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Abstract

Biological pest control (i.e. ‘biocontrol’) agents can have direct and indirect non-target impacts,

and predicting these effects (especially indirect impacts) remains a central challenge in bio-

control risk assessment. The analysis of ecological networks offers a promising approach to

understanding the community-wide impacts of biocontrol agents (via direct and indirect inter-

actions). Independently, species traits and phylogenies have been shown to successfully pre-

dict species interactions and network structure (alleviating the need to collect quantitative

interaction data), but whether these approaches can be combined to predict indirect impacts

of natural enemies remains untested. Whether predictions of interactions (i.e. direct effects)

can be made equally well for generalists vs. specialists, abundant vs. less abundant species,

and across different habitat types is also untested for consumer-prey interactions. Here, we

used two machine-learning techniques (random forest and k-nearest neighbour; KNN) to test

whether we could accurately predict empirically-observed quantitative host-parasitoid net-

works using trait and phylogenetic information. Then, we tested whether the accuracy of

machine-learning-predicted interactions depended on the generality or abundance of the inter-

acting partners, or on the source (habitat type) of the training data. Finally, we used these pre-

dicted networks to generate predictions of indirect effects via shared natural enemies (i.e.

apparent competition), and tested these predictions against empirically observed indirect

effects between hosts. We found that random-forest models predicted host-parasitoid pair-

wise interactions (which could be used to predict attack of non-target host species) more suc-

cessfully than KNN. This predictive ability depended on the generality of the interacting

partners for KNN models, and depended on species’ abundances for both random-forest and

KNN models, but did not depend on the source (habitat type) of data used to train the models.

Further, although our machine-learning informed methods could significantly predict indirect

effects, the explanatory power of our machine-learning models for indirect interactions was

reasonably low. Combining machine-learning and network approaches provides a starting

point for reducing risk in biocontrol introductions, and could be applied more generally to pre-

dicting species interactions such as impacts of invasive species.
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Introduction

Growing public concern about the harmful health and environmental effects of pesticides [1,

2], combined with the rapid evolution of pest resistance to chemical control [3–5], mean that

biocontrol agents are increasingly being advocated to suppress pests [6–8]. Although biocon-

trol agents are often a more environmentally friendly means of suppressing pests than syn-

thetic pesticides, they can have non-target effects on native species [9–11]. Therefore, tools for

assessing the risk of proposed biocontrol agents prior to their release are crucial for deciding

whether a given agent should be introduced [12, 13]. However, in addition to directly affecting

individual non-target species (i.e. direct effects), biocontrol agents have the potential to affect

communities through indirect effects (i.e. the effect of one species on another mediated by a

third species) [14]. These indirect effects are more difficult to observe (or predict) because of

the inherent difficulty in studying whole communities of interacting species and attributing

causation to changes in potentially indirectly affected populations. Although various tools (e.g.

host range experiments) exist for assessing the potential direct effects of proposed biocontrol

agents, to our knowledge, there are currently no methods available for quantifying and ranking

potential non-target impacts of proposed biocontrol agents via indirect effects prior to their

release [13], despite them being likely to be common [15, 16].

In particular, populations of herbivore species may be linked via their shared natural ene-

mies (e.g. parasitoids, which are often used as biocontrol agents), such that an increase in one

host herbivore population may drive an increase in the abundance of a shared enemy and

result in a decrease in another host’s population (i.e., apparent competition [17]). In this way,

parasitoid species may mediate indirect effects, such as apparent competition, among host spe-

cies. Similarly, herbivores used as control agents of weeds may influence native herbivores via

shared enemies. Although typically not quantified in biocontrol risk assessment, many studies

indicate that apparent competition, mediated via shared natural enemies, may be important in

structuring insect communities [17–21].

Studies assessing apparent competition are mostly focused on its effects between single spe-

cies pairs, whereas less is known about its potential community-wide impacts. However, quan-

titative food webs, which include information on the abundance of both consumer and

resource species and the frequency of their interactions, can indicate the potential for indirect

effects and assist in the generation of testable hypotheses [22, 23]. To test such a hypothesis, a

seminal study experimentally removed two leaf-miner species from a community and found

that other leaf miners, with which they shared parasitoids, experienced lower parasitism rates

[24]. Similarly, Tack et al. [25] experimentally increased the abundance of three leaf miner spe-

cies and, using information on their shared parasitoids, found long-term indirect interactions

between some species, as predicted, though these effects were positive (apparent mutualism

[17]) rather than negative (apparent competition). These two studies indicate that indirect

effects could, in theory, be predicted for all host species in an assemblage. Congruent with this

expectation, a recent community-level empirical study found that apparent competition was

important for structuring host-parasitoid networks in native and plantation forests, and that

these two habitats functioned dynamically (and somewhat predictably) as a single unit [21].

Although the potential negative impacts of apparent competition on native communities have

been considered in a biocontrol context [26], it remains difficult to predict these impacts prior

to the release of a biocontrol agent.

The analysis of ecological networks is an important tool in theoretical and applied commu-

nity ecology [27–29], and the above examples suggest that it offers a promising approach to

understanding the community-wide impacts (via direct and indirect interactions) of biocon-

trol agents [11, 30]. This network framework has been widely used in ecology [27–29],
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including to quantify and predict indirect effects, and less widely in a biocontrol context to

successfully evaluate the impacts of biocontrol agents on non-target species through post-

release studies [31–34]. Yet, few studies use it to predict biocontrol outcomes prior to the

release of an agent (but see [35]), despite the clear benefits of such an approach [16, 22, 36].

One notable exception was a study by López-Núñez et al. [35], which used networks to predict

the potential indirect effects of a biocontrol agent. Because networks were only collected prior

to the release of the control agent, López-Núñez et al. [35] were unable to validate these predic-

tions. Additionally, their predictions of indirect effects were informed by known interaction

partners of the control agent (data that may not be available for a given proposed control

agent).

One of the limitations to the use of (particularly quantitative) networks in biological control

is the cost or effort required to resolve community-scale interactions. A potential solution

would be to use frameworks that predict, rather than sample, species interaction networks

using existing data on species traits. Species traits play an important role in structuring species

interactions and ecological networks [37–40]. For instance, ecological and life history traits

determine species distributions, as well as allowing morphological and physiological trait

matching between interacting partners, and thereby influence the occurrence and frequency of

interactions [38]. When traits cannot be easily measured or the traits responsible for interac-

tions are unknown, phylogenies, which depict the shared evolutionary history of species, can

serve as a surrogate for measured and unmeasured traits, and thus help to explain the pattern

of interactions within a community [41–44].

