Biotyper from
Bruker Daltonik GmbH demonstrated the capability to differentiate the phylogenetically diverse
groups composed of G. vaginalis/G. piotii and G. leopoldii/G. swidsinskii. Among the phenotypic
properties that characterize Gardnerella species are sialidase and β-galactosidase activities. Our data
confirmed that the NanH3 enzyme is responsible for sialidase activity in Gardnerella spp. isolates.
Almost all G. piotii isolates displayed a sialidase positive phenotype, whereas the majority of G.
vaginalis strains were sialidase negative. G. leopoldii and G. swidskinskii displayed a sialidase negative
phenotype. β-galactosidase is produced exclusively in G. vaginalis strains. Earlier determined phe-
notypic characteristics associated with virulence of Gardnerella isolates now assigned to the defined
species may provide insights on how diverse species contribute to shaping the vaginal microbiome.

Keywords: Gardnerella; bacterial vaginosis; species; cpn60 sequences; MALDI-TOF; sialidase; pheno-
typic characteristics

1. Introduction

Gardnerella vaginalis has been the only identified species in the genus Gardnerella for a
long time. While this bacterium is found to be closely associated with bacterial vaginosis
(BV), a form of vaginal dysbiosis [1,2], Gardnerella isolates from BV-positive women showed
genetic and phenotypic diversity [3–5]. Gardnerella has also been detected in vaginal
microbial communities of healthy BV-negative women [1,6]. These findings suggest a
diverse role of genetic variants of Gardnerella in the vaginal microbiota.

The earlier proposed biotyping [7] and genotyping [8] schemes had limited success re-
vealing Gardnerella diversity. The comparative genomic analysis of the 17 genomes allowed
separating Gardnerella isolates into 4 subgroups, which likely are separate species [9,10].
The existence of four subgroups within Gardnerella was confirmed by the sequence analysis
of cpn60 gene [11,12]. In 2019, Vaneechoutte and colleagues [13] performed the genome
analysis (digital DNA–DNA hybridization (DDH) and average nucleotide identity (ANI))
of 81 whole genomes of Gardnerella isolates and proposed the genus separation into four
species: Gardnerella vaginalis, Gardnerella piotii, Gardnerella leopoldii, Gardnerella swidsinskii,
and 9 genome species. This work also confirmed earlier findings that Gardnerella spp. can-
not be differentiated based on the 16S rRNA gene sequences as they share no less than 98.5%
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sequence similarity. While all G. vaginalis isolates corresponded to previously described
subgroup 1, subgroup 2 included G. piotii and genome species 3, species G. leopoldii and G.
swidsinskii corresponded to subgroup 4, and subgroup 3 contained at least three neither
named nor formally described species most probably due to the low number of isolates [13].
The colonies of four named Gardnerella species had the same appearance on blood agar
plates, but the differences in β-galactosidase and sialidase activities were determined.

Selection of a fast, simple, and not expensive method based on readily available tech-
niques would be of great use to identify Gardnerella species in research and clinical practice.
In this study, we aimed to differentiate 34 previously characterized Gardnerella isolates
of known subgroups/clades [14–16] into newly defined species and genome groups [13]
using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spec-
trometry and chaperonin cpn60 universal target (UT) sequences [11]. We also determined
how the presence of the genes coding for sialidases NanH1, NanH2, and NanH3 reflects the
ability of Gardnerella species to display sialidase activity. Assigning the previously deter-
mined phenotypic features [16] of three subgroups/clades to the newly defined Gardnerella
species provide an understanding of how these species may impact the development of
vaginal dysbiosis.

