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Three of the seven leading causes of disability globally are mus-

culoskeletal in origin, with two involving the spine.1,2 Disease

burden diminishes the quality of our ever-increasing life spans as

each year is accompanied by additional debilitating musculoske-

letal conditions. Commensurate with its leading role in disability,

low back pain is one of the costliest conditions treated annually

with indirect and direct costs over $100 billion USD in the United

States alone.3 Current guidelines on the treatment and manage-

ment of spine disorders are regionally heterogeneous and incom-

prehensive. Furthermore, a universally accepted and robust

model of patient care does not yet exist anywhere in the world.

Technological advancement in recent years has brought

intelligent computing to nearly every industry. Although its

integration into the current healthcare landscape is notoriously

slow, advancements in healthcare technologies are being made

at blistering speed. This is especially true in spine care, and in

orthopedic and neurological surgery as a whole. The purpose of

this editorial is to describe several current healthcare models

applied to spine care and their shortcomings. Specific focus

will be placed on how artificial intelligence (AI) and other

promising cutting-edge technologies will collectively pave the

way for a revolutionary personalized-based model designed
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with the intent to provide precision care, known as—

“Intelligence-Based Spine Care (IBSC).”

Current Models in Spine Care

Three popular approaches to healthcare that are relevant to the

treatment of spine pathology are the evidence, outcome, and

values-based models. The evidence-based model categorizes

research into levels based on study design (e.g. case reports,

retrospective, prospective, etc), and employs the highest level

evidence available for clinical decision-making. The evidence-

based model suffers from limited availability of Level 1 evi-

dence data (e.g. randomized controlled trials),4 particularly in

sub-specialty fields as spinal cord injury, trauma and pediatric

orthopedics.5 Thus, these results are challenging for clinicians

to interpret in the setting of conflicting and inconclusive

results.6 Additionally, data from similar levels of evidence may

be viewed as equivalent, when actual study quality may vary.

As such, extrapolating results to individuals should be exer-

cised with caution.6 The outcomes-based model emphasizes

patient-reported outcomes, such as pain and functional capac-

ity, to assess treatment efficacy. However, this model can suf-

fer from subjective metrics and socioemotional covariant

factors. The value-based model is the outcomes-based model

calibrated by dollars spent on care. The weight given to cost

savings may disproportionately favor less expensive and less

efficacious treatments. Furthermore, monetary value in spine

care is not standardized nor consistent among countries and

regions.7,8

In practice, these models are not applied to patient care in

exclusion, and they have inherent limitations, particularly in

their ability to have more personalized or bespoke treatments.

Providing care based on previous experiences or outcomes may

fail to incorporate unique characteristics inherent to each

patient and their condition. The problem may not be the paucity

of data, but rather the “lack” of specific techniques applied to

achieve the data’s optimal application.

Artificial Intelligence—Why Should
We Use It?

One challenge in optimizing the treatment approach of spine

disorders is interpreting the many data points that influence

individual patient outcomes. For example, two patients may

have identical imaging studies but vastly different symptoms

and functional capacities, making the information available to

physicians difficult for interpretation and interventional plan-

ning. For instance, in a review of 33 studies that included over

3,000 individuals, an extremely high prevalence of spine

degeneration was found on imaging among asymptomatic indi-

viduals despite that radiographic evidence of degeneration is

associated with low back pain.9 Traditional approaches strug-

gle to meaningfully apply the wealth of collected patient data to

patient care. How can the spine community leverage this data

to create a more precise spine care model that can better per-

sonalize treatment? With the power of AI, we can begin to

understand the spine through multiple facets as they interact

with one another instead of as independent occurrences, unlike

how traditional statistics currently addresses the situation.

Much confusion regarding the essence and definition of AI

looms within the spine community. Often, the term AI in our

colloquia is used interchangeably with machine learning (ML)

or deep learning (DL). Since AI is an all-encompassing

umbrella, which contains a vast array of subjects, most notably,

natural language processing (NLP), ML, and DL, it has become

important to explicitly delineate these terms as their respective

technologies become more integrated into spine care.