Accordingly, many studies have shown that traits and phylogenies can successfully predict

direct interactions among species [37, 38, 45, 46]. In addition to traits being useful predictors

of interactions, sometimes relatively few traits are needed to explain network structure [45],

though in all cases these predictions are of potentially suitable interactions, given the imperfect

knowledge of traits and potential for partner co-occurrence to limit the realisation of these

potential interactions. More recently, machine-learning techniques, such as random forest and

k-nearest neighbour (KNN), have been added to the list of tools used to predict species’ inter-

actions based on their traits and/or phylogenies. These algorithms are trained using known

interactions, which allow the machine-learning technique to learn which trait and/or phyloge-

netic combinations are likely to correspond to an interaction occurrence, and these can then

be used to predict interactions among new species [47, 48]. In addition to traits and phyloge-

nies (i.e., information that captures niche processes), neutral processes, which describe interac-

tion patterns based on the probability of species randomly encountering each other, play an

important role in shaping ecological networks [49–51]. This neutral component of interactions

can be incorporated into predictions of interactions by adding data on species’ abundances

[52]. Although ecological and life history traits can influence species abundances [38, 53],

abundance is usually considered to also result from neutral processes [54–57]. While species

traits may determine which interactions are possible (e.g., ‘forbidden links’; [58]), the occur-

rence and frequency of interactions may be driven by species abundances [49], and both trait

distributions and abundances may respond to the environment, driving variation in interac-

tions through space and time [53].

Although the above literature suggests that traits, phylogenies and abundances can be useful

predictors of species interactions, less is known about the circumstances under which predic-

tions of interactions based on these data are likely to be better (or worse). Emerging research

suggests that species characteristics (e.g., trophic generality or biogeographic status; native vs.

exotic) may influence the predictive ability of trait- (including phylogenetically-) or abun-

dance- based models [59, 60]. Additionally, research has indicated that predicting network

structure at a new habitat can be difficult [51, 53], potentially because species composition and
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the interactions that are realised, which in turn can influence species’ realised generality or

abundance, can vary with habitat type [61]. Furthermore, in the context of biological control,

it would be necessary to predict interactions for agents in their introduced location (as an

exotic species potentially interacting with a non-target native community) and across a diver-

sity of both natural and crop habitats [53]. Thus, understanding the robustness of predictions

to habitat or biogeographic differences and trophic generality would be crucial.

Combining machine-learning and network approaches, if successful, could allow non-tar-

get impacts of proposed parasitoid biocontrol agents to be predicted given a list of host species

in the recipient community, along with known host-parasitoid interactions and species data

(traits and phylogenies) to inform a machine-learning model. Known interactions from either

a biocontrol agent’s native range or the community to which an agent is to be introduced

could be used. Alternatively, if predictions of interactions can be made equally well within vs.

across habitat types, network data from a different habitat could be used to inform a predictive

model.

In this study, we examine whether network approaches can be used to predict effects (both

direct and indirect) of species in parasitoid-host networks, with a view to using these

approaches in biological control. However, rather than focusing on biocontrol species only, we

focus on developing a proof of concept using an entire host-parasitoid community (only some

of which are pests and biocontrol agents), which comprises a large-scale dataset, sampled in

two different habitat types (plantation and native forest), from Frost et al. [21]. Previous work

has shown that indirect effects are important for structuring host-parasitoid interactions in

this study system [21], making it suitable for answering our research questions. Specifically,

our objectives were to 1) compare two machine-learning techniques (random forest and

KNN) for the prediction of (quantitative) host-parasitoid network interactions (i.e. direct

effects), using traits and phylogenies to inform the models (which could complement host-

range studies currently used to assess direct effects); 2) test whether the ability of these

machine-learning techniques to predict species interactions depended on a) species’ trophic

generality, or b) species’ abundances or c) whether the data used to train the predictive model

came from the same vs. different habitat type as that for which the predictions were being

made; and 3) determine whether these machine-learning-predicted interactions, when com-

bined into networks, can be used to predict indirect effects (specifically apparent competition),

which could then be applied to predict non-target effects of biocontrol agents.

Methods

Study system

We collected quantitative host-parasitoid interaction data from 16 training sites (8 from native

forest and 8 from plantation) and 32 testing, i.e. validation, sites (16 from native forest and 16

from plantation) in the Nelson/Marlborough region of New Zealand (further details of sam-

pling methods are provided in Frost et al. [21] and Peralta et al. [62]). Each training site con-

sisted of 2 transects; an edge (10 m towards the forest interior from the edge between the two

forest types, and running parallel to the edge) and interior (400–500 m from the forest edge).

Each test site consisted of 1 edge transect (from its respective forest type). The test sites did not

include interior transects; however, we chose to include both edge and interior transects in the

training sites to use all available data. At each transect (50 m x 2 m), all foliage-dwelling Lepi-

doptera larvae (‘hosts’) were collected from plants and reared in the laboratory until they

developed into adults or parasitoids emerged (Hymenoptera, Diptera and Nematoda; though

we excluded Nematoda parasitoids from all our analyses as the traits we measured, see ‘Traits

and phylogenies’ below, were not suited to these species). Parasitoids and hosts were then

PLOS ONE Predicting non-target impacts of biocontrol agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0252448 June 1, 2021 4 / 25

https://doi.org/10.1371/journal.pone.0252448


identified to species level where possible using available taxonomic information [63–66] and

expert assistance (J. Dugdale, J. Berry, and R. Schnitzler), and otherwise to morphospecies. For

parasitoids, morphospecies were validated as species using molecular methods. The training

sites were sampled seven times over two summer seasons (season 1: December 2009, January,

February 2010; season 2: October, November 2010, January, February 2011). To determine

whether predictions of apparent competition were equally effective for large experimental and

small natural changes in host abundances, host abundance was experimentally reduced in half

of the plantation test sites by aerial spraying with a caterpillar-specific biopesticide in the mid-

dle of sampling. Test sites were sampled twice before this host reduction treatment (time t,
October, November 2010) and twice after (time t+1, January, February 2011). Because Frost

et al. [21] found that the predictive ability of apparent competition did not differ across the

host-spray treatment, we did not include this variable in our analyses.

Traits, phylogenies, and abundance

We collected traits of host and parasitoid species that have been identified as being useful for

predicting interactions: body size, trophic generality (measured as normalised number of food

resource species, termed ‘normalised degree’ in network studies; ND), biogeographic status

(native vs. exotic), and phenology. Note that ND was measured for parasitoids based on their

interactions with hosts and for hosts based on their interactions with their plant hosts, rather

than parasitoids. We chose these traits because body size is correlated with many important

characteristics [67] and is often the best predictor of species (including host-parasitoid) inter-

actions [45], while species generalism tends to be conserved across native and alien ranges

[68], and recent evidence suggests that niche processes for species interactions (and therefore

predictions based on traits and phylogenies) are weaker for generalists than specialists, and for

exotic species than native species [59]. Additionally, phenology plays a role in determining

interactions [56, 69]; we therefore calculated two aspects of phenology for both host and para-

sitoid species: abundance of each species in each month and phenological overlap between

each host-parasitoid pair (see ‘Phenology’ in S1 Appendix). Because phylogenies can also help

to explain interaction patterns [44, 46] by capturing variation in difficult to measure traits, we

constructed host and parasitoid phylogenies to include along with the traits in the prediction

of interactions (see ‘Traits and phylogenies’ in S1 Appendix). Additionally, abundance (a neu-

tral process) can be important for determining interactions [55, 56]; we therefore summed

abundance across sites and sampling dates for both host and parasitoid species, to be used in a

later part of the analysis (see ‘Abundance’ in S1 Appendix).

Predicting direct effects

We compared two machine-learning techniques (random forest and KNN) for the prediction

of quantitative host-parasitoid interactions (i.e. direct effects). Training site data were used

to inform the models and test-site data (at time t) were used to test (i.e. validate) the models

(Fig 1).

