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Glucocorticoid-induced glaucoma (GIG) is a chronic optic neuropathy caused by systemic
or topical glucocorticoid (GC) treatment, which could eventually lead to permanent vision
loss. To investigate the protective effects of rapamycin (RAP) on the trabecular cells during
the development of GIG in mice, the effects of RAP on intraocular pressure (IOP),
trabecular ultrastructure, and retinal ganglion cells (RGCs) were examined in C57BL/6J
female mice treated with dexamethasone acetate (Dex-Ace). The expression of a-actin in
trabecular tissue was detected by immunofluorescence, and the autophagic activity of
trabecular cells and the expression of GIG-related myocilin and a-actin were detected by
immunoblotting. Our results indicated that Dex-Ace significantly increased IOP at the end
of the third week (p < 0.05), while RAP treatment neutralized this elevation of IOP by Dex-
Ace. Dex-Ace treatment significantly decreased the RGC numbers (p < 0.05), while
synchronous RAP treatment kept the number comparable to control. The outer sheath of
elastic fibers became thicker and denser, and the mitochondria of lesions increased in
Dex-Ace-treated groups at 4 weeks, while no significant change was observed in the
RAP-treated trabecular tissues. Dex-Ace induced myocilin, a-actin, Beclin-1, and LC3-II/
LC-I ratio, and lowered p62, while synchronous RAP treatment further activated autophagy
and neutralized the induction of myocilin and a-actin. Our studies suggested that RAP
protected trabecular meshwork cells by further inducing autophagy way from damages of
GC treatment.
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INTRODUCTION

The therapeutic use of glucocorticoids (GCs) in susceptible individuals increases intraocular
pressure (IOP) (Fini et al., 2017), which is a major risk factor for GC-induced glaucoma (GIG),
an ocular diseases featured with progressive degeneration of retinal ganglion cells (RGCs) (Kwon
et al., 2009). In addition, GIG is similar to primary open angle glaucoma (POAG). Increased IOP
can cause vascular insufficiency (Ster et al., 2014). and will further lead to vascular endothelial
in.org July 2020 | Volume 11 | Article 10061

https://www.frontiersin.org/articles/10.3389/fphar.2020.01006/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.01006/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.01006/full
https://www.frontiersin.org/articles/10.3389/fphar.2020.01006/full
https://loop.frontiersin.org/people/653573
https://loop.frontiersin.org/people/930939
https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:keminyk@163.com
https://doi.org/10.3389/fphar.2020.01006
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2020.01006
https://www.frontiersin.org/journals/pharmacology
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2020.01006&domain=pdf&date_stamp=2020-07-02


Zhu et al. Short title: Rapamycin Protect TM in Glaucoma
metabolic disorders (Gong et al., 2016a; Fu et al., 2018a). GC-
induced ocular hypertension results from increased aqueous
outflow pathway resistance, morphological and biochemical
changes in trabecular meshwork (TM) (Clark and Wordinger,
2009). Therefore, the effects of GCs on TM cells and other ocular
tissues drew increasing attention during last decades. Previous
researches suggested that GCs promoted the deposition of TM
extracellular matrices (such as fibronectin and type IV collagen),
cytosolic protein (such as a-smooth muscle actin), and altered
cell cytoskeleton to form cross-linked actin networks (Chan, 2006;
Deng et al., 2013). However, the exact pathological mechanisms are
still unclear at present. A comprehensive knowledge on the
pathogenesis of steroid responders will improve our prevention of
IOP elevation and enhance our understanding of steroid induction
mechanisms in glaucoma.

