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Abstract 

Background: Overall life expectancy continues to rise, approaching 80 years of age in several developed countries. 
However, healthy life expectancy lags far behind, which has, in turn, contributed to increasing costs in healthcare. One 
way to improve health and attenuate the socio‑economic impact of an aging population is to increase overall fitness 
through physical activity. Telomere attrition or shortening is a well‑known molecular marker in aging. As such, several 
studies have focused on whether exercise influences health and aging through telomere biology. This systematic 
review examines the recent literature on the effect of physical activity on telomere length (TL) and/or telomerase 
activity as molecular markers of aging.

Methods: A focused search was performed in the databases PubMed and Web of Science for retrieving relevant 
articles over the past ten years. The search contained the following keywords: exercise, sport, physical activity, fitness, 
sedentary, physical inactivity, telomere, telomere length, t/s ratio, and telomerase. PRISMA guidelines for systematic 
reviews were observed.

Results: A total of 43 articles were identified and categorized into randomized controlled trials (RCT), observational 
or interventional studies. RCTs (n = 8) showed inconsistent findings of increased TL length with physical activity in, 
e.g. obese, post‑menopausal women. In comparison with a predominantly sedentary lifestyle, observational stud‑
ies (n = 27) showed significantly longer TL with exercise of moderate to vigorous intensity; however, there was no 
consensus on the duration and type of physical activity and training modality. Interventional studies (n = 8) also 
showed similar findings of significantly longer TL prior to exercise intervention; however, these studies had smaller 
numbers of enrolled participants (mostly of high‑performance athletes), and the physical activities covered a range 
of exercise intensities and duration. Amongst the selected studies, aerobic training of moderate to vigorous intensity 
is most prevalent. For telomere biology analysis, TL was determined mainly from leukocytes using qPCR. In some 
cases, especially in RCT and interventional studies, different sample types such as saliva, sperm, and muscle biopsies 
were analyzed; different leukocyte cell types and potential genetic markers in regulating telomere biology were also 
investigated.

Conclusions: Taken together, physical activity with regular aerobic training of moderate to vigorous intensity 
appears to help preserve TL. However, the optimal intensity, duration of physical activity, as well as type of exercise 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Open Access

*Correspondence:  marlies.schellnegger@joanneum.at; alvin.lin@medunigraz.at

1 COREMED – Cooperative Centre for Regenerative Medicine, JOANNEUM 
RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstrasse 2,  8010 Graz, 
Austria
3 Division of Macroscopic and Microscopic Anatomy, Gottfried Schatz 
Research Center for Cell Signaling, Metabolism and Aging, Medical 
University of Graz, Harrachgasse 21, 8010 Graz, Austria
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7074-3609
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40798-022-00503-1&domain=pdf


Page 2 of 25Schellnegger et al. Sports Medicine - Open           (2022) 8:111 

Key Points

1. As life-expectancy increases, lifestyle choices like 
exercise take on increasing importance in healthy 
aging. Telomere attrition is a molecular marker of 
aging. Thus, physical activity may influence the aging 
process through telomere biology, namely TL and 
telomerase activity.

2. The amount of reduction in sedentary behavior 
appears to have a positive effect of preserving and 
increasing TL. The current level of physical fitness 
seems to have a more significant impact than the his-
tory of previous exercise on TL. Telomere dynam-
ics are tissue- and cell-specific and are also depend-
ent upon proliferative activity; as such, grasping the 
molecular mechanisms induced by exercise remains 
a challenge.

3. Detailed information should be included in future 
studies (e.g., participants’ characteristics, level of fit-
ness, type of exercise training modality, telomere 
analysis) in order to achieve greater study homoge-
neity and draw causal conclusions on the effects of 
exercise on telomere dynamics and the aging process.

Introduction
With advancements in healthcare and improvements in 
living standards, human life expectancy is now predicted 
to be above 80 years of age in industrialized countries [1, 
2]. Subsequently, the proportion of the elderly popula-
tion has steadily increased; and by 2050, approximately a 
quarter of the world’s population will be over 65 years in 
age [3]. With a growing and aging population, increased 
costs in health care delivery have also transpired amongst 
other socio-economic challenges [4]. Unfortunately, 
healthy life expectancy lags far behind overall life expec-
tancy [5], which implies a more extended period of 
morbidity [6]. To help curtail this financial impact and 
improve overall health, primary prevention strategies 
that incorporate lifestyle choices of a heathy diet and reg-
ular exercise have been promoted [7–9]. Not surprisingly, 
the cosmetic industry continues to profit, with the search 
of anti-aging and rejuvenation products attracting great 
attention.

Aging is an inherent and complex biological process, 
with several studies furthering our understanding at the 
molecular level [10, 11]. Lopez-Otin et  al. [12] describe 
the main hallmarks of aging with respect to the following 
underlying mechanisms: genomic instability, loss of pro-
teostasis, epigenetic alterations, mitochondrial dysfunc-
tion, cellular senescence, stem cell exhaustion, altered 
intercellular communication, deregulated nutrient-sens-
ing, and telomere attrition. Amongst these hallmarks, 
telomere attrition and the preservation of telomere 
length (TL) have attracted much attention as a molecu-
lar marker of biological age [13]. Capping the arms of 
each chromosome, telomeres are long repeated nucleo-
tide sequences whose primary function is to protect the 
integrity of genomic DNA from degradation, thereby 
maintaining genomic stability throughout the cell cycle 
[14]. With each cell division, TL progressively shortens 
by approximately 50–100 base pairs (bp) [15]. As TL 
decreases over time, telomeres become too short for the 
cell to divide any further, leading to cellular senescence 
[16]. This relationship of aging with decreasing TL has 
been confirmed by several studies [17–19]. Telomerase, 
an enzyme containing the catalytic unit protein reverse 
transcriptase, is considered the primary driver for rep-
licating telomeric regions. Telomerase activity in com-
bination with TL help to reflect the cell’s proliferation 
potential [20].