To predict interactions at new locations (or for new species such as biocontrol agents), the

random-forest model learns (from the training data) which host and/or parasitoid trait (or

phylogenetic) combinations are likely to correspond to an interaction occurrence. The algo-

rithm then uses these rules, along with the traits (or phylogenetic position) of new species, to

predict the probability of interaction occurrence between new combinations of host and para-

sitoid species pairs. These interaction probabilities could be used in risk assessment if it can be

demonstrated that they correspond with higher observed interaction frequencies (which we

test below). Random forest therefore assumes that the strength of trait (or phylogenetic)
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Fig 1. Summary of methods. (a) Lepidopteran larvae (‘hosts’) were collected from eight native forest sites and eight

plantation forest sites (we call these ‘training sites’ as data from these sites were used to train the models). (b) Hosts

were identified and reared to determine parasitism rates and identities. We created three quantitative training meta-

networks (‘native’, ‘plantation’, ‘combined’) by pooling interaction data across native sites, plantation sites, and all

sites, respectively. (c) We used machine-learning models (random forest and KNN), informed by training meta-

networks, traits and phylogenies, to predict interaction frequencies at test sites (16 native forest and 16 plantation

forest) at time t. We created a separate model for each of the three training meta-networks, for both machine-learning

approaches (i.e., 6 models: random forest/KNN ‘native’/’plantation’/’combined’). (d, e) We then tested whether the

ability of these machine-learning models to predict interaction frequencies depended on species generality or

abundance, and whether predictive ability depended on the data (i.e. native, plantation, combined) used to inform the

model. (f) We then calculated the potential for apparent competition, dij, between each pair of host species in the

training data (using both native and plantation sites data). (g) We calculated expected parasitism rates (E) for host

species at time = t+1 test sites using these dij values, along with predicted attack rates (α) calculated from our machine-

learning predicted networks at time = t test sites, and abundance (n) from the test sites. We calculated expected

parasitism rates (E) for both random forest and KNN. Additionally, we calculated expected parasitism rates using a

data-based approach used by Frost et al. [21]. We tested whether expected parasitism rates could significantly predict

observed parasitism rates at time = t+1 test sites (h, i).

https://doi.org/10.1371/journal.pone.0252448.g001
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matching between species determines, in part, the likelihood of an interaction between them.

In contrast to random forest, which incorporates matching of parasitoid traits (or phylogenetic

position) to those of hosts, KNN uses the host-use preferences of parasitoid species (from the

training data) with similar traits (or phylogenetic position) to recommend (i.e., predict) interac-

tion partners and interaction frequencies for new parasitoid species. This is analogous to Netflix

recommending films to users based on the preferences of similar users [47]. Thus, in KNN, par-

asitoid traits are used to determine similarity among parasitoid species, rather than to match

with host traits as in random forest (see ‘Machine-learning techniques’ in S1 Appendix).

Model variants with different training data. When making predictions about the

impacts of potential biocontrol agents, it is possible that interaction and/or trait data will not

exist for the specific recipient habitat. Therefore, to determine whether the ability of a

machine-learning technique (random forest or KNN) to predict interactions differed when

training data came from the same vs. different habitat than the test habitat, we built three mod-

els (‘native’, ‘plantation’, ‘combined’) for each technique, using data (i.e. pooled ‘meta-net-

works’) from the training sites of each habitat category. We created one host-parasitoid

training meta-network for each of the three models, by pooling data across training sites (of a

single forest type, native or plantation, for the ‘native’ and ‘plantation’ models, respectively,

and all training sites, i.e., both forest types, for the ‘combined’ model) and sampling dates (see

‘Training meta-networks’ in S1 Appendix). Because the random forest was predicting the

probability of an interaction occurring, whereas KNN predicts a weight of the interaction (i.e.

frequency), we trained the random-forest models on the binary (occurrence vs. not of each

interaction) meta-networks and trained the KNN models on the weighted meta-networks

(though for both approaches a quantitative interaction network was predicted).

For KNN, recommendations (i.e., predictions) are based on host use by parasitoid species

in the training data, so only host species present in the training data will be recommended to

parasitoid species in the test data. In contrast, host species only found in the test data, hereafter

called ‘new’ host species, will never be recommended to a parasitoid—these host species are

analogous to new films that no one has seen or rated yet. To overcome this problem, we

included ‘new’ host species into the training meta-networks (only for KNN models because

random forest does not suffer from this problem) by recommending parasitoid species from

the training data to each ‘new’ host species, using KNN. In this case, we recommended parasit-

oid species to hosts by using host traits and phylogenetic position to determine their nearest

neighbours (i.e. the host species most similar to them) (see ‘KNN–adding ‘new’ host species’ in

S1 Appendix).

We tested the predictions of each model on all test sites where parasitoids emerged from

any collected host at the first-time step, t (i.e., before the host spray treatment: 14 sites from

native forest and 15 sites from plantation). Test sites at which no parasitoids emerged at time t
were excluded from all analyses (N = 3). For each test site, we predicted an interaction fre-

quency (for KNN; see ‘KNN–predicting interactions at test sites’ in S1 Appendix) or a proba-

bility of interaction occurrence (for random forest) between each host-parasitoid species

pair present at the site. If a parasitoid species was found in both the training and testing data, it

was not used to inform predictions about its own interaction partners in the KNN algorithm

(i.e. it was not used as a neighbour of itself); this decision was made to be conservative,

because interaction data in the new location would likely not be available for a proposed con-

trol agent.

We performed a grid search to find the optimal hyperparameters (including which traits to

include) for the random-forest and KNN models (see ‘Tuning hyperparameters’ in S1 Appen-

dix). Random forest automatically weights traits by their importance (i.e. less informative traits

contribute less to predictions). To determine which traits were most important for predicting
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host-parasitoid interactions using random-forest models, we used the ‘feature importances’

function (which uses Gini importance) from Python’s Scikit-learn v 0.23.1 package [70]. In

contrast to random forest, in KNN all traits contribute equally to measures of species’ similar-

ity. For this reason, unimportant traits must first be removed, as retaining them in the model

can decrease predictive ability [71]. In our case of predicting host-parasitoid interactions using

KNN models, we found that body size, phenology, and ND (normalised degree; a measure of

generality) were useful parasitoid traits, whereas phylogeny was removed during our parame-

ter search process (see ‘Best hyperparameters for KNN’ in S1 Appendix). Additionally, we

found that all host traits (i.e., body size, phenology, phylogeny, host ND and biogeographic sta-

tus) were useful (and thus retained in the models). For the random-forest models, parasitoid

traits in decreasing order of importance were ND, phylogeny, body size, phenology, while host

traits in decreasing order of importance were phenology, phylogeny, body size, ND, and bio-

geographic status (for both hosts and parasitoids this is the average importance across all three

models: ‘native’, ‘plantation’, ‘combined’) (Table 20 in S1 Appendix). All random-forest and

KNN analyses were performed in Python (version 3.8.3). We used the ‘RandomForestClassi-

fier’ function from the Scikit-learn package [70] to perform the random-forest analyses, and

used base Python for KNN.

