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Abstract: Chiral metabolomics is starting to become a well-defined research field, powered by the
recent advances in separation techniques. This review aimed to cover the most relevant advances in
indirect enantioseparations of endogenous metabolites that were published over the last 10 years,
including improvements and development of new chiral derivatizing agents, along with advances
in separation methodologies. Moreover, special emphasis is put on exciting advances in separation
techniques combined with mass spectrometry, such as chiral discrimination by ion-mobility mass
spectrometry together with untargeted strategies for profiling of chiral metabolites in complex
matrices. These advances signify a leap in chiral metabolomics technologies that will surely offer a
solid base to better understand the specific roles of enantiomeric metabolites in systems biology.

Keywords: chiral metabolomics; indirect chiral analysis; chiral derivatization agents; endogenous
metabolites; mass spectrometry metabolomics; ion-mobility mass spectrometry

1. Introduction

Chirality is a key feature of biological systems, being an intrinsic property of biomolecules
such as amino acids, sugars, and proteins. From a molecular perspective, chirality is defined
by the presence of at least one chiral center (most frequently carbon or nitrogen atoms,
with different substituents), resulting in isomers whose structures are not superposable
called enantiomers.

In biological systems, chirality confers remarkably different activity due to distinct
interactions of enantiomers in chiral environments. Several studies emphasized different
chemical behavior of enantiomers relevant to pathologic conditions (e.g., neurological
disorders, cancer, kidney diseases) [1,2], with enantioselective analyses nowadays being of
considerable interest.

Ever since the discovery of D-Ser as an endogenous metabolite [3], D-amino acids (D-
AAs) have been found to play significant roles in metabolism, with some of them reflecting
the onset or progression of pathological states. Altered levels of D-amino acids have
been reported in neurological and neurodegenerative diseases, such as schizophrenia [4],
depression [5,6], Alzheimer’s disease (AD) [7], amyotrophic lateral sclerosis [8,9]. Being the
most studied, D-Ser appears to have important neuromodulatory roles, as it is a more potent
coagonist on the N-methyl-D-aspartate (NMDA) receptor than glycine. Considering D-Ser
implications in NMDA receptor regulation, its use has been proposed and investigated
in the treatment of schizophrenia and depression [10], as well as for treating anxiety
disorders [11]. Additionally, D-Asp, usually found concentrated in the synaptic vesicles
of terminal axon, had been identified as significantly decreased in the prefrontal cortex
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of patients with schizophrenia [4], while racemization to D-Asp, D-Ser, and D-Thr was
associated with the development of cataracts [12].

Moreover, D-Ser has been recently highlighted as a promising biomarker for eval-
uating kidney functions [1,13–15]. In chronic kidney disease, D-Ser, D-Asn, and D-Pro
levels are increased compared with healthy people, being strongly correlated with kidney
function (glomerular filtration rate), while D-Asp and D-Pro may indicate the copresence
of diabetes [16].

Implications of D-AAs in the development of several cancers have also been reported:
high levels of D-Ala were reported in the gastric secretion of helicobacter pylori-positive
gastric cancer patients [17]; a decrease in the levels of D-Glu and D-Gln were observed in
patients with hepatocellular carcinoma [18]; while in vitro studies revealed significantly
higher levels of D-Ser and D-Asp in MCF-7 breast cancer cells [19].

The incorporation of D-amino acids in peptides leads to dysfunctional proteins; such
is the case of the amyloid-beta peptide toxic fragment associated with neurodegeneration in
AD, which contains D-Ser at position 26; or the racemization of Asp58, Asp84, and Asp151
in α-crystallin, resulting in decreased solubility and function impairment and associated
with the development of cataracts [20]. A more thorough discussion on the influence that
D-Asp has on protein structure and function was recently published by Fujii et al. [21].

Besides amino acids, the second most popular research direction was the study of α-
hydroxy acids’ metabolic roles. Salivary levels of D- and L-lactate (LA) have been proposed
as diagnostic biomarkers for diabetes mellitus [22–24], which might prove to be a good
matrix for population screening. Elevated levels have also been found in plasma of diabetic
rats [25]. Both D- and L-enantiomers of 2-hydroxyglutarate (2HG) were observed to have
implications in several forms of cancer, such as gliomas [26], breast cancer [27], myeloid
leukemia [28], and some forms of brain cancer [29].

The analysis of chiral metabolites requires high sensitivity, in addition to good enan-
tioselectivity, as the concentrations of D-AAs in biological samples (e.g., human serum)
vary significantly, from trace concentrations of 0.025–0.1 µM for D-Arg, D-Glu, D-His,
D-Met, D-Gln, D-Leu, and D-Phe; to more abundant ones of 0.11–0.9 µM (D-Asp, D-Asn,
D-Ser, D-Val, D-Thr) and even higher for others of 0.9–5 µM (D-Ile, D-Ala) [18].

The direct approach to chiral metabolomics implies enantiospecific interactions be-
tween the analytes and a chiral selector. Separative techniques, including liquid chromatog-
raphy (LC), gas chromatography (GC), and capillary electrophoresis (CE), that rely on
the selectivity provided by chiral stationary phases and selectors have been extensively
applied in the analysis of enantiomers [30,31]. Unfortunately, for most of these small polar
molecules, it is difficult to achieve chiral resolution, and most importantly, considering
their lack of fluorophores and chromophores, significant difficulties are encountered in
their detection using optical techniques. Chiral derivatization can correct these issues by
improving their molecular properties to be more suitable both for separation (which can be
achieved in non-chiral environment) and for better detection sensitivity and specificity.

The main advantages presented by indirect enantioseparations include reduced cost,
variable choice of detectors (ultraviolet (UV), fluorescence (FL), mass spectrometry (MS),
and others), very good chiral selectivity, increased retention of the derivatives, more
sensitive and selective detection, and facile control of derivatives’ elution order [32]. At
the same time, significant drawbacks are represented by the increased time for sample
preparation, as well as derivatization requiring a specific amount of time depending on
the used chiral derivatizing agent (CDA). Moreover, if the CDA does not have high optical
purity, additional stereoisomers might be formed and coelute with peaks of interest. Despite
these, the indirect approach is the most widely used method for separation of chiral small
molecules in biological samples [33].

The last comprehensive review regarding the indirect chiral analysis of proteinogenic
amino acids and related metabolites was published in 2008 by Ilisz et al. [34]. Since then,
this topic has been partially covered by other reviews, with some focusing on the chiral
separation of amino acids [35–37], some on the role of some classes of analytes in certain
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diseases [33], and others describing the use of a specific CDA [32,38] or the enantioanalysis
of metabolites by liquid chromatography [39].

In this review paper, we intend to provide a landscape of recent developments in the
field of chiral analysis of endogenous metabolites using the indirect approach. Section 2
provides an overview of most popular CDAs, with a focus on newly developed labeling
agents and their applications, while the third section presents new methodologies devel-
oped for untargeted profiling of chiral metabolites in complex matrices. Section 4 is focused
on describing the state of the art in enantioseparations that target specific analytes or classes
of analytes, with an emphasis on chromatographic and electrophoretic techniques. Recent
progresses in ion-mobility mass spectrometry (IMS) separations of derivatized compounds
are presented in Section 5.

2. Advances in Chiral Derivatization

Most of the recently published studies employing the indirect approach were centered
on chiral analysis of amino acids and α-hydroxy acids, with the research being focused
on two main directions: improvements in the separation using existing CDAs and the
development of new CDAs. Therefore, this section covers aspects of derivatization with
both commercially available CDAs and newly synthesized ones. More relevant information
regarding the structures, reaction conditions, and specific applications of CDAs can be
found in Figure 1 and Table 1.

Considering that these chiral metabolites are polar and hydrophilic molecules, an ideal
CDA should increase their lipophilicity for better retention on conventional reversed-phase
stationary phases, while the derivatizing reaction should be fast and quantitative, without
any racemization. CDAs should be available in both enantiomeric forms and be optically
pure in order to avoid overestimation of trace chiral metabolites in complex matrices.
Preferably, CDAs should also be commercially available or easy to synthesize.

Traditionally, derivatization agents were developed to improve UV or FL detection
of certain metabolites, resulting in CDAs that have been successfully used for more than
30 years. However, some of these CDAs are starting to become obsolete, considering
the increased availability of mass spectrometry and its advantages (high sensitivity and
selectivity). Recently, efforts have been made toward developing new CDAs with bet-
ter characteristics for MS detection (covered in Section 2.3), including better ionization
properties or yielding intense daughter ions after MS/MS fragmentation.

Another relevant advance is represented by the implementation of isotopically labeled
derivatization of CDAs for chiral metabolomics profiling. Their specific role in these
approaches is described in Section 3.

2.1. Advances and Improvements in Chiral Derivatization

Marfey’s reagent, or 1-fluoro-2,4-dinitrophenyl-5-L-alanineamide (FDAA), has prob-
ably been the most successful CDA since its introduction in 1984 [40]. It reacts in alkaline
conditions (NaHCO3; triethylamine (TEA)) with amino groups without racemization, yield-
ing diastereomers. Details regarding FDAA synthesis and applications can be found in
several reviews [41,42].

A new approach for the derivatization of α-hydroxy acids with FDAA was described
by Moon et al. [43]. Considering that the nucleophilicity of the hydroxyl group is not strong
enough, it must be increased in order for the reaction to take place. The method implied the
addition of NaH (60% dispersed in oil) to a solution of α-hydroxy acids in tetrahydrofuran
(THF) at room temperature. After 5 min, L-FDAA was added to this solution and stirred
under argon or nitrogen. The reaction was quenched after 2 min using HCl, then analyzed
using reversed-phase LC-MS.