Although TL and its attrition can be highly variable 
amongst individuals with possible sex-specific differences 
[17], TL remains stable from childhood to early adult-
hood and diminishes in late adulthood [16, 21]. Critically 
short telomeres are associated with chromosomal degra-
dation, end-to-end fusion, and deficient recombination, 
all of which promote the process of aging and age-related 
pathologies [22, 23]. Furthermore, telomere attrition is 
also associated with several chronic diseases and patho-
logical conditions such as diabetes, dyslipidemia, cardio-
vascular disease, cancer, and during psychological stress 
[21, 24–28]. As such, TL is increasingly recognized as a 
clinical tool in gauging the risk for age-related diseases 
[29]. Some epidemiologic studies have even underpinned 
an increased risk of premature mortality with TL short-
ening [30].

still need to be further elucidated. Along with TL or telomerase activity, participants’ fitness level, the type of physical 
activity, and training modality should be assessed at different time points in future studies, with the plan for long‑term 
follow‑up. Reducing the amount of sedentary behavior may have a positive effect of preserving and increasing TL. 
Further molecular characterization of telomere biology in different cell types and tissues is required in order to draw 
definitive causal conclusions on how physical activity affects TL and aging.

Keywords: Physical activity, Exercise, Telomere length, Telomerase, Aging
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Whether age-associated decline can be counteracted 
by enhancing TL integrity or preserving TL through 
primary prevention measures remains to be elucidated. 
However, increasing data support that negative lifestyle 
risk factors such as smoking and obesity are associated 
with a deleterious effect on TL; and living an active life-
style has a beneficial effect on preserving TL [31–33], 
suggesting the effects of anti-aging of physical activity at 
the cellular level [34]. Physical activity is long-considered 
to play a crucial role in health and aging by reducing the 
risk of developing several chronic conditions [35]. Some 
age-related diseases associated with shorter TL (e.g. 
diabetes mellitus, hypertension, or cardiovascular dis-
ease) are suggested to be prevented, managed, or even 
regressed by regular exercise [36–40].

The specific molecular mechanisms and potential 
counteracting measures of biological aging are highly 
complex. Aging, as defined by hallmark cellular pro-
cesses of senescence, fibrosis, inflammation, and stem 
cell depletion in the presence of functional p53 [41], has 
been shown to be inversely proportional to TL at the cel-
lular level. Furthermore, primary preventive measures of 
healthy lifestyle choices such as regular physical exercise 
increase healthy life expectancy. Also, the epidemiologi-
cal evidence suggests a strong relationship of preserving 
TL with physical activity [42]. However, the impact of 
physical activity on aging (with TL as a molecular marker 
of aging) is not fully understood, as evidenced by 3 recent 
yet different systematic reviews. Valente et al. [43] pooled 
together a total of 7418 participants from 30 retrieved 
articles and reported that, with very-low level of cer-
tainty, physically active individuals have longer telomeres 
and stated that likely this effect was overestimated. Agu-
iar et  al. [44] examined 11 retrieved studies on master 
athletes (which included their own study) and found that 
master athletes had longer telomeres in comparison with 
age-matched controls. Song et al. [45] searched for RCTs 
only and found inconclusive findings amongst their seven 
retrieved RCT studies, which included predominantly 
female participants and those diagnosed with cancer (e.g. 
breast cancer).

The possible impact of physical activity on TL and 
aging continues to be a topic of interest in sports medi-
cine research and beyond; however, there lacks a con-
sensus of the literature on whether the type of physical 
activity (or inactivity) could possibly account for these 
discrepancies in telomere biology and mechanisms that 
regulate TL. Therefore, this systematic review aims to 
examine the current literature on the impact of the level 
and type of physical activity on TL as a molecular marker 
of aging.

Methods
A systematic review of the literature was conducted 
in keeping with PRISMA guidelines. The review pro-
tocol is registered on PROSPERO (record number: 
CRD42021252217).

Search Strategy
The online databases PubMed and Web of Science were 
used to scan the available literature. The literature search 
was performed in May 2021 by two independent review-
ers to identify the articles of interest based on the defined 
inclusion criteria. Any disagreements were solved by con-
sensus, or a third-party reviewer was consulted when nec-
essary. As a further measure to include relevant papers, 
references of included studies and retained reviews were 
also screened. In 2015, Munstock et al. [46] performed a 
complete search of the literature, and found only one RCT 
in 2014 for their review. As such, articles over a focused 
timeframe of 2011 to 2021 were included and analyzed.

The literature search was performed using a combination 
of the following search terms: “telomere” OR “telomeres” 
OR “telomerase” OR “telomere length” OR “t/s ratio” AND 
"physical activity" OR "physical exercise" OR “exercise” OR 
“motor activity” OR “locomotor activity” OR “active lifestyle” 
OR “inactive lifestyle” OR "physical inactive" OR sedentary 
OR sport OR “aerobic exercise” OR “training” OR “endur-
ance training” OR “resistance training” OR “strength train-
ing” OR “isometric exercise” OR “isometric exercises” OR 
“interval training” OR “high intensity training” OR "fitness”.

Titles or abstracts of the identified studies were exam-
ined, and duplicates were removed using the reference 
software Mendeley (Elsevier B.V., Amsterdam, NL). Fur-
thermore, the full text of the manuscript was examined 
if the title or abstract did not provide sufficient informa-
tion. All studies that met the inclusion selection criteria 
were selected for full analysis and review.

Selection Criteria
Articles were included if the following inclusion criteria 
were met:

1. The article assesses the impact of physical activity on 
telomere biology (TL and/or telomerase activity).

2. The research was limited to articles published in 
English or German from 2011 to 2021 and to articles 
involving a human testing population.

3. Full-text manuscripts of original studies (randomized 
controlled trial or RCT, observational, or interven-
tional) that compared the participants’ character-
istics (e.g. age, level of physical fitness), telomerase 
biology measurements (e.g. relative or absolute TL 
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and/or telomerase activity), and physical activity (e.g. 
type, intensity, duration) were included.

Abstracts only, reviews, letters, responses, case series, 
case studies and duplicated articles were excluded. Stud-
ies that assessed the effect of holistic lifestyle inter-
ventions but did not include physical activity as one 
of the interventions were excluded. To achieve great 
study homogeneity, studies with participants who were 
under 18 years of age or with terminal illness were also 
excluded.

The following variables were defined as crucial data, 
with the goal to extract such information, if applicable, 
for each of the selected studies: study type, sample size, 
age, population, study protocol name, year or study time-
frame, the type of tissue sample collected for telomere 
analysis, method of telomere analysis, type of physical 
activity (with description of its frequency, duration and 
intensity), physical fitness of participants, statistically 
significant results, and time of follow-up. All statistically 
significant results were screened for appropriate group-
ing, stratification, and corrections for potential bias, e.g. 
age-matched, risk factors, different scales or assessment 
parameters of physical fitness.