Predicting indirect effects

To predict indirect interactions (apparent competition), we used the quantitative interaction

network (i.e. direct interactions at each test site at time t) predicted by each model (random-

forest or KNN) trained on the ‘combined’ data (native forest and plantation data). This quanti-

tative interaction network can be used to project a network of indirect linkages among hosts

that share parasitoids. We can then predict how attack rates on each host should change as a

function of changes in the abundance of host species that share parasitoids with that host (i.e.

the indirect effect of ‘apparent competition’). Therefore, we predicted how patterns in attack

would change if the indirect (parasitoid-sharing) links among hosts matched those predicted

by the machine-learning methods. We then went on to validate how these predicted changes

in attack rate matched real changes observed (between times t and t+1). Note that the

machine-learning predicted networks are based only on species traits and phylogenies (i.e.

information that captures niche processes), and abundance is included later into the predic-

tions of indirect effects (see Eq 1 below). We used these ‘combined’ models because, in a bio-

control context, available data may not be specific to a target habitat, but rather aggregated

from different sites and habitats.

Predicting indirect effects involved three steps. First, we used the ‘combined’ training meta-

network (see above) to calculate a regional quantitative measure of shared parasitoids, also

known as the potential for apparent competition, dij, using Equation 6 from Müller et al. [23];

see ‘Measure of shared parasitism’ in S1 Appendix. This dij value measures, for every pair of

host species in a community, the proportion of parasitoids attacking host species i that

recruited from host species j [23]. We used the PAC function from the bipartite v 2.15 R pack-

age [72] to calculate dij. Second, for each machine-learning approach (random forest and

KNN), we used this measure of shared parasitism (dij), along with random-forest- (or KNN)-

predicted initial attack rates (α in Eq 1 in S1 Appendix, see also ‘Calculating α from predicted

networks’ in S1 Appendix) by each parasitoid on each host from time t at the test sites com-

bined with known changes in host abundances (the change in abundance of each host species

from sample t to t+1, in the site for which predictions are being made) to calculate the expected

parasitism rate (E) at time t+1 of host species i for each test site. Parasitism rate is the number

of parasitism events divided by the number of hosts sampled. We used Equation 3 from Frost
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et al. [21] to calculate E:

Eiðtþ1Þ ¼
XH

j¼1

dij

PP
l¼1
ailt

njt
njðtþ1Þ

 !
1

niðtþ1Þ

 !

ð1Þ

where n is host abundance, t is the first-time step of data (before experimental host reduction

in half of the sites, with t+1 being after), α is the link strength (that is, number of attacks), i and

j are a focal host species pair, H is the total number of host species, and l is all parasitoid spe-

cies, from 1 to P (the total number of parasitoid species).

Finally, we tested whether this expected parasitism rate significantly predicted the observed

parasitism rate of each host species i at time t+1 test sites (see equation 2 in S1 Appendix for

how observed parasitism was calculated).

The logic of this approach is that a bipartite network of interactions, where links represent

attack rates between hosts and parasitoids (the nodes), can be projected into a unipartite network

with only hosts as nodes and links representing the proportional sharing of parasitoids (dij).
Changes in abundance of hosts in this unipartite network should induce proportionate (and

thus predictable) changes in the abundance of their parasitoids and cause a proportionate change

in attack rates on any other hosts that share those parasitoid species (i.e. an indirect effect). Frost

et al. [21] showed that these expected rates (E) significantly predicted observed parasitism rates,

even when within-habitat intraspecific contributions (that is, delayed density dependent parasit-

ism) were excluded from these expected rates, indicating that the indirect effects present could

not simply be explained by within-habitat delayed density dependence. This method for predict-

ing indirect effects has thus been experimentally validated using this dataset. Our aim here was

to test whether the machine-learning-predicted networks (trained on data from different sites)

could be used instead of observed networks to predict these indirect effects.

The number of host species for which we were able to calculate an expected parasitism rate at

each site was much lower than the number of species collected at each site. This difference

occurred because we could only calculate an expected parasitism rate for host species within a

site that were collected at both time steps and had a non-zero predicted attack rate (α) at the

first-time step (t, see Eq 1 above). However, for both machine-learning approaches, we used the

potential for apparent competition (via the sharing of parasitoids) with every other host species

that was collected in the site, to calculate the expected parasitism rates for these species. There-

fore, predictions of expected parasitism rates for these species were based on data from the whole

network. The numbers of species within sites for which it was possible to calculate an expected

parasitism rate were 91 and 84 for the random-forest and KNN approaches, respectively.

Statistical analyses

Can random forest and KNN predict interaction frequencies and does this predictive

ability vary with species’ generality and abundance, and whether the model was trained on

data from the same vs. different habitat? To test the possibility that random-forest-predicted

probability and KNN-predicted-frequency can predict observed interaction frequencies, and to

compare the predictive ability of each random forest with that of its corresponding KNN model

(‘native’, ‘plantation’, or ‘combined’), we fitted two Poisson generalised linear mixed effect mod-

els using observed interaction frequency (from the test sites at the first time step) as the response

variable. We included random-forest-predicted probability as a fixed effect in the first model

and KNN-predicted interaction frequency in the second model. Including just these predictors

in the models allowed us to compare the two machine-learning methods directly, and we then

added further predictor variables as a separate step to test our other hypotheses (see below). This

process was repeated two additional times for a total of six models (‘native’, ‘plantation’ and
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‘combined’ for both random-forest and KNN predicted probability and frequency, respectively).

For each model, we scaled and centred the fixed effect (by subtracting the mean and dividing by

the standard deviation such that the scaled variable would have a mean of zero and a standard

deviation of one) to help with model convergence. In all full models, we included parasitoid

identity as a random factor (such that predicted and observed frequencies for a given parasitoid

would be ‘paired’), and a random slope for random-forest-predicted probability (or KNN-pre-

dicted-frequency), to allow this slope to vary across parasitoid species. We also included site as a

random factor, to account for the structural non-independence of interactions across sites,

though site explained little variance because it covaried strongly with parasitoid composition.

We used parasitoid identity because estimating the random slope required multiple interactions

per parasitoid, whereas using host-parasitoid pair (see ‘Model set 1’ in S1 Appendix) would have

resulted in a model in which the number of observations was less than the number of random

effects. The R formulas for these, and all subsequent, models are included in S1 Appendix

(Tables 21–24 in S1 Appendix).

Fitting the model six times (three times for each machine-learning method) increases the

probability of Type I error. Although sequential Bonferroni correction is often used to account

for performing multiple statistical tests, it has been argued to be too conservative [73, 74]. We

therefore used a Bernoulli process to calculate the probability of each fixed effect being signifi-

cant by chance alone, given the number of tests (six) performed [73]. We use this Bernoulli

process (for fixed effects) for all subsequent analyses that involve multiple statistical tests.

The prediction of interaction frequencies (which is needed, in turn, to predict indirect effects)

represents a stricter test than the prediction of interaction occurrence, as it requires not only the

correct prediction of interactions, but also of their strength. However, if this information is not

needed, the machine-learning-predicted probabilities and frequencies can be converted into

binary values to predict interaction occurrence, so we also explored such predictions of interaction

presence/absence (see ‘Tests on the prediction of interaction occurrence’ in S1 Appendix).

