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Introduction

The current drug discovery paradigm is, to a large extent, 
focused on high-throughput screening (HTS), an approach 
in which large libraries of compounds are screened against 
the target of interest to identify suitable starting points for 
development.1,2 The hit rate in a typical HTS is relatively 
low, typically less than 1% in most assays,3 requiring large 
compound libraries to generate a sufficient number of hits 
for drug development programs to progress. The size of 
these libraries results in a high cost of screening as well as 
long lead times for campaigns. It is not uncommon for a 
screening campaign’s costs to run into the hundreds of thou-
sand dollars.

With the advent of more disease relevant, but also more 
complex, phenotypic readouts in screening,4 the cost per 
screened compound has often increased. In our experience, 
a cost in excess of $1.50 per well is not uncommon. Clearly, 
there is a need for methods that increase the return rate for 
these screens. In addition, more chemical space than ever is 
now easily available for purchase, and there is a desire to 
query an ever-increasing amount of chemical matter. 

Combining these two developments requires new methods 
that allow more efficient use of time and resources.

An iterative approach can be used as an alternative to the 
brute-force approach of screening the full library.5 In iterative 
screening, the results from the fraction of the library so far 
screened are used as the input to a machine learning agent, 
which generates predictions that are used to select the next 
screening subset.6 Iterative screening has been shown 
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previously to greatly enhance the efficiency of HTS.7 A 
plethora of different approaches for iterative screening have 
been reported, and a detailed review is available elsewhere.5

An iterative approach has previously been impractical 
because of the high labor costs associated with manually 
cherry-picking compounds from a screening deck, but recent 
advances in screening automation have made custom selec-
tion of compounds more broadly feasible, paving the way 
for artificial intelligence in the form of machine learning to 
drive the screening decisions. There is also an intrinsic trad-
eoff between the optimal number of compounds selected for 
the next iteration for the machine learning agent (ideally, it 
would operate with a iteration size of one, updating the 
model and improving its predictive power with the results 
from a single compound) and the practical feasibility of the 
screen. Although some efforts have been made previously to 
streamline this process, for example, through the picking of 
plates rather than compounds,8 there is a need for a thorough 
evaluation of these methods in a practically feasible setting.

Earlier studies have shown that iterative screening can 
greatly improve the efficiency of screening, with a high por-
tion of all active compounds found while screening only a 
small part of the library. In this study, we build on these 
previous results and discuss how these methods can be 
practically applied. We investigate both the influence of dif-
ferent machine learning algorithms and the effects of limit-
ing the number and size of iterations to what we believe is 
practically feasible in most modern lab settings.

Materials and Methods

HTS Data and Compound Representation

HTS data sets were downloaded from PubChem and used as 
provided after removal of duplicated compounds IDs.9 We 
selected the data sets to have no fewer than 50,000 tested 
compounds and to represent a diverse set of assay technologies 

and targets. Compounds were assigned an active or inactive 
label based on the PubChem annotations; any ambiguous 
compounds were labeled inactive. The data sets used in this 
study are listed in Table 1.

Compounds were represented using three different 
methods: extended connectivity fingerprints,10 chemical/
physical descriptors, and molecular graphs. The combina-
tion of fingerprints and chemical/physical descriptors 
were used to train all methods except for the graph convo-
lutional networks that used the molecular graphs. The fin-
gerprints were 1024-bit Morgan fingerprints with radius 2 
from RDKit.11 Ninety-seven chemical/physical descrip-
tors were calculated with the RDKit as well, and these 
descriptors have previously been described and used with 
good results.12 Molecular graphs were constructed as 
PyTorch tensors.13 Each node (representing an atom) had 
75 features.14

To evaluate the diversity of the hits, generic Murcko 
scaffolds were calculated using the RDKit (MurckoScaffold 
module). Generic scaffolds ignore atom type and bond type 
when identifying the scaffold.