Results
A flow chart summarizing the algorithm and the quanti-
tative results of the search procedure is shown in Fig. 1. 
The initial literature search yielded a total of 1,774 stud-
ies. After removing duplicates, 905 remaining titles 
and abstracts were screened and analyzed based on the 
inclusion criteria described. Of the 905 records, 391 arti-
cles were excluded since these studies did not address 
telomere biology in association with exercise or vice 
versa. A further 427 records were excluded since they 
did not meet other inclusion criteria (e.g. human study 
population, original research, publication date, etc.). A 
total of 87 articles remained for full-text screening to 
further evaluate eligibility. Of these 87 articles, 44 arti-
cles were then excluded: eighteen studies did not assess 
any associations between parameters of telomere biol-
ogy and exercise; eleven studies evaluated the effects of 
exercise on TL in relation to severe diseases (e.g. can-
cer); six articles focused on a study population that did 
not meet the inclusion criteria of age (e.g. children) or 
only in  vitro experiments were conducted; five articles 
did not investigate one of the defined parameters; and 
four studies examined a combined intervention of sev-
eral different lifestyle changes on telomere biology; how-
ever physical activity was not corrected for potential 
bias nor treated as independent variable. Taken together, 
the final number of articles included for this systematic 
review was 43.

For each of the selected articles, the study type was 
determined, and the article was then assigned into one 
of three groups: RCT (8/43), interventional (8/43), and 
observational (27/43) studies. A summary of the most 
important characteristics and findings of the selected 
studies are presented in Tables 1, 2, and 3. Several stud-
ies (33/43) investigated significant positive association 
between TL and physical activity. The most frequently 
utilized tissue- and cell-type for TL measurement were 
leukocytes (27/43), and qPCR was the most common 
method to evaluate changes in TL (33/43). A small num-
ber of studies (5/43) highlighted the acute effect of a sin-
gle exercise bout.

Several studies (33/43) found a statistically significant 
difference in TL (absolute or relative change) with physi-
cal activity, based on grouping or stratification of par-
ticipants’ characteristics, level of fitness, physical activity 
type, and/or corrections for potential bias. A small num-
ber of studies (5/43) reported a significant correlation 
of TL with level of physical fitness; and an even smaller 
number (4/43) described a negative correlation between 
TL and exercise.

Discussion
A total of 43 studies were selected, and the majority (33 
out of 43 studies) highlighted positive effects of exercise 
on telomere dynamics. Four studies, however, described 
telomere shortening as a result of physical exercise [47–
50]. To further characterize the quality of the studies, the 
articles were examined and grouped based on their study 
type of namely RCTs, interventional, and observational 
studies (Tables  1, 2, 3). In comparison with a system-
atic review that covered all years up to 2014 but found 
only one RCT study [46], 37 out of the 43 selected stud-
ies in this review were newly-identified articles, includ-
ing seven new RCTs. A similar yet different systematic 
review by Arsenis in 2017 that also included studies with 
influencers such as chronic stress found only 3 RCTs [51].

Further analysis of all 43 of the selected studies showed 
that the findings are not also completely coherent, which 
is elaborated in greater detail below.

RCT Studies
Upon closer examination (Table 1), the RCT studies were 
inconsistent in their findings, with five of the eight RCTs 
supporting TL preservation or lengthening with physi-
cal activity. The discrepancies amongst the three RCTs 
may be attributed to differences in the physical charac-
teristics of the participants (e.g. age, obesity, sex-specific, 
and level of physical activity). Friedenreich et  al. [52] 
conducted an RCT trial on a study population of 212 
physically inactive, postmenopausal women. An aerobic 
exercise intervention at 70–80% heart rate reserve was 
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prescribed for twelve months, and TL was measured and 
compared against inactive peers. The results showed no 
significant changes in leukocyte TL. The authors hypoth-
esized that the actual impact of exercise on telomere 
dynamics depends on various factors of the participants 
at their baseline, such as body mass index (BMI) or nutri-
tion habits. In another RCT study on a larger popula-
tion of 439 postmenopausal, overweight women, Mason 
et al. [53] also showed no significant changes in TL after 
twelve months of aerobic exercise intervention compared 
to sedentary controls. Furthermore, weight loss was not 
associated with an alteration of TL. However, TL was 
positively associated with maximal oxygen uptake, which 

is a crucial determinant in setting the upper limit of oxy-
gen uptake for endurance performance [54]. In contrast, 
some of the selected RCT studies showed increased 
TL [55–57] or telomerase activity [58] with exercise. 
One possible explanation for this discrepancy might be 
attributed to the duration of the exercise intervention of 
approximately six to twelve months, which could be too 
short of a timeframe to evoke any significant long-term 
changes in TL. Thus, cohort studies involving an athlete 
population could provide some valuable information in 
this context, since the effects of regular exercise and a 
high training volume over a longer period of time can be 
considered.

Records identified from PubMed
and Web of Science:

Pubmed (n = 893)
Web of science (n = 881)

Records removed before 
screening:

Duplicate records removed 
(n = 202 )
Records marked as ineligible 
by automation tools (n = 667)

Records screened for eligibility 
by means of titles and abstracts
(n = 905)

Records excluded on basis of 
title and abstracts:
Association between telomeres 
and physical exercise not given 
(n = 391)
Records excluded based on 
inclusion/exclusion criteria 
(n = 427)

Full-text articles assessed for 
eligibility
(n = 87)

Full-text articles excluded:
Associations between TL and 
exercise not reported (n = 18)
Disease-related (n = 11)
Study population (n = 6)
Other parameters (n = 5)
Combined intervention (n = 4)

Studies included in review
(n = 43)

noitacifitnedI
Sc

re
en

in
g

In
cl
ud

ed

Fig. 1 Flow chart of the systematic review process (PRISMA)
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Interventional Studies
As shown in Table 2, several of the interventional cohort 
studies on TL in high-performance athletes describe 
a positive association of TL with regular and extended 
participation in physical exercise [59–63]. However, 
Nickels et  al. [48]. reported a significantly shorter TL 
of 8.1% in young elite swimmers in comparison with 
their recreationally-active peers, with greater telomere 
shortening observed amongst female athletes. These 
conflicting findings might be attributed to differences in 
exercise intensity, excessive training volume, or even in 
the type of sport activity itself. Also, the impact of these 
variables may also be sex-specific. Indeed, some stud-
ies suggest sex-specific variations in telomere dynamics 
[64], and that these differences seem to impact the exer-
cise-induced effects on TL [49, 65]. Of note, this study 
by Nickels et al. involved a fairly young cohort of athletes 
(mean age of 20 years); thus, it is unclear whether these 
findings can be extrapolated to the adult and elderly 
population. Furthermore, TL is relatively stable until 
young adulthood, and telomere attrition occurs predom-
inantly at an advanced age [16]. Multiple factors such as 
age [66], BMI [67], sex [68], volume of training, training 
modality [57], duration of physical activity, and method 
of TL analysis [69] can all affect telomere dynamic 
measurements.