For all analyses, we selected the best-fitting model by first selecting the optimal random-

effect structure [75]. We ran the full model (described above), as well as models with all combi-

nations of random effects, and selected the model with the lowest AIC. Then, using this opti-

mal random-effect structure for each model, we selected the best-fitting fixed effects structure

by using the dredge function (from the MuMIn v 1.43.17 package [76]), which calculates AIC

for the full model as well as all possible simpler models.

To compare each random forest with that of its corresponding KNN model, we calculated

AIC for each best-fitting model. We primarily use this model selection to identify variables

that significantly contribute explanatory power, and caution against the mixing of model selec-

tion and frequentist statistics [77]. However, for readers accustomed to P values, these are pre-

sented in the results.

To determine whether the ability to predict interaction frequency (using machine-learning

models) varied with species generality (measured as normalised degree, ND) or according to

whether the model was trained on data from the same vs. different habitat, and also to test

whether predictions could be improved by including information on species’ abundances, we

fitted the same set of models as described above, but with additional predictor variables. Spe-

cifically, in addition to random-forest-predicted probability or KNN-predicted interaction fre-

quency, we also included parasitoid ND and host ND as interacting fixed effects (i.e. this

model included all possible interactions among these three fixed effects), along with host abun-

dance, parasitoid abundance, and forest type (of the test site) as fixed-effects interacting with

predicted probability or predicted frequency (i.e. this model also included all possible interac-

tions among these four fixed effects). Because we did not have a specific hypothesis for the for-

est type x ND interactions (or the abundance x ND interactions), we did not include these
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interactions in the models. We followed the same model selection process as described above.

Abundance and generality can be related; therefore it could be possible for model selection

(described above) to return a model with only one of these variables if they share a high

amount of variance. To determine the amount of collinearity between these two variables (for

both hosts and parasitoids), we calculated the proportion of models (with predictors that were

any possible subset of those in the full model) with delta AIC<2 of the best model which con-

tained each of the four variables (host or parasitoid ND or abundance). We found that for all 6

models within a delta AIC of 2, all ND and generality variables that were retained in the best-

fitting model were also retained in all candidate models with delta AIC<2 of the best-fitting

model. The one exception to this was parasitoid abundance which was retained in the best-fit-

ting KNN ‘native’ model, and was included in 80% of candidate models with delta AIC<2.

Conversely, in all cases where a ND or generality variable was not included in the best-fitting

model, this variable was retained in at most 25% of the models with delta AIC<2 (and in one

case retained in 50% of the models with delta AIC<2). This indicates that ND and generality

are not highly collinear in our study system.

Can we predict indirect effects using machine-learning (random forest and KNN)

informed methods? To determine whether expected parasitism rate can predict abundance-

driven changes in the observed parasitism rate (at time t+1 test sites), and therefore whether

indirect effects can be predicted, we fitted a binomial mixed effect model including observed

parasitism rate (a proportion) as the response variable. We included expected parasitism rate

as a fixed effect and site as a random effect (to control for the non-independence of interac-

tions at a given site). We did not include forest type (native forest vs. plantation) of the test

sites as a fixed effect in this model, because Frost et al. [21] found that the ability to predict

observed parasitism rates did not differ across this variable in this study system. We scaled and

centred the expected parasitism rate fixed effect to help with model convergence.

We fitted a separate version of this model to the predictions of expected parasitism rate (see

Eq 1 above) from each machine-learning approach. For each version of the model, we followed

the same model selection process as described above.

Do predictions of indirect effects differ depending on whether observed vs. predicted

network data are used to calculate the potential for apparent competition (dij)? As an

additional supplementary analysis, we tested whether predictions of observed parasitism rates

differed depending on the network used to calculate the potential for apparent competition

(dij). The rationale for this analysis was that the observed training data are only a sample of the

true network, and thus may miss interactions that are important for driving indirect effects.

Thus, it is possible that predicted networks better capture these unsampled interactions. Con-

versely, it is also possible that errors in the predicted networks could lead to poorer estimation

of dij and resulting predictions of indirect effects. For this analysis, we re-ran the above analy-

ses using dij values calculated from the machine-learning predicted networks, rather than the

observed training networks. Overall, this approach did not markedly improve the prediction

of indirect effects (marginal R2 increased by 0.008), but for completeness we present it in the

S1 Appendix (methods and results in S1 Appendix: see ‘Tests using dij calculated from pre-

dicted network data’ in S1 Appendix).

Do predictions of indirect effects based on machine-learning-predicted networks differ

from those based on observed network data? To compare the random-forest and KNN

approaches with each other, and with a purely data-driven approach used by Frost et al. [21],

we re-ran the above analyses (but not the additional analyses using machine-learning pre-

dicted dij values) using only the subset of host species for which it was possible to calculate an

expected parasitism rate with all three methods (random forest, KNN, and data-based as used

by Frost et al. [21], N = 20). To calculate expected parasitism rate using the data-based
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approach used by Frost et al. [21], we calculated the initial attack rates (α) from the observed

time t networks at the test sites and calculated dij from the ‘combined’ training meta-network.

This is the same approach used by Frost et al. [21], except that we did not use habitat specific

dij values and used both edge and interior sites from the training data (rather than just edge

sites). We made these changes to the data used because, in a biological control context, site-

specific data are less likely to be available, and also to increase the amount of data used to

inform predictions in the machine-learning approaches. Additionally, we did not include the

seven host species for which we could not determine their biogeographic status (see ‘Biogeo-

graphic status’ in S1 Appendix). As before, we performed model selection for each of the three

approaches (random forest, KNN and data-based) to find the best-fitting model following the

same process described above, except that we used AICc (which is more suited to small sample

sizes than AIC), to select the best-fitting model. To compare the three approaches, we calcu-

lated the AICc of the best-fitting model for each approach. We visually inspected these models

for outliers and, where present, we calculated the leverage value of all datapoints and removed

those with high influence (i.e. outliers [78]). Outliers were present in these models predicting

indirect effects, though in all cases the results with the outliers removed were qualitatively the

same as the results with the outliers included. Note that we did not remove outliers from the

models comparing the three methods (random forest, KNN and data based as used by Frost

et al. [21]) for predicting indirect effects on the common dataset (N = 20) to ensure that the

number of datapoints was kept constant among models to allow model comparison, though in

all cases excluding outliers did not qualitatively change the results.

All statistical analyses were performed using R v 4.0.1 [79]. We used the lme4 v 1.1.23 pack-

age [80] to fit mixed effects models. We used the r.squaredGLMM function (with the delta

method) from the MuMIn v 1.43.17 package [76] to calculate marginal and conditional values

of R2 for the mixed effects models and the rsquared function from the piecewiseSEM v 2.1.0

package [81] to calculate R2 for the generalised linear models. For all models we checked for

overdispersion, and where present we included an observation-level random factor [82], and

in all cases this resulted in a model that was not over-dispersed (i.e., the ratio of the sum of

squared Pearson residuals to residual degrees of freedom was<2 and non-significant when

tested with a Chi-squared test [83]).

Results

Can random forest and KNN predict interaction frequencies and does this

predictive ability vary with species’ generality and abundance, and whether

the model was trained on data from the same vs. different habitat?