In the reaction between FDAA and proteinogenic amino acids, kinetics can vary
substantially among the analytes, with one explanation being the fact that many of them
are doubly labeled. The reaction kinetics between FDAA and proteinogenic amino acids
was assessed by Ayon et al. [44], who found that for quantitative analysis (yield > 95%),
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a 24 h incubation time is sufficient for all analytes except His (>78 h), while the CDA
concentration should be at least 4 times higher than that of the analytes.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 29 
 

 

 
Figure 1. Chemical structures of reported CDAs grouped according to the detection method for 
which they were developed. CDAs presented as racemates can be used in both enantiomeric forms. 

Considering that these chiral metabolites are polar and hydrophilic molecules, an 
ideal CDA should increase their lipophilicity for better retention on conventional re-
versed-phase stationary phases, while the derivatizing reaction should be fast and quan-
titative, without any racemization. CDAs should be available in both enantiomeric forms 
and be optically pure in order to avoid overestimation of trace chiral metabolites in com-
plex matrices. Preferably, CDAs should also be commercially available or easy to synthe-
size. 

Traditionally, derivatization agents were developed to improve UV or FL detection 
of certain metabolites, resulting in CDAs that have been successfully used for more than 
30 years. However, some of these CDAs are starting to become obsolete, considering the 

Figure 1. Chemical structures of reported CDAs grouped according to the detection method for
which they were developed. CDAs presented as racemates can be used in both enantiomeric forms.

The hydrophobicity of the derivatives can be tuned by replacing the L-alanineamide
moiety of FDAA with other amides of amino acids [45], such as L-leucylamide, resulting in
1-fluoro-2,4-dinitrophenyl-5-L-leucinamide (L-FDLA). Derivatization with this CDA was
recently implemented in the analysis of D- and L-AAs in brain tissue samples [46], along
with some improvements in derivatization [47] that consisted of using TEA instead of
NaHCO3 to achieve the alkaline pH. In this way, TEA caused less ion suppression, resulting
in improved detection sensitivity.
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Table 1. Derivatization characteristics of most commonly reported CDAs.

CDA Name Derivatization Moiety Derivatization Conditions Commercially
Available Ref.

L-FDAA 1-Fluoro-2,4-dinitrophenyl-5-L-alanineamide
Amines � Alkaline pH (TEA, NaHCO3), 24 h incubation

for yield > 95%
Yes [41,42]

α-Hydroxy acids � In presence of NaH (60% dispersed in oil);
Sample in THF

OPA o-Phthalaldehyde/chiral thiols Primary amines
� Alkaline pH (sodium tetraborate, NaOH)

� Chiral thiols: isobuteryl-L-cysteine or
N-acetyl-L-cysteine

Yes [48,49]

(+) or (−)-FLEC (+) or (−)-1-(9-Fluorenyl)ethyl chloroformate
Primary and secondary amines

� Alkaline pH (sodium tetraborate)
� FLEC in acetone or ACN

� Excess reagent of at least 1:10 will ensure
quantitative reaction

Yes [38]
Thiols

(S)-NIFE N-(4-nitrophenoxycarbonyl)-L-phenylalanine
2-methoxyethyl ester

Primary and secondary amines
� Alkaline pH (sodium tetraborate, TEA)

� CDA in acetone or ACN
� Excess reagent of at least 1:10 will ensure

quantitative reaction

Yes [50]Thiols

Phenols

(R/S)-DBD-
PyNCS

((R/S)-4-(3- isothiocyanatopyrrolidin-1-yl)-7-
(N,N-dimethylaminosulfonyl)-2,1,3-

benzoxadiazole

Primary and secondary amines � In presence of TEA or DMAP, CDA dissolved
in ACN Yes [32,51]

Carboxylic acids � In aprotic media, using condensation agents

NBD-(S)-APy (S)(+)-4-Nitro-7-(3-aminopyrrolidin-1-yl)-
2,1,3-benzoxadiazole

Primary and secondary amines � In presence of TEA or DMAP, CDA dissolved
in ACN No [32,51]

Carboxylic acids � In aprotic media, using condensation agents

(+)- or
(−)-DATAN (+) or (−)-Diacetyl-L-tartaric anhydride

Amines
� Reacts in aprotic media (CH2Cl2:acetic acid–4:1) Yes [52,53]

Hydroxyls

DMT-3(S or
R)-Apy

(S)-1-(4,6-dimethoxy-1,3,5-triazin-2-
yl)pyrrolidin-3-amine Carboxylic acids � In presence of activation reagents (TPP and

DPDS) No [54]

DMT-1(S or
R)-Apy

(S)-1-(4,6-dimethoxy-1,3,5-triazin-2-
yl)pyrrolidin-1-amine Carboxylic acids � In presence of activation reagents (TPP and

DPDS) No [54]
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Table 1. Cont.

CDA Name Derivatization Moiety Derivatization Conditions Commercially
Available Ref.

DMT-(S or
R)-Pro-OSu)

((S)-2,5-dioxopyrrolidin-1-yl-1-(4,6-
dimethoxy- 1,3,5-triazin-2-yl)

pyrrolidine-2-carboxylate
Amines � CDA in ACN, in presence of TEA

� Room temperature, 40 min No [55]

(R)-NCS-OTPP
(R)-(5-(3-isothiocyanatopyrrolidin-1-yl)-5-

oxopentyl)
triphenylphosphonium

Thiols � In presence of TEA No [56,57]

(S)-COXA-OSu (3-[(Benzoyloxy)carbonyl]-5-oxo-1,3-
oxazolidin-4-yl)acetate Amines � In PBS (100 mM) prepared in ACN No [58]

L-PGA L-Pyroglutamic acid Primary and secondary amines � In presence of activators (EDC/HOBt) Yes [59]

L-PGA-OSu L-Pyroglutamic acid succinidimyl ester Amines � CDA in ACN with TEA; sample in ACN Yes [60]

(R)-BiAC
(R)-4-nitrophenyl N-[2′-(dimethylamino)-6,6′-

dimehyl-[1,1′-biphenyl]-2-yl]
carbamate

Amines � In borate buffer (pH 8.8) diluted with ACN No [61]

(R)-OTPTHE

N-[1-oxo-5-(triphenylphosphonium)pentyl]-
(R)-1,3-thiazolidinyl-4-N-
hydroxysuccinimide ester

bromide salt

Amines � In ACN containing borate buffer
� 60 ◦C, 30 min No [62]

D-BPBr 1-Benzoyl-pyrrolidine-2-carboxylic acid
5-bromo-2-formyl-phenyl ester Primary amines � In H2O/ACN solution containing 0.05M PBS No [63,64]

L- and D-BPCl, 1-Benzoyl-pyrrolidine-2-carboxylic acid
5-chloro-2-formyl-phenyl ester Amines � In H2O/ACN solution containing 0.05 M PBS No [63,64]

(R)-Boc-PCC (R)-1-Boc-2-piperidine carbonyl chloride Amines � In aqueous solution mixed with acetone. No [65]

L-TSPC N-(p-toluenesulfonyl)-L-phenylalanine
chloride

Amines � In presence of TEA or Py
Yes [66,67]

Hydroxyl � Selective derivatization of hydroxy in anhydrous
ACN with Py; 25 ◦C, 10 min

(S)-PMP (S)(+)-1-(2-pyrrolidinylmethyl)-pyrrolidine Carboxylic acids � In presence of activation reagents (TPP and
DPDS) Yes [23]
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Table 1. Cont.

CDA Name Derivatization Moiety Derivatization Conditions Commercially
Available Ref.

(S)-Nap-Btz (S)-naproxen-benzotriazole Amines
� CDA in ACN; sample in NaHCO3

� In presence of TEA; microwave derivatization
(45 s, 600 W)

No [68]

(R)-MBIC Benzyl-isothiocyanate Amines � Sample in NaHCO3 Yes [69]

(S)-NEIC Naphtyl-isothiocyanate Amines � Sample in NaHCO3; microwave derivatization
(60 s, 600 W) Yes [69]

(S)-ANA (S)-anabasine Carboxylic acids � In presence of condensation agents (DMT-MM) Yes [70]

Abbreviations: ACN, acetonitrile; CDA, chiral derivatization agent; DMAP, 4-N,N-dimethylaminopyridine; DMT-MM, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinum
chloride; DPDS, 2,2′-dipyridyl disulfide; EDC, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide; HOBt, 1-hydroxy-1H-benzotriazole; PBS, phosphate-buffered saline; Py, pyridine; TEA,
triethylamine; THF, tetrahydrofuran; TPP, triphenylphosphine.
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o-Phthalaldehyde (OPA), a well-known derivatizing reagent used mainly for fluoro-
metric determinations, was used in several studies in combination with chiral thiols such as
isobuteryl-L-cysteine (IBLC) [71] or N-acetyl-L-cysteine (NAC) [72,73]. The basic pH of the
reaction was achieved by using either sodium tetraborate or sodium hydroxide, while OPA
and chiral thiols were dissolved in organic solvents such as methanol (MeOH) or acetoni-
trile (ACN). OPA/chiral thiol derivatization targets primary amines, impeding the analysis
of cysteine and proline. To overcome this problem, Yokoyama et al. [73] implemented
a two-step labeling approach, with primary amines being derivatized with OPA/NAC,
followed by derivatization of secondary amino acids with (+)-FLEC. Considering that
both CDAs react in similar conditions, the only prerequisite was the basic pH, which was
obtained with a saturated sodium borate solution.

The chiral analysis of 17 proteinogenic amino acids after OPA/IBLC derivatization
was realized by Müller et al. [71] in complex biological matrices such as serum, plasma,
urine, and cecal content. The derivatives were found to be stabile for 40 min; therefore, the
analysis needed to be performed immediately after derivatization.

(+) or (−)-1-(9-Fluorenyl)ethyl chloroformate (FLEC) was first introduced more than
30 years ago [74] and proved to be one of the most versatile CDAs; the derivatizing
conditions and several applications were covered in a comprehensive review [38]. In brief,
FLEC reacts with primary amines, secondary amines, and thiols, with fast reaction kinetics.
Excess reagent (at least 1:10 molar ratio) will ensure quantitative derivatization reactions.