Observational Studies
Amongst the 27 selected observational studies (Table 3), 
several cross-sectional studies highlight a positive cor-
relation between exercise and telomere biology [60, 62, 
70–77]. The Helsinki Birth Cohort was utilized by Ästrom 
et  al. [78] to investigate the correlation between physi-
cal performance and TL in the elderly with a mean age 
of 61  years. Physical performance was assessed using 
the Senior Fitness Test at the start of the study and at 
approximately ten years in follow-up. Poorer physical 
performance correlated with statistically significant tel-
omere shortening after ten years in women [78]. Several 
other cross-sectional investigations also showed simi-
lar statistically significant effects of physical exercise on 
telomere dynamics [79–81]. Although the results from 
cross-sectional studies seem promising, such epidemio-
logic studies are limited by characteristics in their design 
(e.g. self-reporting of physical activity by questionnaire). 
Furthermore, evaluating changes in TL from physical 
activity via a cross-sectional study is limited to measure-
ments that are conducted at a single time point. Thus, 
in order to assess whether physical exercise counteracts 
age-related telomere attrition, better consensus amongst 
observational studies and/or higher-quality evidence 
from prospective studies is required in order to prove 
causality.

Taken together, a causal relation of physical activity 
on TL can neither be asserted nor rejected amongst the 
selected RCT, interventional, and observational studies. 
Several aspects regarding the type of training modality, 
and the intensity and duration of the physical activity on 
telomere dynamics need to be further elucidated, and are 
further discussed in the following sections. A summary 
illustration is presented in Fig.  2. Future studies should 
address influencing factors on telomere biology, along 
with taking measurements of TL across different time 
points, which are also described below.

Effects of Training Modality and Type of Physical Activity 
on Telomere Biology
Training modality appears to be an important factor to 
consider regarding its influence on telomere dynamics. 
Nevertheless, such consideration of different training 
modalities on telomere biology are scarce. In one RCT 
study, Werner et al. [57] compared the impact of differ-
ent exercise modalities (e.g. resistance training or RT, 
endurance training, and interval training) on TL and tel-
omerase activity. Endurance and interval training proto-
cols increased TL and telomerase activity; however, RT 
did not register any such differences. Thus, although RT 
could be integrated into other exercise modalities, RT 
alone may not be sufficient as a substitute for endurance 
or interval training to provoke any changes in TL.

With respect to type of exercise, an observational study 
by Loprinzi et  al. on the comparison of different physi-
cal activities of various metabolic demands (e.g., weight 
lifting, basketball, bicycling, running) showed that only 
running could be positively correlated with preserving 
TL [82]. This association of TL preservation with running 
might also help to explain the protective effects of aero-
bic exercise on the incidence of cardiovascular disease 
and all-cause mortality [83] and that several chronic dis-
eases are associated with telomere attrition [40, 84]. One 
possible explanation for the inconsistent findings of RT 
on TL might be that aerobic exercise (which is not typical 
in classical RT) is linked to a higher mean and maximum 
heart rate, which leads to higher vascular shear stress 
[85]. Since nitric oxide (NO) synthase and telomerase 
activity are associated with exercise-induced vascular 
protection [86], the elevated levels of NO released from 
the vascular wall might contribute to alterations in tel-
omere dynamics. In another study, RT was implemented 
over six months in an RCT trial, and no clear relationship 
was shown between RT and TL [87]. In contrast, another 
RCT study implemented RT for only three months; the 
results showed an increase of telomerase enzyme activity 
and other proteins potentially associated with the process 
of biological aging, namely Sirtuin-1 (SIRT1), SIRT3, and 
SIRT6 [58]. The seemingly beneficial results of this study 
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might also be attributed to the cohort characteristics of 
elderly men who performed a more demanding RT pro-
tocol in comparison with peers described in other stud-
ies. Of note, higher appendicular skeletal muscle index 
(ASMI) is related to longer telomeres [88]. Since RT aims 
to increase muscle mass, the preservation of skeletal 
muscle has also been suggested to help delay telomere 
attrition and attenuate biological aging.

With respect to endurance training, aerobic exercise 
emerges as a promising intervention to help maintain 
or even increase TL. In an RCT study by Puterman 
et al. [55], aerobic exercise over six months led to sig-
nificantly longer TL in older adults who were previ-
ously inactive and highly-stressed in comparison with 
sedentary controls. Of note, no increase in telomerase 
activity was detected, even though such an increase was 
hypothesized to help stabilize and potentially elongate 
TL [17, 89]. One reason to account for this increase in 
TL (in the absence of increased telomerase activity) is 
that the study cohort consisted of chronically-stressed 
and inactive individuals, and such characteristics are 
associated with higher levels of oxidative stress and 
inflammation [90–92]. Reducing levels of inflamma-
tion and oxidative stress with aerobic exercise may 
have resulted in the reported telomere lengthening 
[93, 94]. Moreover, endurance exercise was strongly 
linked to longer telomeres in an athlete study popula-
tion: ultra-distance runners had 11% longer leukocyte 
TL in comparison with their peers, which amounts to 
approximately 16  years of age-related telomere short-
ening [63].

Overall, endurance exercise is the most investigated 
training modality and is mainly associated with posi-
tive effects on telomere biology. Moreover, some types 
of exercise may have greater benefit than others. In 
one observational study, a comparison between mas-
ter sprinters and endurance runners revealed a better 
profile of aging biomarkers in sprinters, including a 
trend for longer TL. Endurance athletes had a better 
NO profile, which is considered a marker of endothe-
lial function, whereas sprinters possessed a significantly 
better redox balance and cytokine profile [95]. Future 
studies would need to clarify whether running itself or 
the intensity associated with running affects telomere 
dynamics.