We tested whether machine-learning techniques (random forest and KNN) can predict host-

parasitoid interaction frequencies. For the less complex set of models (including only random-

forest-predicted probability or KNN-predicted frequency), we found that random forest was

more successful than KNN at predicting interaction frequencies. Random-forest-predicted

probability was significantly positively related to observed interaction frequency in all three

models (‘native’, ‘plantation’, ‘combined’), and captured a reasonably high amount of variance

(marginal R2 > 0.338 for all three models) (Fig 2A; Tables 1 and 3 in S1 Appendix). In con-

trast, KNN-predicted interaction frequency was not retained in any of the three KNN models

(Fig 2B; Tables 2 and 3 in S1 Appendix). There was a low probability of the predicted-probabil-

ity fixed effect being significant in 3/6 models by chance (p<0.001, calculated using the Ber-

noulli process), indicating that the results are unlikely to be due entirely to type I error. For all

three models (‘native’, ‘plantation’, ‘combined’), the random-forest model predicted observed

interaction frequency better (i.e. lower AIC) than the respective KNN model (Table 3 in
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S1 Appendix). Additionally, for 2/3 models (‘native’ and ‘combined’), the random-forest

model captured a greater amount of variation in observed frequency (higher conditional R2

values) than the respective KNN models. All best-fitting models included parasitoid identity as

a random factor, and a random slope for random-forest-predicted probability (or KNN-pre-

dicted frequency) (except for the random-forest ‘plantation’ and ‘combined’ models which

only included an observation-level random effect, along with parasitoid identity as a random

factor in the ‘combined’ model).

For the second set of models, testing whether the ability to predict interaction frequency

differed for generalists vs. specialists, whether predictive ability depended on species’ abun-

dances, and whether predictions can be made equally within vs. across habitats, we found that

the predictive ability of KNN, but not random forest, depended on the generality (ND) of the

interacting partners (Fig 3; Tables 4 and 5 in S1 Appendix). We also found that predictive abil-

ity depended on species’ abundances, but not on the source of the training data, for both ran-

dom forest and KNN.

There was a significant positive relationship between random-forest-predicted probability

and observed interaction frequency in all three models (i.e. higher predicted probabilities cor-

responded to higher observed frequencies), qualitatively the same as for the less complex mod-

els (see above). In contrast, predicted frequency was only significantly related to observed

interaction frequency in the ‘native’ KNN model (for the less complex models, predicted fre-

quency was not retained in any of the three KNN models).

The host ND fixed effect was included in all three KNN models, along with parasitoid ND

in the ‘native’ and ‘combined’ KNN models; however, neither of these variables were included

in any of the best-fitting random-forest models. There was a significant positive three-way

interaction between predicted frequency, host ND, and parasitoid ND in the KNN ‘native’

Fig 2. Predictions of observed interaction frequency. (A) Random-forest-predicted probability significantly predicted observed interaction frequency for all three

random-forest models (‘combined’, ‘native’, ‘plantation’), whereas (B) KNN-predicted frequency was not retained in any of the best-fitting models (tested using Poisson

linear mixed models, and dashed lines represent non-significant relationships). Deviance residuals of the best-fitting model excluding the predictor on the x-axis are

plotted, to better reflect the partial effect of the predictor. Each point represents a host-parasitoid species pair present within a site at the first-time step (t) test sites.

https://doi.org/10.1371/journal.pone.0252448.g002
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model, such that when ND of both host and parasitoid were high, the slope of the relationship

between predicted frequency and observed interaction frequency was more positive than

expected based on additivity of the main effects alone. However, the presence of negative (and

significant) two-way interactions between predicted frequency and ND (of both host and para-

sitoid), along with a negative host ND main effect, which outweighed the positive parasitoid

ND main effect, meant that interactions involving a single generalist partner would tend to

occur at lower frequency and have a weaker relationship between predicted and observed fre-

quency, but these effects would be weakened when both partners were generalists. Although

the predicted frequency x host ND x parasitoid ND interaction was retained in the KNN ‘com-

bined’ model, it was not significant in this model. However, there was a significant negative

two-way interaction between predicted frequency and host ND in this model, along with a

negative host ND main effect, indicating that when host ND is high, the relationship between

predicted frequency and observed interaction frequency was more negative than expected. In

the KNN ‘plantation’ model, host ND did not interact with predicted frequency (and parasit-

oid ND was not retained in this model).

There was a significant negative three-way interaction between predicted probability (or

predicted frequency), host abundance, and parasitoid abundance in the ‘plantation’ and ‘com-

bined’ models for both random forest and KNN, meaning that the relationship between pre-

dicted probability (or predicted frequency) was more negative when the abundance of both

interacting partners was high. However, the presence of two-way interactions involving pre-

dicted probability/frequency and abundance meant that high abundance of both interacting

partners affected predictions differently to when the abundance of only one of the interacting

partners was high. Because our data contain few species with very high abundance values, cau-

tion should be taken when interpreting these results.

There was a significant three-way interaction between predicted-frequency and generality

of the interacting partners (host and parasitoid) in the KNN ‘native’ model. Additionally, there

was a significant three-way interaction between predicted-frequency (or -probability) and

abundance of the interacting partners for 4/6 models. Two are presented here to demonstrate

the main patterns: (A) KNN ‘native’ model (which had a significant positive predicted

Fig 3. Overall, machine-learning predictions of observed interaction frequency varied with the generality (measured as normalised degree; ND) of the interacting

partners for KNN, but not random-forest models, and depended on the abundance of the interacting partners for both models.

https://doi.org/10.1371/journal.pone.0252448.g003
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frequency x host ND x parasitoid ND interaction), (B) random-forest ‘combined’ model,

which had a significant host abundance x parasitoid abundance x predicted probability inter-

action (as did the ‘plantation’ random-forest model and the KNN ‘plantation’ and ‘combined’

models). However, the limited data between species with extreme abundance values, means

this result should be treated with caution. Deviance residuals of the best-fitting model exclud-

ing the host and parasitoid ND (or abundance) variables are plotted as colour contours, to

indicate whether observed interaction frequencies are higher (red) or lower (blue) than

expected based on machine-learning predictions, showing how predictions vary with general-

ity (or abundance) of the interacting partners. Each point represents a host-parasitoid species

pair present within a site at the first-time step (t) test sites.

For all random-forest and KNN models, the relationship between interaction probability

(or predicted frequency) and observed interaction frequency did not differ between the two

forest types (i.e. the forest type fixed effect did not interact significantly with predicted-proba-

bility or -frequency in any of the 6 models), implying that predictions of interaction frequency

(based on random-forest-predicted probabilities or KNN-predicted frequencies) are equally

effective in both forest types and do not depend on the source of training data.

No random effects were retained in any of the best-fitting models for both random forest

and KNN (except for the KNN ‘native’ model, which included the parasitoid identity random

effect, which explained some variance; Rc
2 = 0.147). The fixed effects explained more variation

in interaction frequency in all three random-forest models (R2 > 0.23) than their respective

KNN models (R2 > 0.11).