Over the last decade, there were several relevant studies that employed FLEC derivati-
zation for metabolomics studies, targeting the chiral analysis of amino acids by LC [73,75],
capillary electrophoresis (CE) [76–80], or IMS [81].

Pre- and in-capillary FLEC labeling approaches have been reported for the enantio-
analysis of proteinogenic amino acids in standard solutions [79], cerebrospinal fluid (CSF)
samples [78], or artificial CSF (aCSF) [76,77,80]. A straightforward derivatization procedure
for amino acid standards that consisted of mixing FLEC and AA solution (containing 5 mM
of sodium tetraborate) was described by Prior et al. [79], with the reaction yield being
estimated at 93–97%.

Derivatization of CSF samples was achieved [78] without needing any preliminary
sample preparation. In brief, sodium tetraborate was added to the CSF sample for pH
adjustment, followed by the addition of FLEC, resulting in a molar ratio of AA/FLEC
between 1:50 and 1:100. The reaction yield was determined to be above 97% after 10 min
of reaction time. The same derivatization procedure was also applied before ion-mobility
separation in a study published by Pérez-Miguéz et al. [81].

The solid-phase extraction (SPE) of FLEC derivatives of five biologically relevant
amino acids (Ser, Asn, Asp, Gln, and Glu) from aCSF was documented by Moldovan et al. [80]
using a hydrophilic–lipophilic balance (HLB) SPE sorbent, with successful extraction being
achieved using MeOH with 0.1% ammonia. The matrix effect was found to be marginal
and the extraction efficiency was above 89%, with a derivatization efficiency above 80%.

Two other CE studies [76,77] reported the development of in-capillary labeling of
amino acids with FLEC. This approach has the advantage of completely automatizing the
derivatization procedure, with the separation capillary being used as a reaction chamber.
After injection, the mixing of the sample and CDA plugs was achieved by applying a low
voltage (0.1–0.2 kV) for a defined amount of time. Considering that the amino acids were
negatively charged (pH 9.2, adjusted with sodium tetraborate), during the mixing step they
would migrate toward the CDA plug, facilitating the reaction. The derivatization rates
were similar or better when compared to precapillary derivatization.

The capability of (+) or (−)-FLEC to react quantitatively in-capillary can significantly
decrease the sample preparation needed before analysis and offer a more reproducible
workflow (fewer human errors). Still, it has some downsides, such as a slightly decreased
sensitivity and selectivity, while the need for sample preparation techniques is not fully
eliminated (i.e., for complex matrices).
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N-(4-nitrophenoxycarbonyl)-L-phenylalanine 2-methoxyethyl ester ((S)-NIFE) is a
CDA that reacts with primary and secondary amines, thiols, and phenols. The reaction
will take place under basic conditions that can be provided by either TEA or sodium
tetraborate. Compared to other commercially available CDAs (Marfey’s reagent, Sanger’s
reagent, OPA/IBLC, 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate (GITC), 1-
phenylethyl-isothiocyanate (AMBI), and 4-(3-isothiocyanatopyrrolidin-1-yl)-7-nitrobenzofu
razan (NBD-PyNCS)), (S)-NIFE provided a significantly higher detection sensitivity [50],
a result contradicted by Hess [82], who reported that the general order of sensitivity was
GITC>(S)-NIFE≈L-FDAA>OPA-IBLC.

A landmark study was published by Visser et al. [50] describing the LC-MS/MS
analysis of all proteinogenic amino acids in plasma, urine, and CSF samples. Improvements
have been also made in terms of derivatization conditions, such as the use of sodium
tetraborate for pH adjustment, representing reaction conditions that have been used in all
studies employing (S)-NIFE derivatization ever since. While considering chiral purity to
be of the utmost importance in analyzing trace quantities of chiral metabolites, a quality-
control procedure employing enantiopure L-alanine was also proposed and implemented.
The same procedure was later used by Tian et al. [83] for the characterization of D-AAs in
milk samples.

Three studies based on (S)-NIFE derivatization were published by the group of Yan
Cui for the analysis of catecholamines [84] and D-AAs in rat plasma [85] and rat brain,
respectively [86].

Edman-type chiral benzofuran-derived CDAs ((R/S)-4-(3- isothiocyanatopyrrolidin-
1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole (DBD-PyNCS) and (S)(+)-4-
nitro-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole (NBD-(S)-APy)) have been employed
for labeling amino acids and related metabolites [87–89], or α-hydroxy acids (D- and L-
lactic acid (LA)) [24], resulting in highly fluorescent reaction products. These derivatizing
reagents are known to react with primary and secondary amines in the presence of triethy-
lamine, forming fluorescent thiourea derivatives. The derivatization of carboxylic acids is
also possible, but requires condensation agents. A book chapter written by Toyo’oka [32]
covered all the important aspects of derivatization that employ these CDAs.

An analysis of D-Ser [87], L-Trp, and L-kynurenine (L-Kyn) [88] was conducted in
human serum after protein precipitation; the resulting supernatant was derivatized by
adding a solution of DBD-PyNCS and 4-N,N-dimethylaminopyridine dissolved in ACN.
After 20 min at 55 ◦C, the reaction was terminated by adding a mixture of water and ACN
(4:1) containing 0.1% acetic acid. Subsequent anion-exchange SPE was needed for targeted
extraction of the analytes.

NBD-(S)-APy derivatization of D- and L-LA was reported [24] in a nonaqueous
medium: the samples were either prepared in or extracted with ACN, whereas the CDAs
and condensation reagents were dissolved in N,N-dimethylformamide. The NBD-(S)-APy
reaction was quantitative after 60 min at 60 ◦C.

(+) or (−)-Diacetyl-L-tartaric anhydride (DATAN) is a recognized CDA employed in
the derivatization of hydroxy acids and amino acids, and is mostly used for the chiral anal-
ysis of D- and L-LA and D- and L-2HG acid in different matrices. It reacts in aprotic media
(CH2Cl2:acetic acid–4:1) with hydroxy and amino moieties, forming stable diastereomers.
Quantitative reactions will occur in hermetically sealed containers at elevated temperatures
(70–80 ◦C). Various reaction times have been reported, with the majority being 30–40 min,
and some up to 2 h [90,91]. Most of the studies published recently [92–95] that reported the
analysis of D- and L-2HG were based on the method described in 2004 by Struys et al. [52]
with slight variations or adaptations to the available laboratory equipment. Nevertheless, a
new LC-MS method using this CDA was proposed in 2016 by Poinsignon et al. [53] and
validated for clinical applications.

Chiral-labeling DATAN was used by Scheijen et al. [25] in the analysis of D- and
L-LA by UHPLC-MS/MS in plasma and urine samples, a method later adapted by Ma-
son et al. [96] for the analysis of L-LA in CSF.
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A very recent publication [91] described a new strategy for untargeted chiral
metabolomics involving (+) and (−)-DATAN labeling of amino and hydroxy acids. Here,
the reaction conditions were optimized in terms of reaction time and reagent concentration.
Two hours of reaction time was found optimal for quantitative derivatization, while using
DATAN at a concentration of 75 mg/mL.

The use of well-established CDAs for new applications provides some important
advantages, such as a better understanding of reaction conditions and better predictability
toward finding the optimal separation conditions. However, some of these CDAs, which
were initially designed for UV or FL detection, are beginning to become obsolete now that
mass spectrometry is becoming widely available.

2.2. New CDAs for UV or FL Detection

A novel CDA, N-[1-oxo-5-(triphenylphosphonium)pentyl]-(R)-1,3-thiazolidinyl-4-N-
hydroxysuccinimide ester bromide salt (OTPTHE), was developed by Han et al. [62]
and was designed specifically for separation and selective detection of D- and L-amino
acids using reversed-phase LC. OTPTHE reacted with amines in mild conditions (in ACN
containing borate buffer), with the reaction being complete after 30 min at 60 ◦C.

The group of Bhushan et al. synthesized several new CDAs [68,69,97] with applica-
tions for the enantioseparations of biologically relevant metabolites. Microwave-assisted
derivatization (MAD) was implemented in all three approaches. Ten dichloro-(S)-triazine
CDAs and six mono-(S)-triazines with L-amino acids and amides as chiral auxiliaries
were synthesized and tested [97]; the researchers managed to separate the enantiomers
of 13 proteinogenic amino acids. It was observed that, in general, the CDAs with amino
acids as chiral auxiliaries offered better enantioresolution and were less retained. The
MAD was assessed with the reaction conditions optimized depending on the CDA and
analyte. Optimization limits were set for microwave irradiation at 75–90% power for
50–100 s at pH 8–10 (NaHCO3) and a molar ratio analyte:CDA between 1:1 and 1:5. MAD
was also implemented in the reaction between proteinogenic amino acid enantiomers and
(S)-naproxen-benzotriazole ((S)-Nap-Btz) [68], resulting in a fast derivatization (45 s) in the
presence of TEA.

Benzyl- and naphthyl-isothiocyanate (MBIC and NEIC) CDAs have been used for
the chiral analysis of selenomethionine (SeMet) [69], providing a simple and effective
alternative of chiral labeling that also leads to good chromatographic separation of D- and
L-SeMet derivatives.

2.3. New CDAs for MS Detection

The degree of selectivity and specificity offered by mass spectrometry gave rise to
specific needs and opportunities in terms of CDA developments. Therefore, a new class of
CDAs with improved properties for MS detection has begun to appear.