2. Results and Discussion
2.1. Collection of Gardnerella Isolates

Thirty-three Gardnerella isolates from the characterized vaginal samples were subtyped
previously [14] based on the subgroup/clade-specific genes as described earlier [9,10]. The
strain GV37 was isolated from blood [15] and its whole genome sequence was deposited
in GenBank (acc. no. CP019058.1). Gardnerella isolates were assigned to three subgroups
(clade 1, clade 2, and clade 4), whereas isolate 86.1 was negative in all clade-specific PCR
assays and defined as an unknown subgroup [14]. The phenotypic characteristics of the
isolates and their distribution among subgroups were determined previously: the in vitro
ability to produce the toxin vaginolysin, to form a biofilm and express sialidase activity [16].
Vaginolysin was quantified using a monoclonal antibody-based sandwich ELISA. The
amount of biofilm produced in brain-heart infusion broth with supplements (BHIs) in
96-well microplate was quantified by safranin staining. The presence of the sialidase A
gene was determined by PCR, whereas the sialidase activity in culture supernatants of
Gardnerella isolates was quantified using fluorogenic substrate [16].

The resolving power of protein profiling by MALDI-TOF and partial chaperonin cpn60
sequences were used for the separation of 34 Gardnerella isolates into the newly defined
species [13].

2.2. Differentiations of Gardnerella Species Based on cpn60 UT Sequences

It was demonstrated that chaperonin cpn60 universal target sequences of 552 bp are
a perfect tool for determining Gardnerella subgroups [12] and the newly defined species
and genome species [17]. In this study, Gardnerella isolates were differentiated in the
phylogenetic tree based on cpn60 UT sequences (Figure 1). The reference sequences from
the type strains of four named species and nine genome species [13] were included. Fifteen
isolates that correspond to the previously determined subgroup/clade 1 and G. vaginalis
type strain (ATCC 14018) share the branch in the tree. Although G. vaginalis and genome
species 2 share the same node, they are well separated with high bootstrap support. Ten
isolates were clustered with G. piotii type strain. Four strains (63.2, 65.2, 82.2, and 86.3)
from this cluster and genome species 3 type strain share the same node. The separation
of subgroup/clade 2 isolates into G. piotii and genome species 3 was consistent with the
phylogenetic relationship described earlier [17].
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Figure 1. Phylogenetic relationships of 34 Gardnerella spp. isolates based on cpn60 UT sequences. The type strains of G.
vaginalis, G. piotii, G. swidsinskii, G. leopoldii species and nine genome species [13] were included. Evolutionary history
was inferred using the neighbor-joining method [18]. The percentage of the replicate trees in which the associated taxa
clustered together in the bootstrap test of 500 replicates is indicated. Alloscardovia omnicolens sequence was included as an
outgroup [17]. Evolutionary analyses were conducted in MEGA X [19].

The isolates corresponding to the previously determined subgroup/clade 4 were
separated into G. swidsinskii and G. leopoldii species by MALDI-TOF and whole genome
comparison [13]. Six isolates (58.1, 58.2.1, 63.1, 82.1, 88.2, and 99.1) were grouped with G.
leopoldii type strain (UGent 06.41) and three (106.3, 107.1, and GV37) with G. swidsinskii
type strain (GS9838-1), although both species displayed close relationship in the phylogeny
that is in agreement with the results described in [17]. The GV37 isolate with known whole
genome sequence has previously been attributed to G. swidsinskii [13]. Any other genome
species except for genome species 3 and four named species were not identified among
the isolates.

Pairwise distances between the cpn60 UT nucleotide sequences were calculated
(Table S1). In contrast to the data obtained by Hill et al. [17], we found strains with
identical cpn60 UT sequence (Table S1). The sequence of isolate 63.2 fully matched the
sequence of genome species 3 type strain 00703C2mash-sp3. Isolates 58.1, 58.2.1, 63.1,
88.2, and G. leopoldii type strain (UGent 06.41) had identical sequence. Isolate 86.5 and G.
piotii type strain share the same cpn60 UT. The following pairs and triplets of isolates had
identical cpn60 UTs: 58.2.3 and 58.4; 57.1 and 79.2; 56.1, 83.1 and 84.5; GV37 and 106.3; 82.1
and 99.1; 82.2, 86.3 and 65.2; 60.1 and 78.1; 84.4 and 84.6. The isolates sharing the same
partial cpn60 sequences represent different strains that were verified by a random amplified
polymorphic DNA (RAPD) analysis performed previously [16].