The above results contrast with the analyses for predicting interaction occurrence (see

‘Tests on the prediction of interaction occurrence’ in S1 Appendix). For both random forest

and KNN, all three models (‘native’, ‘plantation’, ‘combined’) predicted interaction frequencies

better than binary interaction occurrences (models predicting frequencies had higher marginal

and conditional R2 values than their respective, i.e. ‘native’, ‘plantation’, ‘combined’, model

predicting interaction occurrences). This suggests that raw predicted probabilities (or frequen-

cies) are more useful for predicting interactions than assigning presence vs. absence of an

interaction occurrence based on an arbitrary probability/frequency threshold.

Can we predict indirect effects using machine-learning (random forest and

KNN) informed methods?

For both random-forest and KNN approaches, there was a significant positive relationship

between expected parasitism rate and observed parasitism rate (random forest: z value = 2.72,

p = 0.006, df = 85; KNN: z value = 2.80, p = 0.005, df = 77) (Fig 4; Table 7 in S1 Appendix).

The probability of this relationship being significant in both models by chance was very low

(p<0.001, calculated using the Bernoulli process). Although these models did not explain a

large proportion of the variance (random forest marginal R2 = 0.155, KNN-marginal R2 =

0.0919), in nature we would expect many processes beyond just trait matching to determine

field parasitism rates, though we take the significant effects of both RF- and KNN-predicted

parasitism rates as evidence that these variables were informative (Table 8 in S1 Appendix).

The site random effect was retained in both models and also explained a reasonable amount of

variance (random forest: conditional R2 = 0.403, KNN: conditional R2 = 0.325).

Do predictions of indirect effects based on machine-learning-predicted

networks differ from those based on observed network data?

The three methods (random forest, KNN and data-based, as used by Frost et al. [21]) did not

differ in their ability to predict observed parasitism rates (difference in AICc<1) (Table 9 in S1
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Appendix). In fact, with the reduced dataset (N = 20; data that could be used for all three analy-

ses), expected parasitism rates did not even significantly predict observed parasitism rates for

the random-forest and KNN approaches, contrasting with the results with the full dataset (see

above), likely due to reduced statistical power (Table 10 in S1 Appendix). Similarly, expected

parasitism rate was not retained in the best-fitting model for the data-based approach. The site

random effect was retained in all best-fitting models and captured a reasonable amount of vari-

ance (conditional R2 = 0.344 for all models).

Discussion

The increasing advocacy of biocontrol agents to suppress pest species, combined with their

potential to have non-target impacts [10, 11, 84], necessitates the study of methods for assess-

ing the risk of new organisms prior to their release as biocontrol agents [12, 13]. Here, we

examined whether network approaches can be used to predict direct and indirect effects of

species (e.g., proposed parasitoid biocontrol agents) by comparing the ability of two machine-

learning techniques (random forest and KNN) to predict any interaction in the host-parasitoid

community. We found that random forest was more successful than KNN for predicting quan-

titative host-parasitoid pairwise interactions (which could be used to predict attack of non-tar-

get host species), using information on a limited set of easily-obtainable traits. In addition, we

found that this predictive ability varied with the generality (ND) of the interacting partners for

KNN (but not random-forest) models, and depended on species’ abundances for both random

forest and KNN. Additionally we found that this predictive ability did not depend on the

source of training data (i.e., native forest, plantation, or both habitat types combined) for both

machine-learning techniques. Further, we found that machine-learning informed methods

could significantly predict indirect effects, though with relatively low explanatory power.

Fig 4. Predictions of observed parasitism rate. (A) Random-forest- and (B) KNN- expected parasitism rate both significantly predicted observed parasitism

rate. Residuals of the best-fitting model excluding the predictor on the x axis are plotted. Each point represents a host species within a site in the second-time

step (t+1) test sites. Three and four outliers, respectively, were removed from (A) and (B), though the results with the outliers included were qualitatively the

same in both cases.

https://doi.org/10.1371/journal.pone.0252448.g004
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Random forest predicts host-parasitoid interactions better than KNN

The better predictive ability of random forest, compared with KNN (Fig 2), may be explained

by the different ‘philosophies’ of the two methods. While random forest incorporates trait and

phylogenetic matching, which are important for determining, and therefore predicting, inter-

actions [37–39, 44, 46], KNN assumes that similar parasitoid species interact with similar host

species. However, parasitoid species with similar traits may be dissimilar in their host use, for

at least two reasons. First, adaptation to different host plants can lead to insect speciation [85–

88], and this may ‘cascade’ to higher trophic levels, leading to host-associated differentiation in

parasitoids [89–92]. Similarly, host-shifts (including the formation of ‘host races’) can contrib-

ute to parasitoid speciation [93, 94], and this parasitoid speciation, by either adaptation or host

shifts, may result in closely related parasitoid species that attack different sets of host species.

In this way, parasitoid species with the most similar trait values (or that are most closely

related) may be dissimilar in their host use, resulting in poor predictions of host use by KNN

models. Second, it is possible that parasitoid species deemed as similar, based on the selection

of traits we considered (see ‘Traits and phylogenies’ in Methods), differed in an important trait

that we did not include (for example, counter-defences against immune responses of hosts

[95]). However, this may be unlikely because we included parasitoid phylogenies, in addition

to traits, which capture variation in a variety of measured and unmeasured traits. Additionally,

random forest is a more complex algorithm than KNN. Because random forest is based on

many trees (each with many branches), random forest is able to account for interactions

between variables and non-linearities. This may also have contributed to the better predictive

ability of random forest compared to KNN.

Overall, species’ generality and abundance impacts predictions of direct

effects

The relative strength of the niche and neutral processes that generate plant-frugivore interac-

tions has been shown to change with species generalism [59], and we similarly found for host-

parasitoid interactions that the ability of KNN methods to predict observed interaction fre-

quency depended on the generality (ND) of the interacting partners (Fig 3). Surprisingly, ran-

dom-forest predictions did not depend on species generality; our random-forest models

incorporated trait and phylogenetic matching (two indicators of niche processes), and a

dependence of predictive ability on species generality would be congruent with the idea that

the strength of niche processes varies with generality [59]. However, we found that predictions

of direct effects, by both machine-learning methods, depended on species’ abundances, sug-

gesting that strength of niche vs neutral processes may vary with species’ abundance.

Predicting networks within vs. across habitat types

Overall, predictions of host-parasitoid interaction frequencies (and occurrences; see ‘Tests on

the prediction of interaction occurrence’ in S1 Appendix) using machine-learning techniques

were equally effective in both habitat types (plantation and native forest). Furthermore, predic-

tions of interaction frequencies (and occurrences) did not depend on the source of the training

data, which contrasts with recent research showing that predicting networks across habitats

(i.e. using data from one habitat to predict interactions at a different habitat) is difficult [51].

This difficulty is, in part, because interaction frequencies can differ markedly among habitat

types (e.g., [96, 97]), arising from both changes in random encounters (due to changes in

abundance) and interaction preferences based on niche processes [51]. Congruent with this,

Staniczenko et al. [51] found that models that captured systematic changes in interaction
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preferences between different habitat types had the best predictive ability, while models based

only on interaction data performed poorly. Interaction preferences are likely to differ more

with increasing habitat dissimilarity (e.g., [96]). Network data from a more similar habitat

(such as the two forest types we compared here) will therefore likely predict interactions better

than the forest versus agricultural habitats compared by Staniczenko et al. [51], as differences

in interaction preferences will likely be smaller. Additionally, similar habitats are more likely

to contain species with similar values for traits, which would likely increase the predictive abil-

ity of trait-based models. Therefore, the similarity in physical structure (canopy height, etc)

and high host and parasitoid species overlap between plantation and native forest habitat may

explain why we found no difference in predictive ability of interaction frequencies between the

two habitat types. Nevertheless, at face value, the ability to predict equally across habitats and

with different training data are positive attributes for biocontrol risk assessment, and suggest

that a common dataset (e.g., national databases of species interactions) could be used for risk

assessment of interaction frequencies (a pre-requisite for predicting density-mediated indirect

effects) in a range of habitats.