Autophagy is an important process to promote cell survival
under various stressful conditions, during which various stromal
and organelles in the cell are degraded by the lysosomal system.
TM cells belong to the post-dividing cells and cannot be removed
by re-splitting to remove excess harmful substances. TM cells are
continuously under mechanical stress and cell deformation stress
due to IOP fluctuations and eye movement (Hirt and Liton, 2017).
Autophagy, as a mechanism of intracellular self-adaptation
protection, maintains TM cell homeostasis and normal function.
Previous reviews stated thatGCs affected autophagy of various cells,
such as osteoblasts, fibroblasts, muscle cells, and lymphocytes
(Eisenberg-Lerner et al., 2009; Zhu and Zhang, 2018). Researches
also showed that the autophagy homeostasis of TM cells in the
glaucoma aqueous humor outflow pathway changed (Eskelinen
and Saftig, 2009). In primary cultures of porcine and human TM
cells, sustained IOP elevation activated autophagy to response
pressure and restore balance (Porter et al., 2014).

Our previous researches suggested that the dexamethasone
acetate (Dex-Ace) treatment activated autophagy in a time-
dependent manner and that the autophagy activity peaked at the
fourthweekwith a plateau of increased IOP for 4weeks. Thereafter,
the continued DEX-Ace treatment did not affect IOP value
reduction, but the autophagy activity gradually decreased (Zeng
et al., 2019). Decreased autophagy activity might cause the
accumulation of diseased organelles, and produce oxidative
damage as well (Levine and Klionsky, 2004), and might be an
indication of progressive dysregulation of TM function.

Rapamycin (RAP), a lipophilic macrolide antibiotic, was created
as an antifungal agent, and also has multifunctional nonantibiotic
properties (Prevel et al., 2013). Related researches showed that RAP
played an important role in neurological diseases, like Parkinson’s
disease (Malagelada et al., 2010), nerve injury,Alzheimer disease, and
so on (Caccamo et al., 2009). Previous studies stated that RAP
improved the survival rate of RGCs in a rat chronic ocular
hypertension model of glaucoma (Su et al., 2014) and significantly
enhancedautophagy in amonkey chronichypertensivemodel (Deng
et al., 2013). However, the role of RAP in GIG is still unclear.

Studies using systemically or topically treated C57BL/6J mice
with DEX showed increased IOP and ultrastructural changes
looked like those stated in humans after GC therapy (Overby
et al., 2014; Zode et al., 2014; Patel et al., 2017; Faralli et al., 2018).
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This research,weusedaGIGmousemodel toexplore the relationship
between elevated levels of autophagy and hormonal glaucoma. The
effects of RAP, as anmTOR inhibitor and autophagy inducer (Levine
and Klionsky, 2004), on the autophagy levels in GIG mice were
investigated. Our results indicated that RAP protected the functions
of TM cells via upregulating autophagy in GIG.
MATERIALS AND METHODS

Animal Experiment
Female C57BL/6J mice (6–8 weeks old) were purchased from
Beijing HFK Bioscience company and housed at the Center for
Animal Experiment/Animal Biosafety Level-III laboratory of
Wuhan University. Animal experiment complied with the
Association for Research in Vision and Ophthalmology
Statement of the Use of Animals in Ophthalmic and Vision
Research and carried out according to the regulation of Wuhan
University Health Science Center Institutional Animal Care and
Use Committee. The mice (16–18 g) were housed under a 12-h
light/12-h dark cycle with a free access to standard rodent food and
water. The condition of temperature was controlled (22–28°C), as
well as the humidity (45–75%).

Reagents
One hundred and six C57BL/6J mice were divided into four groups
randomly: control (vehicle suspension +DMSO), Dex-Ace-treated
(Dex-Ace+DMSO), RAP-treated (vehicle suspension +RAP), and
Dex-Ace+RAP-treated groups (Dex-Ace+RAP). Dex-Ace (10 mg/
ml) or vehicle suspension solution (20 ml) was conjunctival fornix
(CF) injected into the tenonof the right eye every 4d.RAP (4mg/kg)
or 0.1% dimethyl sulfoxide (DMSO, 100 ml) was injected
intraperitoneally every other day. Vehicle suspension and DEX-
Ace formulation were introduced as a preview study (Patel et al.,
2017). RAP formulation (0.25 mg/ml in 0.1%DMSO) was stored at
-20°C (working fluid).