Artificial Intelligence—How Is It Defined?

Various definitions of AI have included the evaluation of arti-

ficial thought processes, reasoning, and behaviors with respect

to human or idealistic performance.10 According to Arthur

Samuel,11 a pioneer in the field of AI, ML is a branch of AI

which is defined as “the field of study that gives computers the

ability to learn without being explicitly programmed.” As a

subset of AI, the term ML might be intimidating or evoke

imagery of various sci-fi movies, but many ML techniques are

simple, and used frequently under more familiar names. For

instance, linear regression falls under the title of both ML and

AI. More broadly, ML consists of various predictive methods,

such as regression, classification, and anomaly detection. One

step further is DL, a subset of ML, concerned with collections

of algorithms that function in a manner that approximate how

networks of biological neural cells interlink. Machine learning

algorithms are capable of making sense of seemingly stochastic

datasets that are challenging for human observers to interpret

and so may serve as the perfect tool set to tackle our data

challenges.

Applications of Machine Learning

Regression techniques within ML may involve popular predic-

tive algorithms, such as the LASSO or Ridge regression mod-

els, which entail an internal penalization to identify the most

important independent variables required to predict the depen-

dent outcome. In classification techniques there may be a solu-

tion to outcomes wherein the outcome predicted is classified

into groups. Additionally, anomaly detection may present

unique advantages in datasets for which the result may have

a scarce minority class, such as in the case of postoperative

complications. To date, the most impactful use of ML in the

field of spine research has been the application of artificial

neural networks.12 With origins dating back as early as the

1940s, these artificial structures have now exceeded human

performance in many tasks such as image processing and object

classification, which employ convolutional neural networks

and are the foundation of DL.

As early as 1988, a perceptron, a simple shallow artificial

neural network, demonstrated the ability to diagnose low back

pain into four categories with higher accuracy than physicians

by using the inputs of symptoms and medical history.13 In
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2010, a support vector machine showed proficiency in classify-

ing scoliotic curves based on radiographs.14 Several studies

have sought to leverage ML models to predict perioperative

complications such as cardiac decompensation, need for blood

transfusion, and wound infection with mixed results.12 Others

have focused on outcomes of spine surgery. For example,

McGirt et al15 performed linear regression with Bayesian

model averaging to predict the Oswestry Disability Index at

one year with score accuracies that varied from 72% to 84%.

Belykh et al16 predicted the likelihood of reherniation follow-

ing a microdiscectomy at a single institute with relative suc-

cess. Another application of ML modeling is to develop novel

scoring methods that assess the risk of having a particular

pathology. Goldschmidt et al17 used 2 regression models, one

with cervical and one with lumbar radiographic data, to

develop scoring scales that assess risk of sagittal imbalance

with strong results.

Existing ML-based decision support tools (DSTs) have been

implemented in dermatology and radiology to enhance clinical

decision-making by leveraging the predictive power of ML

models to personalize care. Neural networks have been used

in the development of computer-aided detection systems for

analysis of radiographic data to assess spine disorders, such

as pathological curvatures, vertebral fractures and interverteb-

ral disc degeneration.12 Current developments in DSTs are

focused on surgical treatment, conservative care and prediction

of intervention for low back pain.12 Given the wide impact that

ML has generated across many fields, it is evident that spine

specialists are awaiting ML to intelligently personalize their

clinical practices.

Applications of Deep Learning

Artificial intelligence techniques are increasingly used in sev-

eral fields, such as object detection in images and videos,

speech recognition, autonomous driving, and natural language

processing. In particular, DL, which is typically based on arti-

ficial neural networks with multiple layers of processing units,

is emerging as the most promising branch of AI for complex

tasks such as medical image processing.18 Its main advantage

with respect to other ML techniques is the capability of learn-

ing independent variable importance solely from data, without

the need for manual engineering and selection of independent

variables.19 Some years ago, scientists proved that DL can

achieve superhuman performance in object recognition and

image classification.20 Current technologies widely exceed

human results in several applications,21 and the future promises

an even brighter outlook.