The synthesis of two new triazine-type CDAs specially developed for mass spectrom-
etry detection was reported for the first time in 2015, targeting two important classes of
endogenous chiral metabolites. (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-3-amine
(DMT-3(S)-Apy) and (S)-1-(4,6-dimethoxy-1,3,5-triazin-2-yl)pyrrolidin-1-amine (DMT-1(S)-
Apy) were developed for the analysis of carboxylic acids [54], while ((S)-2,5-dioxopyrrolidin-
1-yl-1-(4,6-dimethoxy-1,3,5-triazin-2-yl) pyrrolidine-2-carboxylate (DMT-(S)-Pro-OSu)) can
label biogenic amines [54]. An overview of these CDAs and some of their applications was
presented in a book chapter by Toyo’oka [98]. Briefly, DMT-1(S)-Apy and DMT-3(S)-Apy
react with carboxylic acids in the presence of activation reagents (triphenylphosphine and
2,2′-dipyridyl disulfide), with the reaction temperature also playing an important role
(60 ◦C offers much higher peak areas than room temperature). The reactivity of the two
CDAs was determined to be similar, with equal reaction rates and yields between the
enantiomers. In the end, DMT-3(S)-Apy was considered to be more efficient, offering a
higher sensitivity, better peak shape, and higher resolution values.
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DMT-(S)-Pro-OSu synthesis and DL-amino acid labeling was reported by
Mochizuki et al. [55]. This CDA can be used for the chiral analysis of amines and amino
acids due to its capability to react with amines in mild conditions at room temperature. The
reaction with all types of amino acids (neutral, acidic, basic and aromatic) was quantitative
after 40 min of reaction time, regardless of temperature.

Since their introduction, derivatization with DMT-3(S)-Apy and DMT-(S)-Pro-OSu
has been implemented in the analysis of peptides containing isomerized aspartic acid
(L-α-Asp, L-β-Asp, D-α-Asp, and D-β-Asp) in crystallin samples [99], in the development
of nontargeted metabolomics strategies [100,101] (discussed in Section 3, and for chiral
discrimination using ion-mobility mass spectrometry [102].

Another mass spectrometry CDA was developed by Ma et al. [56,57] for derivati-
zation of thiol compounds (DL-cysteine, DL-homocysteine, and glutathione). (R)-(5-(3-
isothiocyanatopyrrolidin-1-yl)-5-oxopentyl) triphenylphosphonium (NCS-OTPP) derivati-
zation was performed by mixing a 5 mM NCS–OTPP solution and 5% TEA, then incubating
at 60 ◦C for one hour. The resulting diastereomer contained a permanent positive charge,
which enabled good selectivity and high detection sensitivity.

Bromine- and chlorine-labeled probes (1-benzoyl-pyrrolidine-2-carboxylic acid 5-
bromo-2-formyl-phenyl ester (D-BPBr) and 1-benzoyl-pyrrolidine-2-carboxylic acid 5-
chloro-2-formyl-phenyl ester (D-BPCl, L-BPCl)) possessing stereodynamic chiral recogni-
tion characteristics have been recently synthesized [63,64] and used for profiling of amino-
containing metabolites in human biofluids. Under optimized conditions, the derivatization
reaction took place in a water–ACN solution containing 0.05 M phosphate-buffered saline
(PBS). The reaction was promoted by ultrasonication at room temperature (for D-BPBr) or
at 4 ◦C (for D-BPCl and L-BPCl) for 20 min, followed by overnight incubation at the same
temperature to ensure a complete reaction. The reaction products were diastereomeric
Schiff bases, which are D-enantiomers that offer a higher response in mass spectrometry.
Among the two types of CDAs, D-BPCl and L-BPCl offer better sensitivity and selectivity
than D-BPBr.

Two new pyridylthiourea CDAs have been proposed by Nagao et al. [103] for enan-
tioanalysis of amines and carboxylic acids. The reaction required triphenylphosphine and
2,2′-dipyridyl disulfide and was complete in 1 h at 60 ◦C. The resulting diastereomers could
be easily separated in RPLC with high resolutions (>3.5).

A series of prolylamidepyridines were evaluated as CDAs for the enantiosepara-
tion of carboxylic acids in saliva samples using LC-MS [104]. The reaction required 1-(3-
dimethylaminopropyl)-3-ethylcarbodiimide and dimethylaminopyridine at 60 ◦C for 1 h.
Considering that these CDAs were designed for MS detection, excellent sensitivity and
separation were achieved.

The synthesis of succinimidyl (3-[(benzoyloxy)carbonyl]-5-oxo-1,3-oxazolidin-4-yl)acetate
((S)-COXA-OSu) was reported by Sakamoto et al. [58]; the substance was suitable for
labeling amines. A requirement was considered for the existence of a ring structure with a
restricted binding rotation close to the reaction point. The collision-induced dissociation
(CID) fragmentation revealed highly specific fragment ions that contained amino acid
structures, providing higher specificity than other CDAs (e.g., (S)-NIFE).

L-pyroglutamic acid (L-PGA) [59] is a CDA for labeling chiral primary and secondary
amines, offering a high detection sensitivity through mass spectrometry. It is commercially
available, present in different isotopic forms, and reacts under mild conditions, avoiding
racemization. The reaction takes place in ACN in the presence of activation reagents such
as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxy-1H-benzotriazole, and
requires 60 min to react quantitatively. As a further development, a method for the analysis
of chiral amino acids based on derivatization with L-PGA-OSu (the succinidimyl ester of
L-PGA) was published by the same authors [60], with the reaction taking place in ACN
with TEA, with complete derivatization after 10 min at 60 ◦C.

The synthesis of axially chiral reagents was recently described by Harada et al. [61];
the idea was derived from the chiral catalysts used for enantioselective organic reactions.
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(R)-4-nitrophenyl N-[2′-(dimethylamino)-6,6′-dimehyl-[1,1′-biphenyl]-2-yl] carbamate ((R)-
BiAC (biaryl axially chiral tag)) was able to offer a baseline resolution for all proteinogenic
amino acids due to the effective chiral environment provided by the axially chiral biphenyl
moiety. (R)-BiAC reacted with chiral amines in borate buffer (pH 8.8) diluted with ACN at
55 ◦C for 10 min. Reaction quenching was performed by acidifying the reaction mixture
with formic acid. Enhanced sensitivity in the attomole range was offered by the presence
of a urea bond that could be easily cleaved by CID and a dialkyl amino group that could
be easily protonated by ESI. Later, an LC-MS method for analysis of (R)-BiAC-derivatized
amino acids in urine was also established [105].

Targeted analysis of D-Ser was described by Xie et al. [65] after precolumn deriva-
tization with (R)-1-Boc-2-piperidine carbonyl chloride. The reaction occurred at room
temperature under stirring (1000 rpm) for 2 h, then another hour of incubation was needed
after addition of trifluoroacetic acid. This approach offered a limit of quantification of
0.19 µM, adequate for D-Ser analysis in human plasma.

The acyl group in N-(p-toluenesulfonyl)-L-phenylalanine chloride (TSPC) will react
with amines, alcohols, and carboxyl groups, thus the derivatization was implemented in
the analysis of D- and L-2HG [66,67]. For the selective derivatization of alcohol moieties in
α-hydroxy acids by TSPC, Cheng et al. [66] used anhydrous ACN as the reaction solvent
and pyridine to neutralize the hydrochloric acid produced. It was observed that a complete
reaction could be achieved in 5 min at 25 ◦C with a concentration of TSPC of at least
1.25 mM. TSPC-labeled L-2HG acid was stable for at least 12 h. Another derivatization
optimization was performed by Zheng et al. [67], who concluded that the reagent solution
should be 12 mM TSPC containing 5% pyridine, while an incubation time of 20 min at
25 ◦C should provide robust derivatization.

Enantiomers of LA and 3-hydroxybutyric acid (3HB) in saliva samples were an-
alyzed by LC-MS after derivatization with (S)(+)-1-(2-pyrrolidinylmethyl)-pyrrolidine
((S)-PMP) [23]. The CDA and analytes reacted at room temperature in the presence of
2,2-dipyridyl disulfide and triphenylphosphine as activators, and required at least 90 min
to be quantitative. The formed derivatives were highly responsive in ESI-MS and produced
characteristic product ions that enabled sensitive detection. A study regarding the chiral
separation of DL-2-HB and DL-3-HB was published by Cheng et al. [106]. In this case,
the derivatization was performed at 60 ◦C for 90 min with an (S)-PMP concentration of
0.2 mM.

(S)-anabasine ((S)-ANA) was used as a CDA for analyzing chiral carboxylic acids [70],
greatly improving the detectability of those compounds using MS (20–160-fold). The reac-
tion required condensation agents such as 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmor
pholinum chloride, and was quantitative in 5 min at room temperature.

Zhang et al. [107,108] used N-tert-butoxycarbonyl-O-benzyl-L-serine (BBS) as a CDA
for their ion-mobility studies of amino acids. BBS was chosen due to its particular structure,
as it contains polarizable heteroatoms and bulky substituents close to the chiral center,
which can facilitate the separation. Chiral recognition by IMS was achieved for enantiomers
of tryptophan, phenylalanine, cysteine, and proline.

Considering that not many of the CDAs that are commercially available are perfectly
suitable for MS detection, this new generation of CDAs designed for improved MS detection
may pave the way toward better chiral metabolomics.