Effects of Exercise Intensity on Telomere Biology
Training intensity is a crucial factor not only in exercise 
training programs but also in the setting of telomere 
biology and aging [77]. However, the selected stud-
ies present inconsistent findings on whether moder-
ate or highly intense exercise has a beneficial impact 
on telomere dynamics. Du et  al. examined participants 

enrolled in the large-scale Nurses’ Health Study and 
showed that moderate exercise (defined as energy expo-
sure of 3 METs or more) is already sufficient to pre-
serve leukocyte TL in women [76]. These findings are 
in keeping with the results of Savela et al. [77]. Namely, 
the relationship between physical activity level (in terms 
of intensity and frequency) and TL was described as an 
inverted U-shaped curve, indicating that a moderate 
level of exercise shows a beneficial effect on TL; in con-
trast, low- and high-level of physical activity were asso-
ciated with shorter telomeres. Furthermore, a moderate 
level of physical activity likely counteracts age-depend-
ent immunosenescence and prevents telomere shorten-
ing in specific T-cell populations. Namely, in a study by 
Bastos et  al. [96]., low- and even high-levels of physical 
activity did not significantly affect immunosenescence in 
 CD8+CD28+ cells in comparison with a cell-line control. 
Taken together, these findings suggest there are possible 
positive effects of physical exercise on the immune sys-
tem in older adulthood and that the most beneficial exer-
cise intensity level in this context is exercise at moderate 
intensity.

In comparison with other levels of exercise intensity, 
Colon et  al. [60] showed that TL was better preserved 
through high-intensity training in comparison with exer-
cise at moderate intensity. This study was conducted with 
competitive triathlon athletes at a high level of fitness as 
the investigated cohort. As such, amongst the triathletes, 
the applied training protocol might not have reached the 
required intensity associated with detrimental effects to 
TL as seen in other studies involving non-athletes. In a 
study by Denham et  al. [63], ultra-endurance athletes 
possessed 11% longer telomeres (an approximate increase 
of 324–648 bp) in comparison with healthy inactive con-
trols, which corresponds to a difference of 16.2 years in 
biological age. Recent studies [97, 98] also underline the 
importance of exercise intensity on telomere biology, and 
are in keeping with the results from Gagnon et  al. [98]. 
In participants of a multi-day canoeing expedition (trav-
elling six hours a day for 2  weeks) at low-to- moderate 
intensity, TL remained unchanged in comparison with 
age-matched controls; however, there was a significant 
improvement in their metabolic and oxidative profiles. 
The increased enzymatic antioxidative activity was even 
comparable to the redox-balancing benefits induced by 
a training duration of several months. Nevertheless, the 
exercise stimulus might have been insufficient to influ-
ence TL, since the physical activity was at a low-to-mod-
erate intensity [98]. Other studies [70, 71, 99] reported 
a positive dose–response relationship between relative 
telomere length (rTL) and physical activity. A significant 
linear trend of increasing rTL with vigorous physical 
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activity emerged, but moderate physical activity was not 
necessarily associated with any changes in TL.

In summary, the selected studies appear contradictory 
on what exercise intensity has the greatest influence on 
telomere dynamics. Also, the level of physical activity 
(e.g. low, moderate, or high/vigorous) is not always clear 
or described in greater detail in terms of its parameters 
(e.g. intensity, duration, and frequency) to allow com-
parison. Since different types of physical activity gener-
ate different metabolic demands [100], further research is 
needed to determine whether an optimal level of exercise 
parameters can be achieved to slow down the biological 
process of aging.

The Impact of Acute Exercise Episodes on Telomere Biology
Previous research suggests that acute exposure to stren-
uous exercise induces an increase in oxidative stress 
[101, 102]. DNA damage from oxidative stress has been 
shown to occur even after a few hours of exposure to 
high-intensity aerobic exercise [103, 104]. Since oxida-
tive stress is also strongly associated with telomere attri-
tion [105] by inhibiting telomerase activity [106], the 
effects of acute bouts of exercise on TL require closer 
examination. Borghini et al. [47] reported a significantly 
reduced rTL in athletes during and after completing an 

ultra-long running distance endurance race (330  km) 
as a result of oxidative DNA damage. However, TL was 
better preserved amongst athletes in comparison with 
sedentary controls; thus, these findings imply that regu-
lar endurance exercise still has beneficial effects on TL 
over a longer period of time in comparison with inactiv-
ity. Antioxidant mechanisms might be sufficient in han-
dling an increase in reactive oxygen species (ROS) during 
regular endurance exercise due to adaption over time; 
however, such regulation mechanisms of ROS might be 
overwhelmed by an elevation of oxidative stress from an 
acute episode of high-intensity exercise.

In contrast, Laye et al. [107] showed no statistically sig-
nificant changes in TL after exposure to extreme physi-
ological stress of completing seven marathons in seven 
days. Of note, TL was analyzed in peripheral blood mon-
onuclear cells or skeletal muscle biopsies. As previously 
mentioned, this non-change might be attributed to the 
above-average physical fitness level of the athletes. These 
high-performance, long-distance athletes might be less 
affected by ROS, which might correlate with a milder 
effect of oxidative stress on telomere biology. As such, 
these findings may not translate to the normal non-ath-
lete population. Moreover, telomerase activity, which is 
described as a more accurate marker of muscle turnover 

Fig. 2 Summary schematic on the potential impact of exercise on telomere length and attrition. Created with Biorender.com
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than mean TL [108], could not be detected in the skeletal 
muscle biopsies.

Although some evidence suggests an acute bout of 
exercise has an immediate and detrimental effect on 
TL, prolonged exposure to endurance exercise seems to 
attenuate TL attrition, contribute to TL maintenance, or 
even promote TL lengthening via milder ROS effects.

The Impact of Inactivity on Telomere Biology
Inactivity and sedentary behavior are reported to influ-
ence telomere biology [65], with strong association with 
worse health outcomes and higher cardiovascular disease 
risk [109, 110]. Especially in Western countries, while 
formal participation in exercise has increased, a seden-
tary lifestyle has become more prevalent [111]. Along 
with cardiovascular disease, there is an elevated risk for 
other chronic diseases associated with a sedentary life-
style (e.g. metabolic syndrome, type 2 diabetes) that is 
independent of the time spent on exercising [111–114]. 
Sedentary behavior is also linked to decreased muscle 
mass and low muscle strength [115]. Furthermore, pro-
longed sitting is discussed to elevate inflammation and 
oxidative stress levels [116, 117], subsequently contrib-
uting to telomere attrition. In an RCT study involving 
elderly, sedentary, and overweight subjects, Sjögren et al. 
[118] reported significant telomere lengthening by reduc-
ing sitting time; in contrast, increased time spent on exer-
cising was associated with telomere shortening. These 
results indicate that reducing the time spent sitting in an 
elderly at-risk population might be of greater importance 
for TL maintenance than participation in actual exercise. 
Fretts et al. [75] also underline the importance of move-
ment on a regular basis; study participants who accumu-
lated more steps per day had significantly longer TL and 
vice versa. Despite the cross-sectional study design with 
a single time point of data collection, this study stands 
out from similar investigations because of its objective 
measurement of activity where a pedometer was used to 
count the daily steps instead of self-reported question-
naires. In comparison, an investigation of Edwards et al. 
[73] showed only a significant association with TL in par-
ticipants who engaged in moderate-to-vigorous physi-
cal activity (for METs ≥ 3); and no correlation between 
the number of hours of sedentary behavior and TL was 
detected.