Periocular CF Injection
Mice were put into an anesthesia chamber filled with 0.8 L/min
oxygen and 2.5% isoflurane to induce general anesthesia. After
anesthesia, mice got 1–2 drops of 0.5% proparacaine HCL (S.A.
Alcon-couvreur N.V., Belgium) in both eyes. The CF injection
was performed as previously noted (Patel et al., 2017). Briefly,
after lower eyelid was retracted, 20 ml DEX-Ace (10 mg/ml) or
vehicle suspension were injected by a 29-gauge insulin syringe
immediately under the CF of the right eye in the process of 5–10 s.
A 1-ml syringe (Sinopharm, China) was used to inject 100 ml RAP
(4 mg/kg) or DMSO (0.1%) into the abdominal cavity.

IOP Measurement
Mice were put into the Decapicone, a plastic bag especially for
the mouse, which could fully expose the head but restrict its
movement (Wang et al., 2005). The head of conscious mice was
exposed in the hole at the top of the cone and IOP was measured
as soon as the mice stayed stable. An effective reading of daytime
IOP was obtained weekly at 10 am and 2 pm by applying a probe
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of tonometer (TonoLab, Colonial Medical, USA) to gently flatten
an area of the corneal surface. After baseline IOP was obtained,
the right eye was then treated with DEX-Ace or vehicle
suspension every 4 d. The IOP of each eye was taken from the
average of 3 test values.

Weight Measurement
The mice were gently placed on the digital electronic scales (BY-
dzc, China) and the weight was measured immediately after the
mice stayed stable. Recorded effective reading of body weight
weekly at 10 am to an accuracy of 0.01 g. The body weight of each
mice was taken from the average of three test values.

RGC Staining
To estimate changes in the RGC numbers after GIG mice were
induced, we counted the number of RGCs in the retinas. BRN3a
were used to detect the RGCs in the retina, and the method of
retina dissection was as previously described (Li et al., 2014;
Vidal-Sanz et al., 2015; Wang et al., 2016; Gong et al., 2016b).
Briefly, after the mice were sacrificed, the enucleated eyes were
fixed in 4% paraformaldehyde for 1 h and flushed in PBS. The
retinas were then cut into 4 quadrants and flattened with a fine
brush. After incubated with 0.5% Triton X-100 for 15 min, the
retinas were incubated with BRN3a antibody (1:200, Millipore,
USA) at 4°C overnight. After incubating, the retinas were flushed
in PBS three times and then incubated with IgG Cy3 antibody
(1:200) for 2 h. Non-overlapping images containing most of the
retina in four quadrants were obtained by confocal 155
microscope (zoom = 1,600 folds; TCS SP5 CLSM, Leica, Germany),
and the average RGC numbers for four quadrants were quantified.

Transmission Electron Microscopy
Unperfused mouse eyes were immediately fixed via 2.5%
gluataraldehyde (Ted Pella, USA) in phosphate buffer at 4°C
for 2 h. The fixative was injected into the eye from a tiny incision
in the posterior sclera. Tissues were then fixed with OsO4,
dehydrated using ascending alcohol series, and embedded in
Epson resin. Ultrathin sections on trabecular organization were
cut with an ultramicrotome (EM UC7, Leica), examined using an
electron microscope (Tecnai G2 20 TWIN, FEI, USA), and then
obtained as described previously (Zeng et al., 2019).

Immunofluorescence, Hematoxylin and
Eosin (H&E) Staining
Mouse eyeballs were enucleated and immediately fixed in 4%
paraformaldehyde at 4°C overnight as previously described (Fu
et al., 2018b). After rinsed three times with PBS, the eyes were
dehydrated and embedded in paraffin (Paraplast, Sigma-Aldrich,
USA). Tissue slices (5 mm) were obtained using a rotation
microtome (Thermo Fisher, USA), deparaffinized, and then
rehydrated with graded ethanol for 5 min twice each. Antigen
retrieval was conducted in citrate buffer. Once cooled, tissue
sections were blocked with 10% goat serum and 0.2% Triton-X
100 in a dark and humid chamber for 2 h. After rinse briefly with
PBS, the sections were immunolabeled with rabbit polyclonal
antibody (a-smooth muscle actin, 1:100, Abcam) and incubated
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at 4°C overnight. After flushing, the samples were incubated with
corresponding secondary antibodies (Alexa goat anti-rabbit 568,
1:500, Thermo Fisher) for 2 h. DAPI (Vector, CA) was used to
visualize cellular nuclear. The slices were examined by the
Keyence all-in-one fluorescence microscope (Itasca, USA)
(Kasetti et al., 2016). For H&E staining, the paraffin section of
mice TM tissues were sequentially deparaffinized, rehydrated,
stained with hematoxylin and eosin (Sigma-Aldrich), dehydrated
and sealed. The slices were visualized and photographed with
phase contrast microscope (DMI 1, Leica).