3. Untargeted Methodologies for Chiral Metabolomics

Several methodologies for profiling of chiral metabolites have been reported in the
literature (Tables S1 and S2). Some of them include the use of isotope-labeled CDAs, allow-
ing for fold-change determination of the diastereomers formed for each chiral metabolite
in two distinct sample groups (e.g., disease vs. control). Basically, one of the sample
groups is derivatized with a chiral derivatizing reagent (light CDA), and the other group
with the isotope-labeled form of the chiral reagent (heavy CDA). A pool of the two group
samples is analyzed using LC-MS/MS with either an untargeted (DDA mode, HR-MS) or
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targeted (triple quadrupole) approach. By using nonchiral stationary phases, both heavy
and light variant of the diastereomers coelute; nevertheless, based on the mass difference,
they can be differentiated by MS. Toyo’oka’s group has published extensively on this
subject. In 2013, the group used L-PGA as a CDA for the enantioseparation of primary
and secondary amine metabolites (with enantiomers of 1-phenylethylamine (PEA) being
used as prototype molecules) [59] and L-PGA-OSu [60] for amino acid enantiomers. The
separation efficiency was evaluated on a reversed-phase C18 stationary phase, and the
diastereomers were analyzed by a triple quadrupole mass spectrometer. All diastereomers
obtained after L-PGA derivatization achieved good chromatographic separation within
10 min and with resolution values between 1.6 and 6.8. However, the separations of the
hydrophilic amino acids after L-PGA-OSu labeling were insufficient due to the weak re-
tention in the stationary phase used. Nevertheless, for nine aliphatic and aromatic amino
acids, good enantioseparation was achieved, with resolutions ranging from 1.95 to 8.05.
Moreover, the isotope labeling strategy using light and heavy (isotope-labeled) CDA was
implemented for the analysis of the target molecules spiked at different R/S ratios in rat [59]
and human plasma, respectively [60], allowing for determination of the fold change in
the metabolite enantiomers in two distinct sample groups. A few isotope-labeled CDAs
have also been reported. Zhang et al. [109] used a stable isotope N-phosphoryl amino acid
labeling strategy (named SIPAL) for quantitative profiling of amine-metabolites by LC-MS.
Two isotopic CDAs were synthesized (16O2- (light) and 18O2- (heavy) N-diisopropyl phos-
phoryl L-alanine N-hydroxysuccinimide esters (16O/18O-DIPP-L-Ala-NHS)) and used for
this purpose. The method reported was applied for the amine-containing metabolites in hu-
man urine, providing both identification and absolute quantification of the targeted class.

The approaches described above were applied mostly to known chiral molecules de-
termined using untargeted data sets. Subsequently, in 2015, the group of Toyo’oka reported
an LC-MS/MS-based separation of chiral metabolites using two different CDAs (each in
two enantiomeric forms) [100]. Briefly, the method consisted of two steps [98]: (i) chiral
metabolomics fingerprinting: labeling of amine- and carboxyl-containing metabolites with
an enantiopure derivatization agent (DMT-(S)-Pro-OSu and DMT-3(S)-Apy, respectively)
and determination of the diastereomers formed with a precursor ion scan using LC-MS/MS.
In this first step, DMT-tag metabolites (no annotations, no distinction between chiral and
nonchiral metabolites) with significantly altered profiles between groups were identified;
and (ii) selective extraction of the chiral molecules: samples were pooled and divided into
two groups, one labeled with R-CDA and the other with the CDA’s antipode. Chromato-
graphically, achiral metabolites will elute as single peaks, while chiral ones will present
two peaks with opposite elution order in the sample aliquots derivatized with opposite
CDAs. The approach was applied successfully in the chiral metabolomics fingerprinting
and extraction of carboxyl and amines in the brain homogenate of AD patients and diabetic
saliva, identifying L-Phe, L-LA, and D-LA as possible biomarkers.

Based on a similar workflow, DATAN was used for simultaneous derivatization
of metabolites containing amine and hydroxyl groups [91], followed by separation and
detection using reversed-phase LC-MS (Figure 2). Differentiation between achiral and
chiral metabolites was made using MS/MS fragmentation patterns and the reversal of
the elution order of metabolites labeled with the +/− enantiomeric forms of the CDA.
The method was used for chiral metabolic profiling of acute myeloid leukemia (AML)
patients, and was applied on peripheral blood and bone marrow plasma samples. A total of
67 chiral metabolites (D enantiomer of 22 amino acids and 8 hydroxy acids) were detected
in the bone marrow plasma, while 65 chiral metabolites were identified in peripheral blood
plasma (D enantiomer of 20 amino acids and 6 hydroxy acids were detected). Notably high
levels of several D-amino acids and hydroxy acids characterized these samples. Moreover,
the authors investigated the effect of chemotherapy on the metabolic response of the
AML patients.



Int. J. Mol. Sci. 2022, 23, 7428 14 of 29

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 29 
 

 

applied on peripheral blood and bone marrow plasma samples. A total of 67 chiral me-
tabolites (D enantiomer of 22 amino acids and 8 hydroxy acids) were detected in the bone 
marrow plasma, while 65 chiral metabolites were identified in peripheral blood plasma 
(D enantiomer of 20 amino acids and 6 hydroxy acids were detected). Notably high levels 
of several D-amino acids and hydroxy acids characterized these samples. Moreover, the 
authors investigated the effect of chemotherapy on the metabolic response of the AML 
patients. 

 
Figure 2. Base peak chromatogram showing baseline resolution of D- and L-enantiomeric forms of 
AAs and HAs using BEH C18 column. Reprinted with permission from Pandey et al. [91]. Copyright 
2021, American Chemical Association. 

In order to provide a more accurate quantitative determination of isomer ratios avail-
able in trace amounts, Takayama et al. [101] employed the 13C2- isotope-coded derivatiza-
tion agents (iCDAs) iDMT-(S)-Apy and iDMT-(S)-Pro-OSu, in addition to DMT-(S)-Apy 
and DMT-(S)-Pro-OSu. Furthermore, the group coupled this strategy with a data-depend-
ent MS/MS analysis (DDA) acquisition mode derived from Q-TOF MS, allowing for sim-
ultaneous analysis of amines and carboxylic acids. Briefly, a pool prepared from all sam-
ples was derivatized using heavy iCDAs corresponding to the target class (iDMT-(S)-A 
for carboxylic acids or iDMT-(S)-PO for amines) and mixed in equal volumes, with each 
study sample labeled with the light versions of the CDAs. The authors used MSDIAL soft-
ware for peak picking, deconvolution, and alignment for full MS and MS/MS scanning, as 
well as an Excel macro program for discrimination of isotope-coded/noncoded peak pair 
analysis (DINA), allowing the selective extraction of CDA-characteristic product ions and 

Figure 2. Base peak chromatogram showing baseline resolution of D- and L-enantiomeric forms of
AAs and HAs using BEH C18 column. Reprinted with permission from Pandey et al. [91]. Copyright
2021, American Chemical Association.

In order to provide a more accurate quantitative determination of isomer ratios avail-
able in trace amounts, Takayama et al. [101] employed the 13C2- isotope-coded derivatiza-
tion agents (iCDAs) iDMT-(S)-Apy and iDMT-(S)-Pro-OSu, in addition to DMT-(S)-Apy and
DMT-(S)-Pro-OSu. Furthermore, the group coupled this strategy with a data-dependent
MS/MS analysis (DDA) acquisition mode derived from Q-TOF MS, allowing for simulta-
neous analysis of amines and carboxylic acids. Briefly, a pool prepared from all samples
was derivatized using heavy iCDAs corresponding to the target class (iDMT-(S)-A for
carboxylic acids or iDMT-(S)-PO for amines) and mixed in equal volumes, with each study
sample labeled with the light versions of the CDAs. The authors used MSDIAL software for
peak picking, deconvolution, and alignment for full MS and MS/MS scanning, as well as
an Excel macro program for discrimination of isotope-coded/noncoded peak pair analysis
(DINA), allowing the selective extraction of CDA-characteristic product ions and calculus
of peak-intensity ratios of the light and heavy derivatives for subsequent multivariate
analyses. The performance of the method was first tested on human serum spiked with
different ratios of D/L enantiomers (D/L ratios of 0/100, 0.5/100, 1/100, and 2/100) of
several prototype molecules. The iCDA correction improved accuracy, allowing differen-
tiation between spiked metabolites’ intensity profiles at D/L ratios of 0/100 and 0.5/100.
The method was improved significantly by the Q-TOF platform, achieving a 2 to 400 times
higher sensitivity than reported previously by the group using a triple quadrupole MS.
The optimized method was applied to the cerebrospinal fluid of AD patients for biomarker
discovery, identifying 402 carboxylic-acid- and 629 amine-containing metabolites. The PCA
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of the metabolome comparison between the groups (*AD, non-AD) permitted identification
of 9 carboxylic acids and 15 amines as biomarker candidates, with 8 compounds possessing
chiral properties. Based on the MS/MS spectra, 16 compounds were annotated, with 6 of
them being chiral.

Although the focus is truly on coverage of certain chiral metabolite classes (e.g., amino
acids and hydroxy acids), remarkable improvements in terms of matrix-effect correction,
accurate measurement of the isomer ratios of chiral isomers present in trace amounts, and
overall approaches to accurate determination of biomarkers for reliable chiral metabolite
separation applicable to untargeted metabolome studies were reported.

4. Targeted Analysis of Chiral Metabolites
4.1. Approaches Applicable to Chiral Profiling of Proteinogenic Amino Acids

The role of certain D-AAs in systems biology has not been deciphered yet. There-
fore, enantiospecific analysis methods that can provide a comprehensive overview over
the proteinogenic amino acids are needed in order to form new hypotheses regarding
their roles.

The most common separation technique implemented for the indirect enantioanalysis
of metabolites was liquid chromatography, most often coupled with mass spectrometry.
In most cases, C18 stationary phases were preferred for the separation of hydrophobic
diastereomers, together with binary mobile phases, usually formed of ACN and/or MeOH
and sometimes THF [24], together with a buffer solution compatible with the detector.
However, in certain cases, the nature of the stationary phase was crucial to achieving the
desired level of separation. For example, DMT-Pro-Osu derivatives of serine could be
separated only on an adamantylethyl stationary phase [55] that provided a higher polar
surface. Other studies reported phenyl-based stationary phases to be more suitable for
the separation of (R)-BiAC [61] and (+)-FLEC [75] derivatives, considering the aromatic
nature of the analytes. For more information, complete data on separation conditions for
the studies included in this review are available in Supplementary Materials Table S1.