2.3. Resolution of Gardnerella Species Based on MALDI Biotyper Protein Profiling

Vaneechoutte and colleagues [13] demonstrated that Gardnerella species could be
distinguished by MALDI-TOF mass spectrometry, an indispensable tool for clinical mi-
crobiology laboratories. Four Gardnerella species can be separated mainly into pairs of G.
vaginalis/G. piotii and G. leopoldii/G. swidsinskii based on their MALDI spectra. Table 2 in
the paper by Vaneechoutte et al. 2019 [13] showed seven peak variations (1 single peak
and 3 peak pairs) which differentiate G. vaginalis and G. piotii species: two peak pairs (at
mass-to-charge (m/z) 4422/4429 and 8842/8857 representing single and double-charged
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ions of the same masses) and the presence/absence of the single peak at m/z 5162, and the
peak pair at m/z 6855/6885. A unique peak at m/z 2704 was proposed to be characteristic
to resolve G. leopoldii and G. swidsinskii species. The presence/absence of a single peak
at m/z 5349 and the peak pairs at m/z 4849/4928/(9795/9853) differentiate between G.
vaginalis/G. piotii and G. leopoldii/G. swidsinskii [13].

Protein profiling of 34 Gardnerella isolates was performed using the MALDI Biotyper
(Bruker Daltonik GmbH) mass spectrometer. The recorded 34 MALDI spectra sets were
named based on their cpn60 UT sequences and grouped together. Fifteen G. vaginalis, 10 G.
piotii/genome species 3, 6 G. leopoldii and 3 G. swidsinskii strains were subjected for analysis.
Figure 2 shows the mass peaks at m/z in the mass spectrum of Gardnerella strains.
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Figure 2. Mass spectra (n~600) of 34 Gardnerella strains. Peaks at mass-to-charge (m/z) were indicated according to [13].
The arrow indicates the peak at m/z 2704.

All reference spectra (Main Spectrum Profile, MSP) were used for calculation of
log(scores) (Table S2) against each other as a taxonomical distance. The log(score) distance
was used to demonstrate the taxonomical relationship of Gardnerella strains based on a
MALDI Biotyper dendrogram (Figure 3).
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In this study, the peak at m/z 2704 proposed as a unique mark to differentiate G.
leopoldii and G. swidsinskii species [13] was observed as a very faint peak (indicated by
the arrow in Figure 2). Any other peaks suitable for separation of these two species were
not determined. Further, the log(score) based routine identification (Table S2) showed the
same result.

The single peak at m/z 5162 (Figure 2) is a specific mark for G. vaginalis and G. piotii
differentiation. Further, the peak pairs at m/z 4422/4429/(8842/8857) could be used as
species-specific signals. The peak pair at m/z 6855/6885 did not increase the discriminatory
power as several strains of G. piotii had a peak at 6855 that was characteristic of G. vaginalis
in the previous study [13]. In general, very close taxonomic relation of G. vaginalis and G.
piotii was demonstrated by the MALDI Biotyper log(score) algorithm for routine species
differentiation (Table S2).

Any characteristic peaks suitable to resolve G. piotii and genome species 3 were
not observed.

The group G. leopoldii/G. swidsinskii can be distinguished reliably from the group
G. vaginalis/G. piotii based on the log(scores) routine identification using the MALDI
Biotyper. In the future, G. vaginalis could be separated from G. piotii via the creation of an
automated subtyping/differentiation module. Currently, the manual peak picking and
peak comparing to the published data could be alternatively used for species discrimination.
The next library updates for automated MALDI Biotyper identification will include two
species: Gardnerella vaginalis containing the matching hint closely related to Gardnerella
piotii and the species Gardnerella leopoldii/Gardnerella swidsinskii.