In summary, the reduction of sedentary time appears 
to have a positive impact on TL preservation; and 
physical activity may not alone be able to attenuate the 
adverse effects of sedentary behavior. The findings from 
the selected studies seem slightly divergent, on whether 
sedentary behavior or physical activity itself substan-
tially impacts telomere dynamics. Nevertheless, higher 
physical activity levels and reduced sitting time are both 

strongly associated with TL preservation and attenuating 
the aging process at a molecular level.

Effects of Previous Exercise History on Telomere Biology
Although numerous studies promote the beneficial 
effects of physical exercise on TL, further clarification 
is necessary on the required timeframe of the training 
stimulus. For instance, former athletes are associated 
with a healthier metabolic profile and a lower preva-
lence of developing cardiovascular risk factors [119–121]. 
Having a history of life-long training is even associated 
with greater longevity in comparison with the general 
population [122]. Rosa et al. showed that life-long train-
ing volume is proportional to TL [95], which is in paral-
lel to the findings by Hernando et al. [123]. Even though 
extreme endurance exercise has been associated with ele-
vated levels of oxidative stress, TL was better preserved 
in ultra-endurance athletes than in their age-matched 
peers [123], particularly evident in elderly athletes who 
had been training on a regular basis over many years. In 
comparison, there was a lack of significant differences in 
TL between young athletes and their age-matched inac-
tive controls, most likely due to the fewer number of 
years engaged in regular training. These findings are con-
sistent with a study by Borghini et  al. [47]. Namely, TL 
was also better preserved in older endurance athletes in 
comparison with age-matched inactive controls, and no 
changes in TL were reported amongst younger endur-
ance athletes.

In contrast to an athlete population, a combined exer-
cise intervention of strength and aerobic training showed 
significant telomere lengthening in leukocytes as early 
as eight weeks in a population of obese, premenopausal 
women [56]. These results suggest that perhaps a his-
tory of physical activity plays less of an influential role 
than an individual’s health status and physical fitness 
level at baseline. In fact, Laine et  al. [124] showed that 
former elite-class male athletes who restarted training 
did not display any significant differences in TL later in 
life compared to their age-matched active controls. The 
history of vigorous training in these participants was 
limited in their young adulthood, which is a stage in life 
when exercise training might only exhibit a minor influ-
ence on telomere biology [125]. In addition, engagement 
in regular exercise supports telomere maintenance in 
the elderly, regardless of physical activity in early adult-
hood [65, 70]. Nevertheless, Saßenroth et  al. showed 
that longer periods of physical activity (over ten years) 
are associated with longer rTL in comparison with inac-
tive controls [70]. However, it is unclear as to when the 
period of activity (or inactivity) had occurred. Therefore, 
it appears that it is never too late to start exercising and 
benefit from its positive effects on health and telomeres. 
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Exercise seems to have a stronger impact on TL preserva-
tion in later years, since TL attrition itself manifests to a 
greater degree later in life, especially after 70 years of age, 
with associated exacerbated senescence [126].

Effects of Exercise on TL at Different Ages?
For in  vitro studies, there are convincing data on how 
TL is associated with the replicative capacity of a cell. 
However, due to inter-individual differences attributed to 
endogenous (e.g. ethnicity, gender, genetic factors, BMI) 
and exogenous factors (e.g. lifestyle choices and envi-
ronmental stressors), the process of biological aging and 
its effect on TL is much harder to unravel in  vivo [14]. 
Furthermore, assessing the impact of exercise on TL 
presents further challenges, since differences in training 
parameters or the type of exercise may show different 
effects.

Amongst the selected studies, only a very few addressed 
the effects of exercise on TL by comparing different age 
groups [62, 95, 123, 127]. Furthermore, the majority of 
the selected studies involved participants over 60  years 
of age [49, 52, 53, 55, 58, 62, 65, 70, 77, 81, 87, 96, 118]. 
For RCTs, two out of the eight studies involved subjects 
in their late 40 s and 50 s, and the remaining focused on 
subjects over 60 years of age (Table 1). Thus, along with 
the lack of data amongst younger subjects, further data 
comparing the effects of exercise on TL at different age 
groups is required.

The impact of exercise on TL might demonstrate a 
more pronounced beneficial effect from the mid-40 s and 
onwards, as several factors that accelerate telomere attri-
tion are also associated with aging. One of these influ-
encing factors might be the change in body composition 
from a decrease in lean mass to an increase in adipose 
tissue with age. [128, 129]. Physical exercise contributes 
both in the maintenance of skeletal muscle mass and in 
reducing body fat. As increased body fat composition is 
linked to telomere attrition, the benefits of physical exer-
cise are twofold. [130]. This finding is in keeping with the 
observational study by Aguiar et al. [61] that highlighted 
an inverse correlation between body fat and TL in mid-
dle-aged master athletes compared to untrained age-
matched controls.

Possible Molecular Explanations for the Observed 
Discrepancies in TL with Physical Activity
Changes in TL might be a more dynamic process than 
previously assumed. Weischer et  al. [50] reported sig-
nificant findings for both telomere shortening and elon-
gation, which were found in 56% and 44% of all the 
participants respectively (n = 4,576) at 10-year follow. 
In another study, even within two years of follow-up, 
there was a significant decrease in TL [65]. Indeed, how 

exercise modulates telomere dynamics is not yet fully 
understood. Several studies provide possible explana-
tions, highlighting crucial influential factors and molec-
ular processes [61, 127, 131]. Possible explanations that 
could account for such discrepancies in TL are further 
described below.