Although the actual impact of DL on spine imaging is still

rather low, some scientific studies are available in the litera-

ture. Scientists from the University of Oxford have reported on

the automated extraction and classification of degenerative

features in lumbar magnetic resonance imaging (MRI) scans,

such as disc degeneration grading, disc narrowing,22,23 end-

plate alteration,24 localization of the so-called “evidence

hotspots” which justify the model predictions, as well as

automated localization and segmentation of intervertebral discs

in 3-dimensional datasets.25 Others have described ML

methods for the evaluation of the severity of scoliosis on

multi-planar x-ray projections26,27 and to classify the pattern

of curvature of adolescent scoliotic patients.28

Companies providing imaging services, mostly consisting

of supporting the imaging tasks in clinical trials, showed a

limited interest in the use of DL methods in Neuroradiology

so far. Well-known companies active in the spine field such as

Medical Metrics, Inc. (Houston, TX, USA) and Raylytic GmbH

(Leipzig, Germany) mostly focus on the quantification of

motion and use non-AI methods. Mirada Medical Ltd. (Oxford,

UK) is involved in the research carried out at the University of

Oxford, but does not yet offer any commercial service that

concerns the spine. A number of companies propose, among

others, a few DL algorithms addressing specific clinical ques-

tions related to the spine. For example, Aidoc (Tel Aviv-Yafo,

Israel) developed a DL-based product which includes the

detection of bone hypodense findings in the cervical spine.

Zebra Medical (Shefayim, Israel) offers a product which pre-

dicts the risk of osteoporotic fracture from existing spine CT

datasets. Optasia Medical (Cheadle, UK) offers a commercial

service for the analysis of osteoporotic vertebral collapse in

sagittal x-rays and dual-energy X-ray absorptiometry (DXA)

lateral scans.

Regarding medical image analysis, DL is increasingly used

for a number of tasks, including detection of anatomical and

pathological structures, image segmentation and computer-

aided diagnosis.19 Specific current clinical applications of DL

include detecting mitosis29 and cells30 in breast cancer histo-

logical images, segmenting infant brain MRI scans to diagnose

developmental anomalies,31,32 classifying pulmonary

nodules33,34 and supporting the diagnosis of Alzheimer dis-

ease.35 With respect to other research fields, medical imaging

studies are typically characterized by a lower availability of

data, in the range of hundreds or few thousands instead of

millions of images, which poses technical challenges currently

subject to intense research.

For the past 20 years, the spine field has seen a surge in

studies addressing human genetics and the ability to identify

millions of individual single nucleotide polymorphisms in rela-

tion to various imaging and/or clinical phenotypes.36-49 In fact,

we have been witnesses to the rise of transcriptomics, proteo-

mics, microbiome, metabolomics and a plethora of other big

data “omics” platforms along with their applications toward

spine disease. Even the phenotyping of disc cells and other

spinal structures, the exponential rise of molecular and biomar-

ker epidemiology, and motion kinematic and analyses further

lend to multidimensional big data considerations and integra-

tion between different disciplines.50-54 Oftentimes the chal-

lenge is to find meaningful results that can be replicated in

other cohorts and ethnic populations. How such data is inter-

linked, interacts with each other and is further related to ima-

ging and other clinical parameters goes beyond a basic

statistical undertaking and beckons much more complex ana-

lytical processing.
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Natural Language Processing

Natural language processing (NLP), also known as neuro-

linguistic programming, is a computational technique at the

intersection of AI, theoretical computer science, and human

language, involved in translating unstructured data into a struc-

tured format (i.e. human communication and language into

numbers for computation). This is a method by which textual

information may be chiseled into meaningful data. Broadly,

NLP has been used to produce automated chat bots, speech

recognition software, machine translation of human languages

for communication, and much more. Examples of such algo-

rithms include Amazon’s Alexa, Grammarly spell checking, or

targeted advertisements based on one’s search history. More

specifically, numerous applications of such techniques have

been observed in orthopedic and neurological spine surgery

research. Ehresman et al55 employed NLP algorithms to extract

patient data information to identify incidental durotomies

through the review of free-text operative notes. Karhade

et al56 proved that NLP may offer entities such as national

spine registries and hospital quality and safety departments

automated tracking of such incidental durotomies with extreme

accuracy.