Western Blotting
Anterior segment tissues were dissected detailedly and then
placed in RIPA lysis buffer (Cell Signaling Technology, USA)
(Zode et al., 2015). Whole section of the TM with small part of
ciliary muscle, iris, and cornea, were contained in the tissues. The
BCA Protein Assay kit (Beyotime, China) was used to detect the
concentrationof totalprotein.Total protein (40mg)was analyzedby
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(Beyotime) and transferred to polyvinylidene fluoride membranes
(Millipore, USA) followed by the manufacturer’s protocol.
Membranes were blocked by PBS containing 5% BSA (Cell
Signaling) at room temperature for 1 h, and then incubated with
primary antibodies (p62, 1:1,000, Cell Signaling; Beclin-1, 1:1,000,
Abcam;a-actin, 1:1000, Abcam;Myocilin, 1:500,Abcam;GAPDH,
1:1000, Boster, China) at 4°C overnight. The membranes were
washed, incubated with corresponding secondary antibodies
(1:3,000, Cell Signaling), and detected by ChemiDocTM XRS+
Imaging System (Bio-Rad, USA). The band intensities were
analyzed by ImageJ software.

Statistical Analysis
Statistical analyses were performed with using Prism version 7.0
(GraphPad, USA). Statistical analyses among groups were
evaluated via one-way analysis of variance (ANOVA), and two
groups’ comparisons were using unpaired t-test. All data were
presented as mean ± SEM for multiple independent experiments.
P < 0.05 was considered as statistical significance.
RESULTS AND DISCUSSION

RAP Inhibited the Elevated IOP Caused by
Dex-Ace CF Injection
The CF injection of Dex-Ace was reported to repeatedly caused
obvious and persistent IOP elevation, which related to reduced
outflow facility (Patel et al., 2017). As our previous researches
proved, Dex-Ace induced rapid and significant IOP increase,
which peaked at week 4 (Zeng et al., 2019). In this study, we
founded that the IOP in the Dex-Ace-treated group increased at
3 weeks and sustained until 4 weeks. However, IOP had little
change in the other three groups. Conscious daytime IOP value
was 13.54 ± 0.45 mmHg (n = 18) in the control group, 22.33 ±
0.77 mmHg (n = 18) in the Dex-Ace-treated group, 14.23 ± 0.65
mmHg (n = 18) in the RAP-treated group, and 14.23 ± 0.68
mmHg (n = 18) in the DEX-Ace+RAP-treated group at week 4.
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Since the third week of treatment, the conscious mouse IOP in
the DEX-Ace-treated group continued to be higher than the
other three groups by about 4–8 mmHg (P < 0.05) (Figure 1).

RAP Did Not Affect the Body Weight
in Mice
In order to evaluate the effect of Dex-Ace treatment and RAP
treatment on the whole body of mice, we selected mice with no
statistically significant difference (P> 0.05) in initial body weight
comparison. After different treatments, we measured the body
weight of mice weekly, and chosen body weight at the end of 0
week, 1 week, 2 week, 3 week, and 4 week for statistical analysis.
There was no statistically significant difference between the body
weight of each group at 1–4 weeks with its initial weight (P>
0.05). And no significant difference was seen in body weight
comparison between the four groups at 1–4 weeks (P> 0.05)
(Figure 2).