Thus, the cpn60-based approach showed the capability to separate G. vaginalis, G.
piotii/genome species 3, G. swidsinskii, and G. leopoldii species (Figure 1). However, the
dendrogram of the MALDI-TOF MS profiles generated using the MALDI Biotyper differen-
tiated the phylogenetically diverse groups composed of species of G. vaginalis/G. piotii and
G. leopoldii/G. swidsinskii (Figure 3). The fact that G. vaginalis and G. piotii were not distin-
guished implies the close relatedness of these species in the genus at the proteome level.

2.4. Phenotypic Characteristics of Gardnerella Species

Sialidase activity is an important phenotypic characteristic of Gardnerella spp. con-
nected with mucus degradation and the development of BV clinical features [20–22].
Although the gene nanH1 coding for sialidase NanH1 (former sialidase A [23]) was found
in sialidase activity positive strains of Gardnerella subgroups/clades 1, 2, and 3, the gene
was also detected in activity-negative strains raising the question about alternative genes re-
sponsible for activity or regulation of the nanH1 expression [12,16]. Recently two additional
sialidases NanH2 and NanH3 with a broad range of activity were detected in Gardnerella
spp. [23]. The genes nanH2, nanH3 or both were found in activity-positive strains, but
absent in activity-negative isolates. All this suggests that these enzymes, but not NanH1,
are the primary sources of sialidase activity [23]. Sialidase activity in Gardnerella spp. was
found to be cell-associated or secreted [20]. Protein organization predicts that NanH2 is
a secreted enzyme, NanH3 may be intracellular and/or secreted, whereas NanH1 most
probably is intracellular [23].

We found that all G. swidsinskii/G. leopoldii strains did not contain the nanH1-nanH2-
nanH3 genes and they were sialidase activity-negative (Figure S1; Table S3) by both quan-
titative filter spot (this study) and the qualitative fluorometric [16] assays. Even though
the nanH1 gene was found in all G. vaginalis strains (n = 15), the sialidase-positive isolates
(n = 3) encoded NanH3, except for strain 58.2.3, which was activity negative although
possessed nanH3.

None of G. vaginalis isolates contained the nanH2 gene (Figure S1). Nine of ten G.
piotii/genome species 3 strains exhibited sialidase activity. The nanH3 gene was found in
all sialidase activity-positive isolates except for G. piotii 86.5, which contained nanH1 and
nanH2. Isolate 60.1 was activity-negative, although contained the nanH3 gene (Figure S1).
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Among sialidase-positive strains of Gardnerella species, we did not find strains con-
taining solely nanH1. The nanH2 gene was most often found together with nanH3. Our
data confirm the recent findings [23], that the sialidase-positive phenotype correlates with
the presence of nanH3. The gene coding for NanH3 prevails in G. piotii and the closely
related genome species 3, but it is less common in G. vaginalis. We agree with the assump-
tion that G. vaginalis could gain nanH3 from G. piotii through horizontal gene transfer
(HGT) [24]. G. vaginalis participates more frequently in HGT [24] acquiring the genes from
other Gardnerella species that co-exist in vaginal microbiota [10,14,17].

The characteristic feature of G. vaginalis is a β-galactosidase activity that is consistent
with the data obtained by Vaneechoutte and colleagues [13]. This activity was not found to
be present in neither G. piotii/genome species 3 nor G. leopoldii/G. swidsinskii strains.