The applications of NLP go beyond identification of duro-

tomies in operative notes. Natural language processing has

been used to identify clinical notes involving wound infection

that required reoperation after lumbar discectomy, allowing for

the accurate automation of such reporting.57 These studies offer

a glimpse into the possible applications. Such techniques may

improve the efficacy of data collection and reporting consider-

ing the use of a single algorithm in lieu of manual extraction by

multiple individuals for which variability may result.

Augmented, Mixed and Virtual Reality

Advancement in computing power and miniaturizing of key

hardware components has led to significant advancement of

virtual reality (VR), augmented reality (AR) and mixed reality

(MR) systems. Virtual reality is a computer generated environ-

ment where the user is fully immersed into an artificial world.

This is accomplished by having the user wear a head mounted

display along with haptic feedback devices that allow the user

to interact in the artificial environment. Augmented reality is

different from VR in that it does not create a new artificial

environment. It is an additional layer of computer generated

imagery or information onto a real world environment. This

additional layer supplements or augments the user’s real world

environment. Mixed reality is an interplay of both virtual and

real world environment, and allows the user to interact and

manipulate components within the virtual and real world simul-

taneously. In spine surgery, VR has been employed in the

education and guidance of trainees for pedicle screw fixation,

showing increased accuracy in comparison to traditional teach-

ing methods.58,59 Further, AR has been used in spine surgery

for surgical navigation, most commonly when performing

pedicle screw placement. Studies have shown that AR was

helpful in surgical navigation with high accuracy of pedicle

screw placement.60 The first AR surgical navigation system

has received FDA clearance for spine surgery and has been

used recently in posterior lumbar decompression and fixation

surgery.

In terms of patient care, VR has been used as a distraction to

attenuate pain, known as “VR Analgesia.” Patients have

reported decreased subjective pain scores using VR. These

findings were corroborated by functional MRI studies showing

decreased brain activity in areas activated during thermal pain

stimulation.61 The concept of VR analgesia has been applied in

different ways including attenuating procedural pain in chil-

dren62 and increasing range of motion and decreasing pain

scores during physical therapy in adults.63,64

Technological enhancements have led to wider access and

adoption of VR and AR in general society. These systems have

been used in medical training as well as in patient care. While

promising, the technology is nascent, and studies are limited.

Further robust studies will be needed for wider adoption of

these modalities.

3D Image-Based Phenotyping, Segmentation
and Printing

A natural extension to planar imaging is the development of 3D

visualization modalities, including the ones described in the

previous paragraph (see section Augmented, Mixed and Vir-

tual Reality) because they share the same origin: segmentation.

This is the method used to produce a solid virtual model from

the stack of planar images resulting from modalities, such as

computed tomography (CT), MRI, and with increasing

frequency, ultrasound imaging. With these models, the

3-dimensional geometry of the object being studied becomes

a live, accessible object that the clinician or researcher can

interact with, further potentially providing millions of data

points of interest in the 3D perspective.