Several studies reported the simultaneous chiral analysis of all 19 diastereomer pairs
of proteinogenic amino acids after labeling with (S)-NIFE [50], (R)-BiAC [61], OPA/FLEC,
or (S)-COXA-OSu [58] in matrices such as plasma, urine, or cerebrospinal fluid. Other
noteworthy approaches that described the simultaneous separation of at least 10 enan-
tiomer pairs of proteinogenic amino acids employed CDAs such as DMT-Pro-OSu [55],
(+)-FLEC [75–80], (S)-Nap-Btz [68], OPA/IBLC [71], D-BPBr [63], and D-BPCl [64]. Some of
these approaches can be categorized as high throughput, due to the fact that they manage
to combine a fast analysis speed with the generation of high-quality data.

An analysis method developed by Visser et al. [50] targeted all 19 enantiomer pairs of
proteinogenic amino acids labeled with (S)-NIFE, obtaining resolutions higher than 2.45
in less than 30 min. The method was validated for human cerebrospinal fluid, plasma,
and urine, and was later adapted by other groups for the chiral analysis of amino acids in
different matrices, such as rat plasma [85], rat brain homogenates [86], or milk [83].

The enantioanalysis of more than 40 α-AAs after derivatization with (S)-COXA-OSu
derivatives was reported by Sakamoto et al. [58]. The formed diastereomers were separated
on a triazole-bonded column, which interacted selectively with carboxylic moieties. Due to
its lipophilic nature, the (S)-COXA-OSu was eluted at the beginning of the chromatogram,
avoiding possible interferences with the compounds of interest. [58].

Harada et al. [61] developed a new CDA, (R)-BiAC, and used it for the simultaneous
enantioseparation of all 19 proteinogenic AAs with resolutions higher than 1.9 (except for
allo-isomers) within 18 min on a phenyl stationary phase (Figure 3). The dialkyl amino
group conferred an enhanced detection sensitivity to the diastereomers formed with this
CDA, while good enantioselectivity was provided by the effective chiral environment
created by the axially chiral biphenyl moiety. The same group adapted the LC-MS/MS
method used previously for the analysis of 18 chiral proteinogenic AAs and Gly from
human urine samples, achieving their separation in 20 min with a modified gradient and a
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longer column (75 mm instead of 50 mm). The method was validated using pooled human
urine samples [105].
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The use of phenyl-based stationary phases was also reported by Moldovan et al. [75].
The authors compared the performance of biphenyl and diphenyl stationary phases for the
separation of proteinogenic AAs derivatized with (+)-FLEC. After optimization, baseline
separation for 17 AAs was obtained on the biphenyl stationary phase within 30 min using
ACN as an organic modifier. FLEC derivatization was used in several studies targeting the
chiral analysis of amino acids using CE coupled with different types of detectors, such as
UV [76], laser-induced fluorescence (LIF) [79], or MS [77,78,80]. This CDA proved to be very
versatile, forming hydrophobic diastereomers and offering excellent enantioselectivity [38].

Fradi et al. [76] implemented a fully automated micellar electrokinetic chromatography
(MEKC) approach with in-capillary derivatization of amino acids with (−)-FLEC, followed
by the separation of the derivatives using a background electrolyte (BGE) formed with
sodium tetraborate buffer, sodium dodecyl sulphate, and 2-propanol. Chiral resolution for
14 proteinogenic amino acids was achieved in 80 min, with limits of detection in the low
micromolar range. On the other hand, Prior et al. [79], used precapillary derivatization
with (+)-FLEC and a similar BGE (with LIF detection) to achieve chiral separation of
12 proteinogenic amino acids within 40 min. The group reported lower limits of detection
(in the nM range).
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Two micellar electrokinetic chromatography methods coupled to MS detection [77,78]
separated FLEC diastereomers by using an MS-friendly volatile surfactant (ammonium
perfluorooctanoate), achieving chiral resolution for the D- and L-derivatives of 14 pro-
teinogenic amino acids, with sensitivity in the low micromolar range. Moreover, the
approach developed by Moldovan et al. [77] was fully automatized by performing in-
capillary derivatization.

Good enantioresolution for 18 proteinogenic amino acids was reported by
Bhushan et al. [68] using HPLC-UV after derivatization with (S)-Nap-Btz, with the CDA
providing increased lipophilicity due to its naphthyl moiety. Another HPLC method, this
time coupled with an FL detector, was reported by Yokohama et al. [73]; the group proposed
a two-step labeling procedure: first, the primary amines were labeled using OPA/NAC,
then the secondary amines were derivatized with FLEC. In this way, the separation of all
proteinogenic AAs was achievable within 90 min on a reversed-phase stationary phase.

OPA-based derivatization was performed also by Müller et al. [71], who developed and
validated an LC-MS method using OPA/IBLC for precolumn derivatization for proteino-
genic DL-AAs analyzed from complex matrices (human serum, plasma, urine, and mouse
gut). Baseline separation was achieved for almost all the AAs, with the exceptions being
Asp derivatives, which were not retained; Cys derivatives, which could not be detected;
and Pro enantiomers, which do not react with this CDA due to the secondary amine.

A recent study reported the use of a newly synthesized CDA, DMT-Pro-OSu, for
indirect enantioseparations of AAs in biological samples [55]. This method was applied
to saliva samples from healthy volunteers to simultaneously analyze all proteinogenic
AAs, achieving resolutions between 0.8 and 9.0. This was the first attempt to develop
a new method for simultaneous and enantioselective determination of AAs from saliva
using LC-MS, presenting a high sensitivity and good specificity [55]. By applying the
same approach, Mizuno et al. [99] determined the positions of isomerized Asp residues in
α-crystallin protein extracted from bovine eye lens.

Two similar methods that employed new CDAs were developed for analysis of AAs
and amino-containing metabolites based on derivatization with two novel chiral bromine-
and chlorine-containing aldehyde probes named D-BPBr [63] and D-BPCl [64]. These
reagents showed preference for D-AAs, based on the derivatization efficiency between D-
and L- forms and the MS response for the two corresponding peaks. Moreover, better chro-
matographic resolution was achieved for AAs with nonpolar (Ile, Val) and aromatic (Trp,
Phe) substituents. Therefore, 14 pairs of AA enantiomers were separated and quantified,
with D-BPCl offering a slightly better sensitivity and chiral selectivity. Both methods were
validated for biological samples and proved useful in the analysis of trace levels of D-AAs
in complex matrices such as urine and plasma.

In the case of DBD-PyNCS-DL-AA derivatives, two gradient elution systems were
implemented in order to achieve chiral resolution for 17 DL-AA in nail samples, with
resolutions between 1.62–6.96 [110]. It was concluded that DBD-PyNCS offered a higher
resolution for neutral and aromatic AAs than for basic and acidic ones. In addition, for
separation of the hydrophilic AAs, an isocratic elution with water and 30% MeOH in ACN
containing trifluoroacetic acid seemed to offer a better resolution [32].

Even though many studies targeted the indirect analysis of the entire class of AAs,
not many managed in the end to provide a baseline separation for all proteinogenic AAs.
Nevertheless, the usefulness of these approaches is undoubted, and precious information
regarding D-AAs has been reported.

4.2. Targeted Analysis Methods for Amino Acids

Generally, targeted methods aim at validating a certain hypothesis. This was also
the case for indirect chiral separation methods, which aim to quantify D- and L-amino
acids. Several methods have been developed for the quantification of various D-AAs in
different samples, such as D-Ser in plasma [62,65,87,111], DL-Cys and DL-homocysteine
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(DL-Hcy) [56,57], L-Trp and L-Kyn in serum [88,89], or some amino acids relevant to
neurometabolomics, such as DL-Ser, DL-Asp, DL-Asn, DL-Glu, and DL-Gln [80].

Xie et al. [65] developed a targeted approach for D-Ser analysis in human plasma
after derivatization with (R)-1-Boc-2-piperidine carbonyl chloride. The low detection limit
(LLOQ of 0.19 µM) and increased specificity provided by MS/MS detection made this
approach suitable for quantification of D-Ser in plasma. The method was later applied by
McGarry et al. [111] to plasma and CSF samples of Huntington’s disease patients.

An LC-MS/MS method validated for the analysis of (S)-DBD-PyNCS derivatives of
D-Ser in human serum was described by Sakamoto et al. [87]. In this case, a triazole-
bonded silica-packed column was used because this type of stationary phase offers good
separation for acidic compounds due to the hydrophilic and anion-exchange interactions
with protonated triazole.

A recently published study [62] that employed OTPTHE derivatization of AAs re-
ported the successful separation of 13 pairs of AA diastereomers using RP-HPLC-UV,
recording resolutions between 1.6 and 2.5 with a run time of 30 min. However, this method
was only validated for the analysis of D- and L-Ser in human plasma.

Thiol compounds related to different diseases were enantioseparated after derivati-
zation with (R)-(5-(3-isothiocyanatopyrrolidin-1-yl)-5-oxopentyl) triphenylphosphonium
(NCS-OTPP) [56,57]. Chiral resolution of DL-Cys and DL-Hcy were achieved on a high-
density C18 hybrid silica stationary phase, which offered better retention characteristics
than other C18 columns. Using an isocratic elution, the separation was achieved in 25 min.

A capillary zone electrophoresis–mass spectrometry (CZE-MS) method was developed
by Moldovan et al. [80] for the analysis of D- and L-enantiomers of five biologically
relevant chiral amino acids: Ser, Asp, Asn, Glu, and Gln, after derivatization with (+)-FLEC.
Separation was found to be highly dependent on the pH of the BGE, demonstrating that
chiral discrimination was promoted by different pKa values of the ionizable moieties of the
diastereomers. Baseline separation was achieved for all five pairs of diastereomers, with
sub-micromolar sensitivity.