RAP Protected RGCs From Damages by
Dex-Ace Treatment
Our previous researches suggested that IOP elevation caused by
Dex-Ace treatment in mice resulted in RGC loss by BRN3a
immunostaining (Zeng et al., 2019). In this study, no significant
difference was seen in the number of RGCs in the 4 groups of
mice at 1 week. At 4 weeks, the number of RGCs in the Dex-Ace-
treatment group was significantly decreased (p = 0.023), but not
in the other three groups. Compared with the Dex-Ace-treated
group (326.38 ± 42.86), Dex-Ace+RAP-treated eyes maintained
normal RGC numbers in 4 weeks after treatment (388.87 ± 37.25,
Figure 3).

RAP Recovered Dex-Ace-Induced
Ultrastructural and Histological Changes
of the TM Cells
Dex treatment led tomany ultrastructural and histological changes
in the TMcells, such as rougher cell membrane edge, poor integrity
of the cell membrane, increased bundle-like collagen fibers, and
inconspicuous trabecular space.Abnormalmitochondriacouldalso
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be observed in the cytoplasm. Elastic fibers were increased and
disordered, and the outer sheath of the elastic fibers was thick and
dense (Figure 4B). However, synchronous RAP treatment
maintained TM cells a normal morphology with no significant
difference compared to the control and RAP-treated groups. The
cell membrane of TM cells was smooth and intact, the nuclear
staining was uniform, and the basement membrane was relatively
intact and continuous. The elastic fibers were surrounded by the
thin sheaths, and a large number of collagen fibers were arranged
neatly (Figures 4A–D).

In Dex-Ace-treated group, mitochondrial arrangement was
disordered, the outline was blurred, the membrane was damaged
anddissolved, and the crest disappeared (Figure 5A). In addition, it
also could be observed that themitochondria were fused andmerge
into giant mitochondria, which were rod-shaped and swollen
(Figure 5B). However, synchronous RAP treatment kept the
mitochondria in a normal elliptical shape, with a clear outline and
crest, and a normal arrangement (Figures 5C, D).

RAP Downregulated Dex-Ace-Induced
a-Actin Expression
Dex-Ace treatment promoted the deposition of extracellularmatrix
such asfibronectin (Steely et al., 1992), collagens (Zhou et al., 1998),
and a-action (Clark et al., 2005) in the trabecular tissues. To assess
whether Dex-Ace treatment led to these biochemical changes in
GIGmice, we experimenteda-smooth muscle actin in the anterior
segment tissues. Only the Dex-Ace treatment group showed
obvious deposition of a-actin in the trabecular tissues. The Dex-
Aced+RAP-treated group did not show an increased expression of
a-actin compared to the other groups (Figure 6).

RAP Upregulated TM Cell Autophagy
and Downregulated Dex-Ace-Induced
GIG-Related Protein Expression
Our previous studies suggested that numerous autophagy-related
structures were discovered in the TM cells after Dex-Ace treatment
(Zeng et al., 2019). Related studies demonstrated RAP increased
autophagy via inhibiting mTOR (Hosokawa et al., 2009). To
investigate whether RAP improved the autophagy in the GIG
FIGURE 1 | RAP reduced Dex-Ace-induced IOP elevation. The conscious
mouse IOP was induced significantly by Dex-Ace at 3–4 weeks, but RAP
treatment decreased this increase. (n = 20; *, p < 0.05).
FIGURE 2 | At 0–4 weeks, compared with the other three groups, there was
no significant change and fluctuation in the body weight of the Dex-Ace
+RAP-treated group. (n = 20; p > 0.05).
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trabecular tissues, autophagy-associated proteins Beclin-1, p62 and
LC3 were examined in TM cells. It has been reported that Beclin-1
was an important factor in autophagy, and its autophagic work
requires adequate levels of Beclin-1 (Wirawan et al., 2012). p62, as a
marker of autophagic flux, accumulates when autophagy is
inhibited (Bjorkoy et al., 2009). When autophagosomes were
produced, LC3-I transitioned to LC3-II, which indicated that the
content of the LC3-II can laterally reflect the number of
autophagosomes (Mizushima et al., 2010). Compared with the
control group, the other three groups all showed a gradual
increase of Beclin-1 and LC3-II/LC3-I ratio along with a decrease
of p62 expression. Furthermore, Beclin-1 and LC3-II/LC3-I ratio
were significantly increased and p62 was significantly decreased in
theDex-Ace+RAP-treated group compared to theDex-Ace-treated
group (Figures 7A–D). These results demonstrated that autophagy
was activated in TM cells of GIG mice, suggesting that RAP
upregulated TM cell autophagy in GIG mice.