For the longest time, ironically, the most important limiting

factor for adopting 3D clinical diagnostics has been the widely

available planar radiograph. In historical terms, it can be said

that the radiograph provided the earliest version of an image-

based phenotype. Spinal features like the Cobb angle, disc

height, disc grade classification (MRI-based) or spinal rotation

in scoliosis cases (CT-based) are image-based phenotypes that

provide clinicians and researchers with important information

for basing treatment and advancing the field.50,65,66 In fact, 3D

classification-based systems for spine pathologies are starting

to gain traction and may be more commonplace67,68 as the

technology becomes available and the understanding of their

clinical relevance is robustly substantiated and superior to the

traditional 2D. Since in the past the 2D perspective has yielded

speculation as to its clinical relevance and actual utility, the 3D

perspective can perhaps shed more robust understanding as to

any association, prognostic, or targeted diagnostic assessment

of structural spinal phenotypes in relation to the pain/function/

disability profile.69,70
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While commonplace and low-cost, the x-ray does not serve

the purpose of describing the 3D geometries of the spine and its

components (or any other musculoskeletal structure, for that

matter). By describing 3D data in 3D, more accurate research

and clinical results are possible. The field is advancing in this

direction with visualization techniques that, besides being

immersive, are disruptive because they provide a tangible object

for the clinician.71 Instead of relying on planar images on a

screen, these subject-specific models can be used for additive

manufacturing (also known as 3D printing) of surgical guides,

anatomical models or serial-replication of research-oriented

models (i.e. printing rare cases or conditions for teaching,

patient education, or laboratory research),72 as well as computa-

tional analyses such as finite element analysis (FEA; see section

Computational Modeling). 73-75

Besides a well-regulated practice of additive manufacturing,

be it at the point-of-care or outsourced to a printing-service

bureau, the issue of cost is always what drives the introduction

and adoption of any new product to market. This is being

addressed by other medical AM entities like the Radiological

Society of North America (RSNA) and the American Medical

Association (AMA). In fact, on July 1, 2019, the RSNA and

AMA entered into an agreement to implement temporary cur-

rent procedural terminology (CPT) codes76 that enable reim-

bursement of 3D printed and segmented products. In a further

boost to usage implementation, the American College of Radi-

ology (ACR) and the RSNA have developed a registry to cap-

ture 3D printed and segmented product usage with the impetus

of keeping the momentum toward full reimbursement. This

impulse is shared by the U.S. Centers for Medicare and Med-

icaid Services (CMS), where plans to reimburse two of these

codes motivate its use in a wider population.