(S)-DBD-PyNCS was used for the derivatization of L-Trp and L-Kyn [88,89] in ap-
plication to human serum samples. L-Trp and L-Kyn were determined with resolution
values of 2.22 and 2.13, respectively, and excellent detection sensitivity by FL (in nM
range) [89]. This method was useful for evaluating the in vivo activity of indoleamine
2,3-dioxygenase or tryptophan 2,3-dioxygenase, important in patients with psychiatric
disorders [88]. Zhou et al. used an LC method with chemiluminescence (CL) detection for
the separation of Trp enantiomers, obtaining complete separation and low detection limits,
but with a long analysis time [72].

4.3. Targeted Analysis Methods for α-hydroxy Acids

α-Hydroxy acids are the second most important class of chiral metabolites, and have
been recognized to play significant roles in biological systems; in recent years, their analysis
was often reported in human biological samples.

Several studies developed new approaches for the analysis of D- and L-LA in human
saliva, since it was found to be a diagnostic biomarker in diabetic patients [23]. Therefore,
D- and L-LA have been enantioseparated after derivatization with (S)-PMP [23], DBD-(S)-
APy [22], NBD-(S)-Apy [24], or newly synthesized DMT-3(S)-Apy [54], PCP2 [104], PyT-C,
and PyT-N [103]. All of these studies provided adequate separation of the analytes, with
the most noteworthy being the study published by Tsutsui et al. [23], in which the recorded
enantioresolution was 4.9, while the analysis time was only 7 min.

A cost-effective alternative for diabetes mellitus screening was developed by Nu-
mako et al. [22,24] for the analysis of LA enantiomers in saliva samples collected from dried
saliva spots. The group reported two methods employing different CDAs, DBD-(S)-APy
and NBD-(S)-Apy, with the latter offering higher chiral selectivity.

In addition to DL-LA, a few other chiral hydroxy acids were also analyzed, such as
DL-2HB [106], DL-3HB [23,54], and malic acid [104].
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Higashi et al. [70] used (S)-ANA as a CDA for the derivatization of chiral carboxylic
acids in neonatal dried blood and saliva ((3-hydroxypalmitic acid and 2-(β-carboxyethyl)-6-
hydroxy-2,7,8-trimethylchroman). It was reported that the CDA enhanced the detectability
of the analytes by 1–2 orders of magnitude, with good enantiomeric separation (Rs of 1.92
and 1.75, respectively).

Enantiomers of 2HG were shown to be involved in diseases such as renal cancer [93]
or AML [53,112]. A method using L-DATAN labeling offered baseline separation for
these analytes in human serum and plasma [53]. TSPC was also used for labeling 2HG
enantiomers, offering an improved chromatographic separation and detection sensitivity
compared to L-DATAN [66,67]. The method was validated and then applied in the analysis
of D- and L-2HG in human urine and tissue samples [66], as well as in rat serum and
synovium tissue [67].

Several applications combined the analysis of α-hydroxy acids and amino acids, either
derivatized with the same CDA (FDAA, for the determination of absolute configuration of
a natural depsipeptide [43]) or with CDAs specific to each metabolite class, such as the one
applied in the detection of chiral amino and α-hydroxy acids in brain homogenates from
patients with Alzheimer’s disease [100].

5. Diastereomers Discrimination by Ion Mobility

Ion mobility coupled with mass spectrometry is a promising tool for gas-phase enan-
tiomeric analysis that may address the limitations in chiral selectivity of previously de-
scribed techniques. Briefly, in IMS, gas phase ions are separated based on their mobility
as they are directed through a buffer gas under the influence of an electric field [113]. The
mobility of an ion varies according to its mass, charge, and collision cross section (CCS),
the latter being related to the ion’s size and conformation in the gas phase. Accordingly,
coupling IM with MS provides an additional dimension to the separation, allowing ions
with different CCS values to be separated even if they are isobaric or isomeric [114].

Several IMS technologies have been used for chiral analysis of small molecules
that can be classified by means of separation as following: temporary dispersive sep-
aration techniques (drift-tube ion-mobility spectrometry (DTIMS), traveling-wave ion-
mobility spectrometry (TWIMS), trapping with selective release (trapped ion-mobility
spectrometry (TIMS), and spatially dispersive (field-asymmetric ion-mobility spectrometry
(FAIMS)) [115]. Concisely, in DT-IMS, ions organized in packs are directed through a sta-
tionary buffer gas under low and constant electric field conditions [114]. In these terms, ions
are separated based on their velocity in the carrier gas; in other words, ions with compact
structures have fewer interactions with the drift gas, consequently traveling through the
drift tube faster than larger structures would. Additionally, in TWIMS, a DC voltage pulse
is applied in a series of sequentially and opposite polarity RF-only rings, creating traveling
waves that separate ions based on their mobility in the gas-filled cell. [114,116,117]. Due to
the reverse gas flow, the low-mobility ions are overtaken more often, hence increasing their
transit times, while ions with high mobilities are “surfing” with the wave.

TIMS is a technique that traps ions against a moving gas using radially confining RF
voltages and an axial electric field [118]; ions are then selectively ejected as the axial electric
field is progressively decreased [115]. While the ion-mobility separation takes place in the
second part of the TIMS tunnel, new ions are collected in the first section.

In contrast to DTIMS and TWIMS, FAIMS (differential mobility spectrometry (DMS)
and differential mobility analyzer (DMA)) operates using high electric fields, making ion
mobility dependent on the strength of the applied electric field; in fact, this dependence
is measured, rather than the absolute value of the mobility. Accordingly, FAIMS uses a
sequence of strong and weak electric fields to separate the gas-phase ions carried by a
flow of buffer gas. Spatial dispersion is created by alternating high and low electric fields;
therefore, an ion will oscillate between traveling to one electrode or another as the field
fluctuates in polarity [113,119]. Only ions with a stable flight path will exit the FAIMS
interface. A secondary DC voltage (termed the current compensation voltage (CV)) applied
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to FAIMS electrode in order to compensate for ion drift under varying field conditions will
allow specific ion groups to traverse the interface for MS analysis [120].

The separation efficiency of these different IM techniques can be compared by defining
the IM’s resolving power (Rp), usually reported in terms of CCS values and particularly, in
FAIMS, in terms of compensation voltage. Accordingly, a direct comparison of resolving
power values between FAIMS and IMS technologies operating in low electric fields is not
suitable [115], since the separation parameters differ. Otherwise, the IMS Rp (expressed as
CCS/∆CCS) ranges from 40 to 50 in DTIMS and TWIMS, to 200 in TIMS, and even 750 in
cyclic IMS [115], allowing separations of isomers and conformers with a 0.5% difference in
CCS or higher [121].

Various IMS strategies were implemented in the analysis of enantiomers: (i) use of
a chiral gas modifier to promote in situ formation of diastereomeric clusters with the
enantiomer’s ions; (ii) use of an enantiopure amino acid as a chiral selector complexed
with a divalent metal ion, forming trimers with the enantiomer [122]; (iii) use of a modified
amino acid as a chiral selector to form metal-free dimers with the enantiomers [108]; and
(iv) use of CDAs for diastereomer formation. Herein, we focused on the indirect IMS
methods applied in the chiral analysis of small molecules (Table S3). A selection of the
most recent advances in applying IMS separation for the chiral analysis of endogenous
metabolites is discussed hereafter.

5.1. Enantiopure AAs Complexed with Divalent Metal Ions as Chiral Selectors

Several enantiopure amino acids as chiral selectors complexed with divalent metal
ions were tested for the FAIMS-MS chiral separation of six amino acids [123]. First, op-
timization of the FAIMS parameters known to affect the resolving power (carrier gas
composition -%He, position of the inner electrode, and makeup gas flow responsible for
the gas flow rate through the interface) was carried out using [NiII(refL-Asn)2(L-Trp)-H]+

and [NiII(refL-Asn)2(D-Trp)-H]+ as prototypes. Several observations were made based
on the optimization performed in this study: (i) the peak resolution tended to increase
with an increase in the percentage of He in the carrier gas; (ii) the resolution might be im-
proved with increasing tip distance, although ion transmission might be affected; and (iii) a
low flow of makeup gas resulted in a slightly superior resolution, while ion transmission
was severely affected at high flows. The paper [123] also presented the results of FAIMS
separations of six DL-amino acids. Nine reference compounds along with four metals
were screened for their ability to form [MII(refL-AA)2(D/LAA)-H]+ complexes separable
in FAIMS. The tested aromatic amino acids (Trp and Phe) were more easily separated;
however, their performance as reference compounds was unexceptional. L-Gln and L-Pro
used as reference compounds attained successful separations of aromatic, neutral nonpolar,
and basic amino acids included in the study (Trp, Phe, and Pro and Arg, respectively) while
copper appeared to be the most successful metal (compared to Ni, Mg, and Zn).

In another study, Domalain et al. [122] used TWIMS for the differentiation of the
D- and L-enantiomers of aromatic amino acids through cationization with copper (II)
and multimer formation with D-proline (used as a chiral reference compound) in the
form of [D/LAA + (D-Pro)2 + CuII − H]+ ions. In terms of the chiral reference compound,
11 amino acids were tested, while Phe was used as the prototype aromatic amino acid.
D/LPhe/Y/CuII ratio was optimized to obtain heterodimers and trimers, and the exper-
imental CCS were recorded. D-Pro provided the highest CCS difference between the
Phe’s D- and L-enantiomers, both in the heterodimer (∆CCS 1.4 Å2) and trimer forms
(∆CCS 3.8 Å2), while no adducts were formed by the use of Ala, Gln, Cys, or Lys as chiral
reference compounds. Independent of the chiral reference amino acid used, the highest
∆td and ∆CCS were observed for the heterotrimers. In this sense, the authors obtained a
good correlation between the D/L ratio of the respective [(DPro)2 + D/LPhe + CuII − H]+

ions and the mixture drift time. A very interesting approach was further implemented:
FMOC was used to test if an improvement in enantiomer differentiation could be at-
tained. Indeed, the analysis of the heterotrimers obtained after FMOC derivatization of Phe
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([(DPro)2 + D/LFmoc-Phe + CuII − H]+) slightly increased the ∆td (from 0.11 to 0.16 ms),
but this was not sufficient to increase the enantiomer differentiation. D-Pro was tested in
the case of enantiomer separation of other nine amino acids, namely Arg, Trp, Glu, Thr,
Gln, Tyr, Lys, His, and Cys. The highest difference in both drift time and CCS was observed
in the case of the heterotrimers of the aromatic amino acids DL-Trp and DL-Tyr, while no
adducts were formed with His and Cys.