The phenotypic characteristics previously performed in vitro of three Gardnerella
subgroups/clades [16] were assigned to the newly differentiated species (G. vaginalis, G.
piotii/genome species 3, and G. swidsinskii/G. leopoldii) (Table S3). G. vaginalis strains except
86.1 contained the vly gene and produced toxin vaginolysin as well as expressed the ability
to form a biofilm, but a minority (3/15) of strains was sialidase-positive. A vast majority of
G. piotii/genome species 3 strains produced a sialidase and developed a biofilm, whereas
the vly gene was absent from nearly half the strains. It was proposed that vaginolysin is
not a part of a core genome and may be lost or gained by Gardnerella species [24]. The
characteristic feature of G. leopoldii/G. swidsinkii strains is a sialidase activity-negative
phenotype. However, the specification of additional isolates is required to differentiate
closely related G. leopoldii and G. swidsinkii species.

The Gardnerella isolates classified into species were previously isolated from vaginal
samples of BV-positive and BV-negative women [14]. We updated the table provided
in [16] placing the species name for each isolate (Table S4). The vast majority of vaginal
samples contained multiple Gardnerella clades, however, we isolated the strains of single or
several species from these samples. Overall, five Gardnerella species were found in vaginal
samples. The strains of three species (G. vaginalis, G. piotii, and G. leopoldii) isolated from
the vaginal sample 058S1 (Nugent score = 9) matched the clades identified in that sample
by PCR (Table S4). However, some clades (e.g., clade 2) contain several species [13]. A low
abundance of particular species in vaginal samples and cultivation issues may result in
a loss of isolates. The recent identification of Gardnerella species in noncultured vaginal
samples based on the cpn60 UT sequences [17] showed that the most frequently detected
species are four named species and genome species 3, an observation that is in agreement
with our data. Genome species 2 and 7 to 13 were rarely detected in vaginal samples [17].

3. Materials and Methods
3.1. Bacterial Strains and Cultivation Conditions

Gardnerella spp. isolates were obtained from characterized vaginal samples of women
from Lithuania [14]. Bacterial stocks were stored at –80 ◦C in tryptic soy broth (TSB)
(Liofilchem, Roseto degli Abruzzi, Italy) supplemented with 20% (v/v) horse serum (Oxoid,
Thermo Fisher Scientific, Waltham, MA, USA) and 15% (v/v) glycerol. The isolates were
revived on chocolate agar with Vitox (Oxoid) and incubated at 37 ◦C in 6% CO2 and 15%
O2 atmosphere (CO2 Gen, Oxoid) for 48 h. The isolates 58.2.3, 58.4, 84.4, 84.6, 86.1, and 78.1
were incubated for 48 h in anaerobic conditions generated by AnaeroGen (Oxoid).

3.2. Sequencing of cpn60 Universal Target Regions

The bacterial suspension in water was repeatedly frozen and thawed. After centrifu-
gation, the supernatant was used for PCR. Enzymes and kits were obtained from Thermo
Fisher Scientific (Vilnius, Lithuania). The amplification of cpn60 sequence was carried out
with primers H729 and H730 [11] using Maxima Hot Start Taq DNA polymerase or Dream
Taq Hot Start Taq polymerase in the reaction volume of 15 µL. The reactions included
denaturation at 94 ◦C for 4 min, 40 amplification cycles consisting of denaturation for 30 s
at 95 ◦C, annealing for 30 s at 48 ◦C, and extension for 30 s at 72 ◦C. The final extension step



Pathogens 2021, 10, 277 7 of 9

was prolonged for 2 min. The PCR products were purified using the GeneJET PCR Purifica-
tion Kit and sequenced with primer Seq-H729 (5′-CGCCAGGGTTTTCCCAGTCACGAC)
to identify the 552-bp universal target (UT) sequence of the cpn60 gene [25]. The cpn60 UT
sequences were deposited at GenBank (accession numbers MT501265–MT501298).