The fact is that segmentation has opened new ways to ana-

lyze, diagnose and study subject-specific data and has contrib-

uted vastly to the improvement of diagnostics by creating new

avenues to look at the spine. A vast majority of these new

metrics need to be validated and used clinically to prove their

utility as 3D image-based phenotyping. With the advent of

additive manufacturing in medicine, new regulations and stan-

dards are needed to ensure the safety of 3D-printed implants,

especially with respect to the implant alloy’s microstructure,

residual impurities, and micro-porosities. There are on-going

efforts by the Food and Drug Administration77,78 and the

ASTM/ISO in developing standards79 for additive manufactur-

ing worldwide.80

Robotics and Surgical Planning

Technical advancements have led to the growth and adoption

of surgical robotics and robotic-assisted spine surgery. In its

current state, surgical robotics are highly reliant on periopera-

tive surgical planning, radiographic imaging and stereotactic

instrumentation with the goal of optimizing accuracy and effi-

ciency.81 Additional potential advantages include the inherent

indefatigability associated with robotic systems and limiting

radiation exposure associated with commonly performed spinal

procedures. Clinically, these technologies may assist in produc-

ing consistent, reproducible outcomes that eliminate human

error, though, comparison with manual techniques has revealed

mixed results.82,83

Integration of AI and ML to surgical robotics may be the

next major development in this field. Artificial intelligence is

already being harnessed for surgical planning and image pro-

cessing, both of which are critical to robotic surgery.84 At its

core, robotic systems consist of three major components: sen-

sors, end effectors, and a control matrix that synthesizes

applied data into action.85 Machine learning has the potential

to augment the interaction between the robot, its environment,

and the surgeon, whereby the ML augmentation is used to

continuously analyze the data generated by the environment

so that the robotic system learns from its own experience. This

reinforcement learning would allow the system to potentiate

good outcomes while avoiding negative outcomes through its

feedback system.86

Currently, robotic technology has been limited to robotic-

assisted surgery using a human-controlled model rather than

completely autonomous robotic surgery. The primary use of

robotic-assisted spine surgery has been pedicle screw instru-

mentation, though its application for pelvic fixation and spine

tumor surgery has also been described.87 The indications for

robotic-assisted spine surgery will likely continue to grow with

advancements in imaging and navigation technology allowing

for its application in surgical decompression and more complex

procedures. With the incorporation of AI and ML platforms,

this technology will also improve preoperative planning based

on data analytics and image processing. Furthermore, the com-

plex processing capabilities provided by AI could provide

immediate feedback that not only allows for real time analysis,

but anticipates dynamic changes intraoperatively.88 While the

transition to completely autonomous robotic spine surgery is

unlikely in the near future, AI and ML can be used to negotiate

continuous feedback between the human operator and machine

with the goal of improved performance and clinical outcomes.

Sensors, Wearables and Remote Patient
Monitoring

Remote patient monitoring (RPM) technology allows patients

and physicians access to real-time data collected from wearable

or implantable devices.89 While physicians traditionally could

only monitor and treat patients who were physically situated in

healthcare facilities, RPM technologies have shifted this para-

digm to allow for real-time data collection and feedback

between patients and physicians regardless of patient location.

Patient-generated data can now be uploaded to secure online

platforms to be accessed in user-friendly formats by patients

and their medical teams, allowing feedback systems to alert

patients in real time about critical results. These platforms are

transforming the care of medical conditions, such as diabetes

and congestive heart failure, and more recently have found

their way into orthopedic and spine care settings as well.
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Smart implants have been designed for use and implantation

in the spine. Rods connected to strain gauges have been used

for decades to determine the amount of force across spine

fixation constructs.90 Sensor technology can now provide

intraoperative data regarding rod strain during reconstructive

spinal procedures, and technology currently being developed

could build off this and potentially be implanted to provide this

data post-operatively as well. Smart implants have also been

designed to monitor load across segments.91 Further iterations

of these technologies may help determine if and when fusion

occurs at operated levels, or better understand the load and

wear dynamics of disc arthroplasties.

Cameras and gait analysis platforms have described patterns of

gait dysfunction caused by conditions such as myelopathy.92 Smart

fabrics and shoes as well as other wearable devices using a variety

of sensors such as accelerometers, gyroscopes, strain gauges and

electrogoniometers, can further be used to collect real-time data to

help monitor and manage patients remotely. Studies have used such

technologies to track patients after spine surgery or after spinal cord

injury to monitor rehabilitation progress.93 Other devices have been

developed to monitor posture and provide feedback when poor

posture is encountered in hopes of decreasing injuries and promot-

ing improved overall spine health, although these remote monitor-

ing technologies have shown inconclusive results thus far.94

Sensors have also been incorporated into braces used to treat chil-

dren with scoliosis.95,96 These allow remote monitoring of brace

wear which, combined with physician feedback to patients about

these results, can lead to improved compliance with bracing, which

in turn can decrease curve progression in children with scoliosis.

In recent years, consumer wearables and sensors (i.e. smart

phones and watches) have been highly promoted as a means to

improve health and modulate physical activity. Data collected

from wearables is not entirely reliable, accuracy varies between

manufacturers,97 and the devices themselves have not demon-

strated a meaningful impact on health care outcomes.98 This is

not to say consumer wearables are without the potential for

clinical utility, as the Apple Watch has been shown to accurately

detect paroxysmal atrial fibrillation.99 Wearable devices can

also accurately assess sleep.100 As there is a link between quality

of sleep and pain,101 including low back pain, if these devices

positively influence sleep patterns, they may be useful in the

management of such pain. The use of wearables by patients as a

means of improving wellness has been advocated by healthcare

entities.102 Apple recently announced a healthcare initiative in

partnership with the government of Singapore called Lumi-

Health that is designed to leverage the Apple Watch platform

to encourage Singaporeans to adopt healthy habits. Efforts are

being made to integrate consumable wearable technology mean-

ingfully into healthcare infrastructure, and it may only be a

matter of time before their effects are felt in upon the

musculoskeletal community.