Machine Learning Methods

We applied a range of different machine learning algo-
rithms: random forest (RF),15 support vector machine 
(SVM),16 light gradient boosting machine (LGBM),17 deep 
neural network,18 and graph convolutional neural network. 
All algorithms were implemented in Python using scikit-
learn,19 lightgbm, PyTorch, and PyTorch Geometric.

For RF, SVM, and LGBM, a simple hyperparameter tun-
ing was completed using scikit-optimize.20 Deep learning 
models were hand tuned with early stopping implemented 
on test/train loss curves. Detailed parameters used for the 
respective algorithm are shown in Supplementary Table 
S1. A central theme of HTS data is an extreme data imbal-
ance, with active compounds composing a minority of all 

Table 1. PubChem HTS Data Sets Used in This Study.

PubChem AID
Number of Active 

Compounds
Total Number of 

Compounds Usage Target Technology

596 1391 69,668 Development MAPT Fluorescence
628 2179 63,656 Development CHRM1 Fluorescence
893 5649 73,912 Development Hadh2 Fluorescence
894 6428 148,481 Development HPGD Fluorescence
938 1794 72,026 Development TSHR Fluorescence
995 707 70,898 Development MAPK1 AlphaScreen
449739 4230 104,728 Development CACNA1H Calcium fluorescence
624255 4582 76,537 Development Trypanosoma cruzi proliferation Luminescence
1345083 6153 93,211 Development Tox, HEK 293 Cell Titer Glo
598 5142 85,200 Validation H69AR inhibition Cell Titer Glo
488969 2166 105,151 Validation Grm8 Calcium fluorescence
1259354 1804 75,924 Validation IL1RL1 AlphaLISA
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training examples.21 This was addressed by adjusting the 
loss contributions of each example.

Iterative Screening Strategy

Each experiment starts with the initial iteration, consisting 
of 10% or 15% of the compound library selected using 
LazyBitVectorPick from RDKit’s MaxMinPicker module,22 
which picks a diverse set of compounds from a random 
starting point. Based on the results of the screen on this ini-
tial compound set, a model is trained and used to predict the 
hit probability for remaining compounds in the library. This 
prediction is used in selecting the set of compounds for the 

next iteration. We evaluated iteration set sizes of 5% and 
10% of the total library. Following each such iteration, the 
model is updated with the new information, and new pre-
dictions are made to select the next set of compounds.

After training on labeled data, models were used to gen-
erate probabilistic predictions for the activity of remaining 
unlabeled compounds. These predictions were ranked from 
high to low. To generate the list of compounds to be tested 
in the next iteration, a selection strategy operates on the 
ranked compounds. This strategy has two components. The 
first exploits the predictions to choose the compounds most 
likely to be hits for the next round of screening. The second 
explores the remaining compounds in the library to expand 
the model’s understanding of the behavior of untested com-
pounds by randomly selecting compounds from this pool. 
For a given iteration with size X, the exploitation sample is 
of size 0.8X, and the exploration sample makes up the 
remaining component.

To estimate the robustness of the strategy, the entire iter-
ative screening method was repeated three times for each 
data set, each time with different random starting points.

Results

Based on 10% of the library as the initial batch, we evalu-
ated the ability of different machine learning algorithms to 
recover actives across the nine different development data 
sets (Table 1). In each step, the algorithms selected an addi-
tional 5% of the library. The average retrieval is shown in 
Figure 1.

The retrieval of active compounds at 35% and 50% of 
the library is shown in Figure 2. These results indicate that 

Figure 1. Mean recovery of active compounds versus 
percentage of library screened for different machine learning 
methods. An initial iteration of 10% were followed by steps of 
5%. Shaded areas show the 68% confidence interval.

Figure 2. Percentage actives recovered with the respective machine learning algorithms at 35% (left) and 50% (right) of the library 
screened. An initial iteration of 10% was followed by steps of 5%. Plotted data include all three repeats for each data set.
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random forest had a slightly better performance on average 
across all data sets, retrieving a median of 78% of the active 
compounds (a full table of the average and median recovery 
is provided in the supplementary information).