3.3. Phylogenetic Analysis

cpn60 UT sequences from the type strains of four named Gardnerella species (G. vagi-
nalis, G. piotii, G. leopoldii, and G. swidsinskii) and nine genome species [13] were obtained
from Chaperonin Database Search (cpnDB) (http://www.cpndb.ca/search.php)(accessed
13 October 2020). A phylogenetic tree based on 552-bp cpn60 UT was built and visualized
using MEGA X [19]. Pairwise distances between the sequences were calculated by MEGA
X. The type strain Alloscardovia omnicolens (DSM 21503) was included as a root [17].

3.4. MALDI-TOF MS—MALDI Biotyper

For MALDI-TOF MS (Matrix One Assisted Laser Desorption/Ionization Time of Flight
Mass Spectrometry) analysis, 1 µL inoculation loop of fresh bacterial cells was suspended
in 75% ethanol and stored at –20 ◦C until further processing. The cell suspensions in
ethanol were centrifuged at 13,000× g for 2 min, the supernatant was discarded and the
residual sample centrifuged again for a short time. The remaining ethanol was discarded
and the cell pellet was carefully suspended in 50 µL of 70% formic acid followed by the
addition of 50 µL acetonitrile. After mixing, the suspension was centrifuged at 13,000× g
for 2 min. One µL of supernatant was transferred to the disposable MALDI target plate
(MSP Biotarget 96, Bruker Daltonik GmbH, Bremen, Germany). Eight replicates of each
sample were loaded on the plate, dried at room temperature, and overlaid with 1 µL HCCA
(a-cyano-4-hydroxycinnamic acid) matrix solution (Bruker Daltonik GmbH). Each assay
included the Bruker Bacterial Test Standard (BTS). Spectra for each sample on the target
plate were acquired three times, thus resulting in 24 individual MALDI spectra for each
strain. All MALDI measurements were performed using the Bruker standard measurement
procedures (standard flexControl method, standard AutoX method, standard MBT-Process
method) without any alterations. After spectra quality check (QC) and internal recalibration
the MALDI Biotyper standard algorithms were used to create the reference spectra (MSPs).

3.5. Detection of the nanH2 and nanH3 Genes and Sialidase Activity by a Filter Spot Test

The nanH2 and nanH3 genes were detected by PCR using primers and cycling condi-
tions described in [23]. A qualitative filter paper spot test using cultures in duplicate was
applied as described previously [26].

3.6. β-Galactosidase Activity

A colorimetric assay with o-nitrophenol-beta-D-galactosidase (ONPG) tablets (Sigma
Aldrich) according to the manufacturer’s instructions was used to detect β-galactosidase
activity of Gardnerella spp. strains.

4. Conclusions

The recent amendment of the Gardnerella taxonomic description prompted us to deploy
tools for differentiation of characterized 34 Gardnerella isolates of known clade/subgroup
into species. Here several techniques were used for species discrimination. Four named
Gardnerella species and genome species 3 were resolved in the phylogenetic tree based on
cpn60 UT sequences. However, the molecular method utilizing partial cpn60 sequences is a
sensitive and specific technique that remains time-consuming. The MALDI Biotyper, based
on a sensitive, fast and widely-used MALDI-TOF MS method, demonstrated capability to
reliably differentiate the phylogenetically diverse groups composed of species G. leopoldii/G.
swidsinskii and G. vaginalis/G. piotii. Our results confirmed recent findings that sialidase
NanH3 is responsible for sialidase activity in a collection of 34 Gardnerella isolates. G.
leopoldii and G. swidskinskii species do not contain any genes coding for sialidases and

http://www.cpndb.ca/search.php
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display a sialidase activity-negative phenotype. The β-galactosidase activity was detected
only in G. vaginalis strains.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-0
817/10/3/277/s1, Table S1: Pairwise distances between cpn60 UT nucleotide sequences, Table S2:
Comparison of MALDI-TOF spectra of Gardnerella isolates and calculation of log(score), Table S3:
Characteristics of Gardnerella isolates, Table S4: Gardnerella species detected in the characterized
vaginal samples, Figure S1: PCR detection of the nanH2 and nanH3 genes.
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