Computational Modeling

“Toward patient-specific modeling” is a frequent phrase found

in the titles of scientific literature. In the past, limitations of

computer power, time-intensive manual modeling procedures

for patient-specific anatomy, limited resolution of clinical

images, and the need for detailed characterization of material

properties have limited the full application of patient-specific

computational models. Today, advances in computational

power and techniques are beginning to provide personalized

predictions of patient reaction to implants, surgical procedures,

and nonsurgical interventions, albeit only for a few patients to

date. Computational modeling techniques, such as FEA have

advanced to the point where we are close to the ability to

virtually simulate interventions and predict the effect of sur-

gery or non-surgical treatment on joint mechanics and biologi-

cal behavior for large numbers of patients—all in an automated

matter.

Much of the spine literature on patient-specific computa-

tional models for clinical decision making involve scoliosis

treatment. Almost two decades ago, Gréalou et al103 generated

patient specific FEA models of the spine and rib cage to under-

stand how costoplasty could help correct spinal scoliotic defor-

mities.103 More recently, patient specific FEA has been used to

determine the best point of force application for brace design

to correct scoliotic deformity.104 Another tool was developed

to monitor and plan treatments for adolescent idiopathic sco-

liosis on a web-based platform to facilitate collaborative clin-

ical decision-making.105 The intent was to provide a web-based

approach to monitoring curvature change while minimizing the

number of radiographs required and exposure to ionizing radia-

tion. Computational models could also be used to monitor and

guide future surgeries, as investigated by Jayaswal et al106 for

juvenile scoliosis patients. Partial curve correction surgery is

performed with growing rods, followed by a series of lengthen-

ing surgeries to correct spinal curvature while allowing long-

itudinal growth of the spine.107-111 A patient-specific model of

the juvenile scoliotic spine for the thoracic region was used to

provide personalized distraction intervals that would avoid

fracture of growth rods.

One barrier to using sophisticated FEA models as pre-clin-

ical planning tools is the need for automatic mesh generation in

highly complex structures, such as the spine. Researchers have

developed sophisticated tools to ease the development of high

quality hexahedral meshes.112 Extensions of this work include

virtual surgeries and treatment planning. Zhang et al113 are

developing an integrated computer aided design-FEA work-

flow for designing patient-specific spinal cages. The intent is

that patient specific FEA can help determine the design of

spinal cages that provide the most ideal mechanical environ-

ment to the system. The method of combining computer aided

design and FEA decreases the amount of time it takes to create

and evaluate a model and run multiple design iterations.

Finally, the newest techniques combine traditional FEA

with mechanobiology to predict mechanical and biological out-

comes. Van Rijsbergen et al114 developed a model to predict if

patients will have adjacent segment disc degeneration and bone

remodeling after spinal fusion. In this case, patient-specific

computational models require not only detailed patient geome-

try, but predictive rules for bone remodeling and biochemical
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disc responses. This moves toward predicting which patients

are good candidates for spinal fusion versus those at high risk

for adjacent segment degeneration. As techniques for automat-

ing model generation continue to improve, and theoretical

models governing bone adaptation and biochemical responses

become more sophisticated, patient-specific computational

modeling will be one more tool that the clinician has in his/her

arsenal to help with decision making.

Intelligence-Based Spine Care Model

Coupled with the expanded understanding of imaging and clin-

ical phenotypes toward a more precision-based approach for

managing spine patients, the multidimensionality of data-

driven results and analytics become exponentially more com-

plex. However, with the use of AI, ML, and DL platforms and

the innate capacity of bioinformatics, the onus for quick, reli-

able diagnostics, clinical decision-making, risk profiling,

patient stratification and predictive modeling in more unbiased

dimensions seems to have ushered in the era of an IBSC

model. In this model, the analysis of such complex platforms

will take a more prominent role, either directly or indirectly, in

the decision-making of spine patient care and will set the stan-

dard for the personalized management of spine pathologies.