Tissue‑Specific and Cell‑Specific Differences in Telomere 
Biology
As part of the Genotype Tissue Expression (GTEx) pro-
ject on post-mortem tissues, TL has been shown to be 
negatively correlated with age in the majority of the > 20 
different tissues examined [132]. This inverse associa-
tion of TL with age was most remarkable amongst tis-
sues from the aorta, stomach, whole blood, and kidney. 
However, TL from muscle was found to be neither posi-
tively nor negatively correlated with age. Furthermore, 
amongst different samples of tissue from the same organ 
and from the same individual, TL can vary by a factor of 
sixfold or more [133]. Whole blood may be an attractive 
model-candidate for TL analysis, based on its accessibil-
ity and processibility: however, it is also a tissue that is 
prone to telomere biology disorders (TBDs) which are 
characterized by loss of function mutation in telomere 
maintenance genes resulting in shorter TL.

Almost all of the selected studies analyzed TL using 
leukocytes and/or whole blood. However, telomere short-
ening and the impact of exercise on telomere dynamics 
might be cell-type specific [134, 135]. Also, TL varies 
across different somatic tissues in proportion to their 
replicative activity [136]. Therefore, the results of stud-
ies that analyze TL from one cell type cannot necessarily 
be generalized to other cell types. Changes in TL result 
not only from the frequent replication of somatic cells, 
but also from exposure to environmental toxins; and 
both are associated with a diminished function of post-
mitotic cells [137]. Skeletal muscle, for instance, contains 
mainly post-mitotic myonuclei, which would suggest that 
the TL remains relatively constant and unchanged due 
to the small number of cells undergoing replication and 
turnover during a lifespan [138]. Magi et  al. [139] dem-
onstrate the differences in TL across different cell types, 
where TL was longest in muscle cells and shortest in leu-
kocytes. However, TL was strongly correlated between 
these tissues when differences in their replicative activity 
were considered. Namely, telomere attrition rates were 
similar in highly proliferative blood cells compared to 
minimally proliferative muscle cells. As such, one pro-
posal has been to normalize TL in leukocytes against TL 
in a post-mitotic tissue like skeletal muscle or fat [42]. 
However, in a study by Hiam et al. [140] that investigated 
the effect of aerobic capacity on TL in leukocytes and 
muscle across a broad age range of 18 to 87 years, there 
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was no association of TL in skeletal muscle with aging 
and longer TL was not observed in either leukocytes or 
skeletal muscle. One possible explanation for this dis-
crepancy is that TL varies amongst different lymphocyte 
subpopulations [141, 142]. As such, there is also the pos-
sibility that the observed TL changes could be an artifact 
caused by a redistribution of leukocyte subpopulations. 
Moreover, telomeres of leukocytes shorten by only about 
33 base pairs per year [143], which is hard to detect with 
standard telomere measurement methods. TL also oscil-
lates over time in whole blood samples due to shifts in 
cell populations [144].

Since telomeres are susceptible to oxidative stress 
[145], the antioxidant capacity of different cells (espe-
cially immune cells) could lead to differences in TL, 
especially in a study cohort of endurance athletes. In this 
context, Ludlow et  al. [135] suggest that the protective 
effects of chronic exercise regarding age-related telomere 
shortening are cell-specific. This finding is also congru-
ent with the study by Denham et  al. [134], whereby TL 
derived from whole blood leukocytes was longer (by 6.1% 
on average) amongst endurance athletes in comparison 
with inactive controls. However, no significant difference 
in TL derived from peripheral blood mononuclear cells 
was observed. Granulocytes might play an important 
role in investigating the effects of exercise on telomere 
dynamics, since these cells represent up to 75% of the 
leukocyte population. As glycolysis is the predominant 
metabolic pathway of granulocytes [146], granulocytes 
might be more influenced by intense exercise training. 
As such, the effects of exercise on TL in leukocytes may 
be more reflective of its effects on TL in granulocytes. 
Finally, in comparison with other cell types. Leukocytes 
have a relatively short lifespan of up to 3  days. Taken 
together, differences in TL across different tissue types 
and heterogenicity in subpopulation cell-types need to be 
carefully considered in TL analysis.

Effects of Oxidative Stress on Telomere Biology
Increased levels of oxidative stress due to free radicals 
and/or a decrease of antioxidants are presumed causes 
of telomere attrition and aging [147]. With regular physi-
cal exercise, pro-oxidant levels are reduced and antioxi-
dant defense mechanisms are enhanced, resulting in an 
improved oxidative balance [94, 148]. Furthermore, the 
elevation of oxygen uptake with intense exercise induces 
an increase of superoxide radicals and other ROS, which 
leads to elevated levels of oxidative stress. However, exer-
cise on a regular basis provokes similar adaptations seen 
with acute bouts of training by upregulating antioxida-
tive enzymes, thereby improving the redox balance [149]. 
These changes might further reduce oxidative DNA 
damage, and thus diminish age-dependent telomere 

shortening [139, 150, 151]. The findings by Aguiar et al. 
[61] are in concordance with previous studies, showing 
that sprinter athletes had a better oxidative profile and 
longer telomeres compared to their age-matched con-
trols. Furthermore, body fat was inversely correlated with 
both TL and markers of oxidative stress, further high-
lighting the negative effects of adiposity in aging.

Proteins and Molecular Pathways that Influence Telomere 
Biology
Capping the ends of chromosomes, telomeres, by defi-
nition, include both the repeating nucleotide sequences 
(e.g. G-strand or repeating 5’-TTA GGG -3’ sequences, 
C-strand or repeating 3’-AAT CCC -5’  sequences and 
G-rich overhang or G-overhang) and their associated 
proteins. Telomerase, a ribonucleoprotein, elongates 
telomeres through its own intrinsic RNA sequence and 
reverse transcriptase enzyme. As such, telomere mainte-
nance involves factors that influence telomerase activity 
through tertiary telomeric structures (e.g., T-loop for-
mation, D-loop formation, telomeric repeat-containing 
RNA or TERRA) and through specialized proteins (e.g., 
shelterin and the CST complex) [152].

In brief, shelterin is a complex of 6 proteins (TRF1, 
TRF2, POT1, RAP1, TIN2, and TPP1) that bind to telo-
meric DNA, with each shelterin protein having its own 
unique function in telomere maintenance. For example, 
TRF1 helps to upregulate TERRA transcription [153]; 
TRF2 is involved in the formation of T-loop structure 
which acts as a physical obstacle against aberrant acti-
vation of DNA-damage repair (DDR) mechanisms; and 
RAP1 has been shown to help promote epigenetic-silenc-
ing of genes proximal to telomeres, a process known as 
the telomere position effect (TPE) [154]. When gene 
silencing occurs over long-distances of DNA via long 
telomeres looping back in the chromatin, the phenom-
enon is referred to as TPE-over long distances or TPE-
OLD. The expression of hTERT is thought to be regulated 
by a TPE-OLD [155, 156]. Both TTP1 and POT1 are 
involved in regulating telomerase by promoting proces-
sivity. In contrast, the interaction of telomerase with the 
CST complex (which consists of three proteins of CTC1, 
STN1, and TEN1 or CST in humans) is thought to inhibit 
telomerase activity, thereby preventing aberrant telomere 
extension [157].