Predicting indirect effects

We found that, although machine-learning informed models significantly predicted indirect

effects (i.e., for both random-forest and KNN approaches, expected parasitism rate was a sig-

nificant predictor of observed parasitism rate) (Fig 4), the explanatory power of both these

approaches was reasonably low (approximately 10% of variance). Surprisingly, the prediction

of indirect effects was similar (i.e., similar marginal R2 values) to the prediction of direct effects

for KNN (Tables 3 and 8 in S1 Appendix), though the highest overall marginal R2 value was

observed for the model of direct effects with host and parasitoid generality (ND) and abun-

dance included (Table 6 in S1 Appendix). Together, these results may suggest that the direct

effects that were predicted well irrespective of generality (or abundance) were those that were

most important for driving indirect effects. Previous work on pollination networks suggests

that interactions with a strong signal of trait matching are more spatiotemporally constant and

functionally important [98], so it is feasible that the interactions best predicted by machine-

learning methods based on traits are those that are least variable and contribute most to indi-

rect effects. These methods are therefore a long way from being able to make accurate predic-

tions of the full strength of parasitoid-mediated indirect effects. However, they represent a

promising starting point, and could potentially be used to rank hosts along a continuum from

low to high risk of indirect effects. These machine-learning approaches, which use predicted

networks rather than observed networks (at time t test sites) to calculate initial attack rates, α,

(see ‘Predicting indirect effects’ in Methods), have the potential to capture interactions that are

not recorded in the observed networks due to inadequate sampling.

Interestingly, the machine-learning approaches and the data-based approach used by Frost

et al. [21] did not differ in their ability to predict indirect effects for the common dataset (N = 20)

of host species, for which it was possible to calculate an expected parasitism rate with all three

methods; this lack of difference was possibly due to reduced statistical power. Moreover, we found

that the data-based approach did not significantly predict observed parasitism rate, contrasting

the results of Frost et al. [21]. This is likely because we used slightly different data to Frost et al.
[21]. In particular, Frost et al. [21] used only edge training sites and explicitly included host habitat

(i.e., host species found in different habitats were treated as separate species) when calculating dij
(a measure of shared parasitism), whereas we used both edge and interior training sites and did

not explicitly consider host habitat. Species composition and interactions differ between edge and

interior sites in this system [99, 100]; thus the inclusion of interior sites may have caused the
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different results. Additionally, we removed seven host species (for which we could not determine

their host biogeographic status) from all our analyses, and we did not include nematodes because

their traits were not comparable to those of insect parasitoids. Collectively, these differences likely

explain the incongruence with the findings of Frost et al. [21].

Although we found that machine-learning-informed models could significantly predict indirect

effects (discussed above), part of the field validation data arose from natural changes in abundance,

rather than manipulative additions or removals of individuals. It is therefore possible that an

unmeasured factor is correlated with both parasitoid sharing and changes in host abundance or

attack rates. For example, habitat preferences of parasitoid species may co-vary with parasitoid

sharing, such that the sharing of parasitoids (i.e., apparent competition) is not the cause of the

model’s ability to predict observed parasitism rates, but rather a correlate. Additionally, we pre-

dicted expected parasitism rate, which captures changes in attack rates, but not subsequent changes

in host population abundances; a prerequisite for demonstrating apparent competition between

host species mediated by shared parasitoids. However, previous work on the same study system

showed that accurate predictions of changes in host abundances followed from the ability to pre-

dict changes in attack rates, and were, in fact, better predicted than changes in attack rates [21].

Further caveats

Ecological networks are difficult to sample and the difficulty of distinguishing true non-inter-

actions from unobserved interactions, which may simply result from inadequate sampling, is

widely recognised [56, 101–103]. Although the ‘meta-networks’ used to train our machine-

learning models (see ‘Training meta-networks’ in S1 Appendix) comprised the pooled data

across training sites and sampling dates, to maximise the resolution of potential host-parasit-

oid links, we acknowledge that these meta-networks may not capture all realised interactions.

A further caveat to using these approaches in biocontrol is that predicting interactions

involving exotic species (e.g., control agents) may be more difficult than predicting interac-

tions among native species. The lack of co-evolutionary history between exotic and native spe-

cies in the community suggests that trait or phylogenetic matching will be weaker for these

interactions. In fact, Peralta et al. [59] found that niche processes were weaker, and Coux et al.
[60] found that neutral processes were stronger, for plant-frugivore interactions involving

exotic species than those among native species, suggesting that methods incorporating trait or

phylogenetic matching will perform poorly for interactions involving exotic species compared

to interactions between native species. For this reason, an approach that blends information

on traits and abundances (as we did in the second linear modelling step) may help to alleviate

the problems of predicting more neutrally-driven interactions. In addition, exotic species tend

to interact with numerous species [50, 104, 105] and, as discussed above, interactions involving

generalists may be more difficult to predict based on trait matching than those involving spe-

cialists [59]. However, this is less of a concern as biocontrol agents are typically chosen because

they are specialists on the target pest.

Conclusion

Previous studies show that biocontrol agents can have negative non-target impacts, and stress

the importance of considering these effects in biocontrol risk assessment [84]. Our findings

show that machine-learning methods offer a promising approach to begin to predict direct

effects, and to a lesser extent, indirect effects, using information on species traits, abundances

and phylogenies. In addition, the ability to predict species interactions, and more specifically

non-target impacts of biocontrol agents, was hypothesised to vary with species characteristics

and habitat type [59]. Congruent with the first of these assertions, we found that overall
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predictions of interaction frequencies (i.e. direct effects) varied with the generality and abun-

dance of the interaction partners (host and parasitoid). However, predictive ability did not

depend on the habitat type of the training data. This supports the use of a common dataset of

species interactions and traits for risk assessment.
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35. López-Núñez FA, Heleno RH, Ribeiro S, Marchante H, Marchante E. Four-trophic level food webs

reveal the cascading impacts of an invasive plant targeted for biocontrol. Ecology. 2017; 98(3):782–

93. https://doi.org/10.1002/ecy.1701 PMID: 27987302

36. Macfadyen S, Gibson R, Polaszek A, Morris RJ, Craze PG, Planqué R, et al. Do differences in food
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43. Eklöf A, Stouffer DB. The phylogenetic component of food web structure and intervality. Theoretical

ecology. 2016; 9(1):107–15.

44. Rezende EL, Lavabre JE, Guimaraes PR, Jordano P, Bascompte J. Non-random coextinctions in phy-

logenetically structured mutualistic networks. Nature. 2007; 448(7156):925–8. https://doi.org/10.1038/

nature05956 PMID: 17713534
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