Yu and Yao [124] also reported the use of TWIMS, this time to separate amino acid
tetramers formed by complexation with binuclear copper and several L-enantiomeric
amino acids as chiral selectors in the form of [(Cu2+)2XY3 − 4H + H/Na]+. Significant
chiral discriminations were reported when using L-His as the chiral selector for Trp, Gln,
Tyr, and Thr, achieving peak-to-peak resolutions (Rp-p) > 0.7. Instead, for His as the analyte,
using Phe as the chiral selector was able to obtain an Rp-p of 0.693. Trp performed well as a
chiral selector in the chiral discrimination of Gln, Glu, Met, Phe, and Tyr. The chiral selector
Tyr discriminated between enantiomers of the basic amino acids Arg and His and the acidic
Glu. In all cases, significantly higher CCS differences between the diastereomers were
obtained with trimers bound to one copper ion than in previous reports in the literature.

There are several limitations of using this specific approach; namely, there are needs
for: (i) specific chiral reference compounds and metal for each analyte, (ii) several experi-
ments for optimization of the metal ion in chiral reference to analyte ratios, (iii) forming
diastereomers in sufficiently high abundances; and (iv) minimization of ion suppression in
electrospray ionization induced by metal ions. Moreover, there was no report of applying
these approaches to mixtures of amino acids.

5.2. Tert-Butoxycarbonyl Modified Amino Acid as Chiral Selector

Due to the above-mentioned disadvantages, metal-free approaches were employed
for chiral discrimination. Zhang et al. reported the use of DMS-MS in the chiral dis-
crimination of Trp and Phe [107] and Cys and Pro [108]. In both cases, modified Ser
with a tert-butoxycarbonyl group (namely, N-tert-butoxycarbonyl-O-benzyl-L-Ser -BBS)
was used as chiral selector for forming diastereomeric complexes. Chiral separation of
[(DLAA)(BBS)+H]+ diastereomers by DMS-MS achieved baseline separation of the spectral
features as a function of the helium proportion in the He:N2 carrier gas mixture. Ions were
more highly dispersed in the presence of a higher concentration of He (50%), resulting in
better separations, except for proline diastereomers [(DLPro)(BBS) + H]+, in which case
a baseline separation was not achieved, but chiral discrimination of enantiomers was
still possible.

5.3. Separation of Diastereomers after CDA Labeling

The use of a chiral derivatization agent in diastereomer formation was also reported.
Pérez-Míguez et al. [81] used TIMS for the analysis of 17 amino acid enantiomers. Di-
astereomers were obtained by reaction with the chiral reagent (+)-FLEC, and were fur-
ther separated by their mobility in a TIMS-TOF instrument. In the preliminary studies,
two amino acids were used: DL-Orn and DL-SeMet. Only in the case of disodiated
ions ([FLECx − AA + 2Na − H]+) did the TIMS analysis reveal two peaks separated at the
baseline for each of the diastereomers. Instead, both protonated and sodium-containing
ions ([FLECx − AA + H]+, [FLECx − AA + Na]+) corresponded to individual peaks for
both of the AAs analyzed, thus no separation of diastereomers occurred. The method
was used in the analysis of and D- and L-AA mixtures (1:1 and 1:3 ratios) after FLEC
derivatization, confirming that separation by TIMS of the diastereomers was caused by
structural differences. Additionally, in the TIMS analysis of the FLEC-derivatized D- and
L-AA mixture at a 1:3 enantiomer ratio, a higher peak intensity was obtained for the L-form.
This group also studied the effects of alkali cation (Li+, Na+, K+) addition on the TIMS
separation of the enantiomers of the prototype amino acids used. As the resolving power in
TIMS depends on the voltage range and ramp time, these two parameters were optimized
to achieve the best separation of each pair of the 21 initial amino acid diastereomers. In
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addition, sensitivity was dependent on the number of ions trapped in the first TIMS cells,
influenced by the time of ion accumulation. This last parameter was studied in the range
of 10–100 ms: most of the (+)-FLEC-AA signal intensities increased until 50 ms, with
Ser showing the maximum intensity at 25 ms, and His at 100 ms. The optimized TIMS
method was applied successfully in the separation of diastereomers of 17 AAs with several
observations: (i) for Glu, Pro, Thr, and Ala, no enantioresolution was obtained; (ii) for the
neutral, nonpolar amino acids Val, Ile, and Leu, the diastereomer separation was observed
for the monosodiated species ([FLECx-AA + Na]+); (iii) largely, diastereomer separation
was observed for the disodiated FLEC-AAs ([FLECx-AA + 2Na-H]+); (iv) Tyr, along with
AAs containing two amino groups, were derivatized with two FLEC molecules; and (v) no
positive effect on the separation of the diastereomers was achieved with Li+ and K+.

(S)-naproxen chloride ((S)-NAP) chiral derivatization of amino acids and TIMS-MS
analysis was employed by Will’s group [125]. Interestingly, the authors coupled an inte-
grated chromatography system (ICS) to a TIMS-MS instrument. The ICS performed inline
dilution of the sample, (S)-NAP derivatization, and pre-IMS separation of amino acid
diastereomers using a strong cation exchange (SCX) column, with the eluted diastereomers
being subjected to electrospray ionization and TIMS-MS. The AA diastereomers were success-
fully separated in negative mode as [(S)-NAP-DL-AA-H]− or [(S)-NAP-DL-AA-H + NaOAc]−

in the case of Ser, Val, and Gln. S-NAP derivatization provided good resolution, especially
for small AAs, allowing for the separation of eight amino acids (Ser, Ala, Met, Val, Gln, Phe,
Tyr, and Trp).

In a recent study, Fukui et al. [102] compared three derivatization methods for dis-
crimination of DL-2HG using cylindrical FAIMS. Consequently, three CDAs were used,
namely DATAN, DMT(S)A, and the acetic anhydride of DMT(S)A. In terms of separation
efficiency, only DMT(S)A derivatives of D- and L-2HG were separated in FAIMS, with a
peak resolution of 0.9. The authors also tested a traveling-wave IMS in the differentiation
of DMT(S)A-DL-2HG; however, no sufficient separation was obtained.

Ion-mobility mass spectrometry successfully joins size- and mass-selective separation
in the analysis of biomolecules. The technique has clear analytical advantages in the
separation of enantiomers in the form of an increased peak capacity, a reduction in chemical
noise, and consequent augmentation of low-abundance analytical signals. Nevertheless,
the separation of isomers in biological mixtures would require a higher IMS resolving
power than the capabilities of current available instruments, assuring full analytical utility
of IMS when coupled with MS and orthogonal chromatographic approaches. A combined
data-acquisition and processing strategy for enhancing the resolving power of DT-IMS by
multiplexing was reported in the separation of several isomeric mixtures [126–128]. This
approach was reported recently by Demelenne et al. [128] for the separation of coeluting
diastereomers of oligonucleotides containing different numbers of phosphorothioate (PS)
linkages; the authors reported a 3.8-fold increase in the resolving power using this strategy.
Moreover, adjacent diastereomers with differences in DTCCSN2 values ranging from 0.9%
to 2.9% were separated using this approach.

6. Conclusions and Perspectives

The developments in indirect chiral analysis methods over the recent years have
been very significant in terms of developing new CDAs, analytical approaches to complex
questions, and the development of new analytical technologies.

The most important aspect regarding the new developments in terms of CDAs proba-
bly has been the introduction of new CDAs to improve the sensitivity and specificity of
MS detection; this was achieved by incorporating a permanent charge in their structure
or by forming diastereomers that generate analyte specific fragments useful in MS/MS
detection, respectively. Even though mass spectrometry is the most popular detection
method nowadays in metabolomics studies, new CDAs have also been developed for
optical detection, offering improved selectivity or faster derivatization (such as MAD).
Nevertheless, considering that in many cases, the target of chiral metabolomics is to detect
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and quantify trace levels of metabolites, more emphasis should be put on determining the
chiral purity of the CDAs in order to assure method accuracy.

Several relevant strategies for untargeted chiral metabolomics have been developed.
Some aimed at observing D-AA ratios between control and diseased groups using isotope-
labeled CDAs in order to screen for possible biomarkers; others focused on differentiating
chiral molecules in an untargeted data set by employing both enantiomeric forms of a CDA.
These innovative approaches have proved very useful already in identifying potential
chiral biomarkers for different diseases.

A prerogative for generating relevant leaps in the knowledge of chiral metabolomics
is the availability of high-throughput analysis methods. Still, there are not that many
analytical methods capable of offering baseline separations for all proteinogenic amino
acids in a reasonable amount of time (<20 min). A solution to this problem may be found
in using complementary separation techniques, such as ion-mobility separations. Such
approaches have been reported by several studies in the last few years, with notable results.
Still, IMS-only separations of diastereomers is rather limited due to the low resolving
power of today’s instruments. Nevertheless, combined with separative techniques, the
measurement of CCS values can be useful in improving the annotation of chiral metabolites
in complex samples.
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