These intelligent platforms will operate in tandem to collect

and analyze all data available about the patient in real-time,

feeding inputs and outputs into each other as needed, thereby

growing smarter and increasingly precise with respect to time

spent learning (Figure 1). Spine specialists will play the central

part in the IBSC model by leveraging their medical expertise

and practical knowledge to interpret and implement the analy-

ses made by integrated platforms into patient care.

Although IBSC appears attractive, additional studies are

needed to assess the true efficacy of this model as well as the

short and long-term costs of integrating advanced technologies

into spine care. The infrastructure to support large-scale data-

generating, merging, and sharing initiatives in the spine com-

munity is needed for various pathologies. Multidisciplinary

collaborations are essential to provide training sets that may

validate and refine various analytical models. Global initiatives

are needed to assess ethnic variations and similarities that will

further inform modeling. That said, spine clinicians need to

become more familiar with such modeling techniques to make

an informed decision for patient care in the emerging era of

artificial intelligence.

In the near future, IBSC may use data from a patient’s smart

apparel, intelligent implants, and electronic medical records to

build a unique data profile, or fingerprint, that’s immediately

actionable in the clinic. All known data about the patient, from

the number of steps they take each day to the trends of their

annual blood work are factored in. Intelligence-based spine

care surgeries may be augmented by real-time DSTs that

Figure 1. The intelligence-based spine care model. DL: deep learning; DST: decision support tools; EMR: electronic medical record.
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leverage a patient’s data fingerprint to more robustly consult

patients, address expectations, and enhance perioperative

decision-making, while also warning physicians of what to

expect in the way of postoperative complications. The algo-

rithms of IBSC may generate optimal tailor-made implants,

and surgeons may be able to train preoperatively on VR and

AR assisted robotic systems before installation. As patients

progress through treatment, their IBSC management plan con-

tinuously adapts to new data to fit their specific needs to con-

sequently maximize outcomes and reduce costs at every step of

the way.

Conclusions

The building blocks of the IBSC model are currently being

developed and perfected, and several have already brought

technological innovation to other specialties. It’s not a question

of “if,” but “when” AI will meaningfully connect these plat-

forms to form a coherent IBSC that will, with the utmost pre-

cision, guide the treatment of various spine pathologies.

However, before a recognizable IBSC model can take shape,

research needs to be directed at integrating the various compo-

nents of the IBSC model, and ML and DL models need to be

validated across global regions to ensure efficacy across ethni-

cally diverse populations. Moreover, data sharing and access to

large datasets that promote collaboration and consortia need to

be established. Additionally, a framework for maintaining and

retraining models needs to be instituted to avoid model drift, or

the degradation of prediction accuracy over time, as the map-

ping of historical observations to future outcomes is not static.

As these challenges are surmounted and each platform inter-

linked, the IBSC model is sure to one day be highly impactful

in the world of spine care, possibly even reducing years spent

living with debilitating spine disorders and minimizing the

financial burden that such conditions have on our healthcare

systems.
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whole exome study identifies novel candidate genes for vertebral

bone marrow signal changes (Modic changes). Spine. 2017;

42(16):1201-1206.

45. Munir S, Freidin MB, Rade M, Määttä J, Livshits G, Williams
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103. Gréalou L, Aubin CÉ, Labelle H. Rib cage surgery for the treat-

ment of scoliosis: a biomechanical study of correction mechan-

isms. J Orthop Res. 2002;20(5):1121-1128.

104. Guan T, Zhang Y, Anwar A, Zhang Y, Wang L. Determination

of three-dimensional corrective force in adolescent idiopathic

scoliosis and biomechanical finite element analysis. Front

Bioeng Biotechnol. 2020;8:963.
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