Some variability between the different data sets was 
observed, with the best performing reaching 80% of actives 
recovered at 35% of the library screened and the worst only 
55%. However, this lower recovery was observed for only 
one of the nine data sets (AID_628), which can be more 
clearly observed in Supplementary Figure S1.

To investigate whether the number of iterations could be 
further reduced, we applied a strategy screening that used 
an initial batch of 15% of the library followed 
by two additional iterations of 10%. Again, RF was the 
best-performing algorithm, recovering a median of 71% of 
the active compounds at 35% of the library screened 
(Figure 3).

We also used three additional data sets (Table 1) to vali-
date the best-performing setup (RF). The results confirmed 
the previous results with an average retrieval of 71% of the 
active compounds at 35% of the library screened when 
using a 10% of the library as the initial iteration followed by 
additional iterations of 5%. For these data sets, we also cal-
culated the recovery of Murcko scaffolds23 to evaluate the 
hit diversity (Figure 4). The percentage of scaffolds recov-
ered closely followed the recovery of active compounds.

Discussion

Our results indicate that HTS can be greatly enhanced by 
the addition of iterative screening, in line with what has 
been shown previously.5 In our hands, the hit rate in the 
iterative screening was just greater than twice that of nor-
mal (random) screening, recovering a median of 78% of the 

active compounds when 35% of the library had been 
screened. We chose to focus on 35% of the library because 
this is a small enough fraction to make a large impact on the 
overall screening burden but at the same time allows for the 
identification of a large portion of the hits in our experi-
ments. Evaluation of the hit diversity in terms of Murcko 
scaffolds also showed that we recovered diverse hits.

We wanted to design the approach to minimize the num-
ber of iterations required as this was deemed to pose the 
biggest practical limitation to the implementation of itera-
tive screening. Based on our experience, up to three itera-
tions is manageable without causing too much additional 
work in the form of compound picking and plating. This is 
fewer iterations than has been reported in most other itera-
tive screening studies,5,7,24 although some examples exist.25 
Using these settings, screening an initial 15% of the library 
followed by two additional iterations of 10%, we demon-
strate that up to about 70% of the active compounds can be 
recovered while screening only 35% of the library. This rep-
resent a major saving of both cost and effort, especially for 
more advanced and costly assays, and it represents a level 
of improvement that, in our opinion, enables many more 
complex assay setups and provides the potential for better 
exploring chemical space.

Although smaller iterations give a higher retrieval of 
active compounds (78% vs. 71% when using 5% and 10% 
of the library in each iteration, respectively), we believe that 
three iterations of 15%, 10%, and 10% is a reasonable trad-
eoff in most settings. However, if maximal performance is 
sought, reducing the number of compounds screened in 
each iteration and increasing the number of iterations is 
recommended.

Figure 3. Mean recovery of active compounds versus 
percentage of library screened for different machine learning 
methods. An initial iteration of 15% was followed by steps of 
10%. Shaded areas show the 68% confidence interval.

Figure 4. Recovery of Murcko scaffolds on the test data sets, 
three replicates were performed each with a set of starting 
compounds selected with LazyBitVectorPicker using a random 
starting seed. An initial iteration of 10% was followed by steps 
of 5%.
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Similarly, if the objective is to reduce the number of 
screened compounds as much as possible, an even smaller 
library fraction should be considered. However, for these 
applications, other considerations become important, such 
as the diversity of the identified hits. Screening of a very 
small fraction might risk compromising the hit diversity 
despite enrichment of the total number of actives.