Accelerated cell aging is often explained by a lack of 
telomerase activity [158, 159]. Exercise has been shown 
to increase telomerase activity measured by an increased 
expression of hTERT, with TERT as the crucial cata-
lytic subunit of telomerase [160]. Consistent with these 
findings, Cluckey et  al. [127] reported increased hTERT 
expression after an acute bout of high-intensity exercise, 
and this increase attenuated with age. Denham et al. [161] 
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examined 15 retrieved studies on mammals (human and 
rodent) and found that a single bout of exercise or long-
term exercise upregulated TERT and telomerase activity 
in non-cancerous cells. In addition, elderly participants 
showed a significant upregulation of the shelterin pro-
tein TRF2, which is considered a negative regulator of 
telomerase activity [162], possibly through regulation of 
hTERT expression by TPE-OLD.

Diman et  al. [131] identified nuclear respiratory fac-
tor (NRF1), the dimeric form of which is a transcription 
factor involved in cellular growth and metabolism, as a 
crucial regulator of telomere transcription in vitro. With 
upstream regulation of NRF1 by adenosine 5’-monophos-
phate (AMP)-activated protein kinase (AMPK), phar-
macological activation of AMPK in cancer cell lines led 
to an upregulation of TERRA, thereby suggesting a link 
between cellular fitness and telomere metabolism. By 
analyzing skeletal muscle biopsies, increased levels of 
TERRA (which is associated with AMPK activation) 
were found with endurance exercise of 45 min of cycling. 
Taken together, these data suggest that the AMPK path-
way regulates telomere transcription. Since most telom-
eres from muscle cells are likely covered with TERRA, it 
is hypothesized that exercise enables renewing of TERRA 
pools, subsequently preserving TL [131]. In addition, 
exercise-induced elevation of blood lactate might con-
tribute to telomere protection by increasing NRF1 and 
AMPK-mediated expression of TERRA [131].

Overall, telomere biology is a highly complex process, 
and recent studies support that there are differences in 
the regulation of TL and telomerase in different tissue- 
and cell-types. Furthermore, oxidation levels seem to play 
a crucial role in telomere dynamics during training, both 
in the acute and chronic setting. Therefore, it remains a 
challenge to determine which molecular pathways influ-
ence telomere biology through physical exercise.

Methods of Detecting TL and their Limitations
There are a number of different techniques in TL analy-
sis [163]. By far, the most commonly used method in TL 
analysis is qPCR. This technique involves high through-
put amplification of a small amount of telomeric DNA (T) 
that is compared against a single copy gene (S) to gener-
ate T/S ratio. As such, this ratio provides a relative TL in 
a sample. However, with qPCR, the amount of short and 
long telomeres, and differences in TL between individual 
chromosomes cannot be determined. The shortest of tel-
omeres segments propagate DDR and other downstream 
events like cellular senescence. Therefore, a number of 
techniques aim to quantify short telomere segments. 
Terminal Restriction Fragment (TRF) determines the 
average TL via Southern Blot analysis. However, larger 
amounts of DNA are required (3  µg) and the detection 

limit is restricted to smaller telomere fragments of 2 kb. 
The Telomere Shortest Length Assay (TeSLA) [163] is a 
technique that involves a small amount of DNA (1  µg) 
and can detect any of the telomeric ends of chromosomes 
from < 1  kb to 18  kb, along with average TL. However, 
TeSLA is limited to low throughput, and quantification 
of longer telomeres in mice can be problematic. Prior to 
TeSLA, similar methods of Single Telomere Length Anal-
ysis (STELA) [164] and Universal STELA (U-STELA) 
[165] were developed to detect TL using a combination of 
ligation, PCR and Southern Blot techniques. Both STELA 
and U-STELA are also low throughput but require 
greater amounts of telomeric DNA in comparison with 
TeSLA. In contrast, Quantitative Fluorescence In  Situ 
Hybridization (Q-FISH) labels telomeric ends of chromo-
somes for visualization under fluorescence microscopy. 
Flow-FISH also labels telomeres with fluorescent probes; 
however this method of detection involves fluorescence 
activated cell sorting (FACS) analysis. Q-FISH techniques 
have been instrumental in showing that the shortest of 
telomeric DNA segments, not the average TL, are crucial 
for cell viability and chromosomal stability in mice [166]. 
However, these methods are limited by their hybridizing 
fluorescent probe or peptide nucleic acid (PNA) probe, 
which consists of telomeric repeats of CCC TAA A. As 
such, PNA probes can potentially generate false positive 
results by binding to other regions of DNA with telom-
eric repeats located away from chromosome ends.

Conclusions
This systematic review summarizes and supports the 
growing body of evidence that physical activity has an 
impact on telomere attrition and thus on the aging pro-
cess. While the majority of the included studies highlight 
positive effects of physical activity on telomere dynam-
ics, there lacks a consensus on the most beneficial exer-
cise type and training modality (intensity, duration and 
frequency). Furthermore, inactivity is a major risk fac-
tor for cardiovascular disease and several other chronic 
disease conditions, independent of exercise. Notably, the 
amount of reduction in sedentary behavior has a pro-
found and positive effect on preserving and/or increas-
ing TL. With respect to history of previous exercise, 
current level of physical fitness appears to have a more 
important beneficial role than previous exercise on TL. 
In fact, amongst athletes, a history of physical activ-
ity during youth does not appear to play a protective 
role in preserving or increasing TL. Nevertheless, there 
is strong evidence that, lifelong elite- or master-athletes 
will have increased TL in comparison with inactive con-
trols. Although the majority of the studies underscore the 
beneficial role of physical activity on telomere dynamics 
and aging, the molecular events in TL preservation and/
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or elongation remain poorly understood. Along with 
further understanding of telomere biology and potential 
deleterious events at the molecular level (e.g. oxidative 
stress), tissue- and cell-type differences in their analyses 
of TL and telomerase need to also be considered. Future 
studies should provide more detailed information on the 
physical fitness level of the participants, as well as char-
acteristics of the exercise training modality, for standard-
ization and comparison, in order to draw more definitive 
conclusions.
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