Clearly, these methods can be used for in-house com-
pound collections, but perhaps more excitingly, they can be 
used to select compounds for each iteration to be purchased 
from a vendor catalogue. This not only circumvents the 
need for an in-house library and automated compound plat-
ing, making screening more accessible to academic (or 
other resource constrained) groups, but also unlocks access 
to a much larger chemical space for compound picking. The 
downside to using an external supplier is the lead time to 
source the new plates, resulting in a delay between itera-
tions of up to a few weeks. An additional benefit to iterative 
screening methods, for both in-house and externally sourced 
libraries, is the potential to include various filters when 
selecting the compounds. If the library contains compounds 
that are undesirable for the project at hand, these can easily 
be excluded because the compounds are picked individually 
anyway.

Potential practical challenges remain and must be con-
sidered before embarking on an iterative screening cam-
paign. Although good results can be obtained with just three 
iterations, there are logistical challenges with screening 
iteratively, as compound picking can be resource intensive 
and the interim analysis of screening data will potentially 
require more time for quality control and data management. 
If the lead time to produce the next iteration of plates is 
long, for example, if the compounds are ordered for each 
iteration, there is also a need for a process to maintain or 
reinstate cell cultures and to monitor assay performance. 
Although these are real issues, we believe that the increase 
of more cost-intensive assays will alter the balance in favor 
of iterative screening as compound-handling costs become 
dwarfed by other costs. In addition, the time requirement 
for some assays will be such that a full HTS cannot be 
enacted.

Throughout the iterative screening process, monitoring 
the process and evaluating whether the screening is on track 
are key. Because the difficulty in hit finding varies for dif-
ferent targets (variable hit rate), it is challenging to know a 
priori if sufficient hits will be generated for a machine 
learning approach to be efficient. For example, if after the 
first iteration of screening no hits have been identified, we 
would recommend either stopping the screening efforts or 
committing to screening the remainder of the library. An 
alternative approach is to try to leverage the continuous 
assay readout for machine learning, as there are examples 
of iterative paradigms using weak signals in the screening 

data to enrich actives in subsequent iterations.26 The perfor-
mance of the iterative process can also be monitored and 
compared with the initial hit rate of the first batch; if the 
second iteration does not appear to deliver an increased hit 
rate, a switch to a full screen can be enacted.

Rewardingly, our experiments show that the method is 
not that sensitive to the selected machine learning algorithm 
(Figures 1 and 2). However, on average, RF had slightly 
better performance across the data sets. Recently, there has 
been substantial interest in deep learning methods for vari-
ous predictive tasks, including applications in drug discov-
ery.27 Although these methods might improve the predictions 
in certain settings, our results show that a deep learning 
method does not necessarily produce better results than 
more light-weight machine learning algorithms. This is, in 
many ways, good news, as methods such as RF are much 
faster to train and require less specialized knowledge to 
implement. Although we make no claims to have discov-
ered the optimal method for iterative screening, the perfor-
mance observed is more than sufficient to warrant the use of 
iterative screening. The method suggested in this article is 
able to retrain and predict the compounds for the next itera-
tion in a matter of a few hours on most modern computers.

Iterative screening methods are sometimes not adopted 
because of concerns that hits will be missed when the whole 
library is not screened. Although this might be correct if all 
compounds that could ever be accessed were contained in 
the library, if other compounds could be considered, an iter-
ative screening approach screening the same number of 
compounds as the initially considered library would almost 
certainly be far superior. Indeed, it is better to understand 
the benefits of iterative screening in terms of cost per hit. 
For any given budget, this method returns more than double 
the number of hits than can be expected using today’s HTS 
approach. This increased efficiency in terms of dollars per 
hit offers major benefits to small or resource-limited organi-
zations. If a smaller number of compounds are screened 
with higher efficiency across an entire organization, that 
organization can pursue more programs with the same bud-
get (in theory tripling the number of targets screened) while 
also significantly reducing the depletion of the compound 
library.

In conclusion, we show that iterative screening has 
matured to a point at which it is practically feasible to 
implement in the screening organization. Using well-estab-
lished machine learning approaches, iterative screening can 
deliver significant boosts in screening efficacy and unlock 
more advanced and costly assays for large-scale screening.
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