Dex treatment also induces several biochemical modifications
in the TM cells, such as enhanced accumulation of collagens,
fibronectin, and a-smooth muscle actin (Patel et al., 2017). RAP
downregulated a-actin expression, we next assessed the GIG-
related proteins myocilin and a-actin in TM cells. Only the Dex-
Ace-treated group showed increased expression of myocilin and
a-actin. There was no significant difference of myocilin and a-
actin expression in the other three groups (Figures 7A, E, F),
suggesting that RAP inhibited overexpression of myocilin and a-
actin after Dex-Ace treatment.
Frontiers in Pharmacology | www.frontiersin.org 5
DISCUSSION

GIG is a secondary open angle glaucoma owing to the increased
outflow resistance of the trabecular mesh water outflow channel.
Many studies explored the effects of GCs on TM tissues and cells.
Recently, more and more studies suggested that the autophagy
homeostasis of TM cells in the glaucoma outflow pathway changed
(Kitaoka et al., 2013). Our previous researches indicated that
autophagy and the damaging histological changes in the TM
tissues were increased in the GIG mice model. In this study, we
employed this female GIGmice model to assess whether the use of
Dex combined with autophagy activator RAP affected GIG
progression. In female mice, hormone injection induced less
stress response, such as fight and bite, resulting in less mortality
rate. Our results indicated that Dex-Ace treatment induced a fast
and obvious elevation of IOP, and increaseda-actin and autophagy
level in the TM tissues. Moreover, the loss of RGCs after DEX-Ace
treatment suggested that the GIG mice model might be able to
construct optic neuropathy,

Autophagy, a cellular self-digestion mechanism, is a process
that catalyzes the degradation of injured organelles an protein
owning to metabolism on body (Knoferle et al., 2010; Kroemer
et al., 2010; Dash et al., 2019), and will further causes cell
apoptosis. Induction of autophagy helps cells adapt to
environmental changes by increasing the turnover of proteins
and organelles, which in turn affects other cells and metabolic
stress, and assist in rebalancing cell and organelle functions,
A

B

FIGURE 3 | RAP increased Dex-Ace-induced reduction of RGCs at 4 weeks. (A) Representative BRN3a staining at 1 and 4 weeks. (B) Quantification of RGC
survival in average four quadrants. There was no statistical difference of RGC number between groups at 1 week (p > 0.05). Compared with the other three groups,
the RGCs were significantly reduced in the Dex-Ace group at 4 weeks (scale bar: 25 mm; n = 5; *, p < 0.05).
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suggesting that activation of autophagy may be the TM cellular
original response to stress and balance (Kumari et al., 2012).

In our studies, mTOR inhibitor RAP was used as an autophagy
activator to treat GIGmice. RAPwas reported to bind FKBP12 and
block the active site of mTOR, resulting in suppressed mTORC1
activity (Heitman J and Hall, 1991; Caron et al., 2010). GIG mice
had no IOP elevation under RAP treatment, indicating that RAP-
induced autophagy under Dex-Ace-treated conditions controlled
IOP in mice. The number of RGCs was significantly increased in
Dex-Ace+RAP-treated GIGmice, suggesting RAP protected RGCs
from Dex-Ace-induced cell apoptosis, which might inhibit the
release of neurotoxic mediators by modulating NF-kB signaling
and directly inhibiting RGC apoptosis (Mizushima et al., 2010; Su
et al., 2014). Besides,Han et al. pointed out that activated autophagy
took part in RAP-mediated inhibition of BV2microglia activation,
suggesting that RAP mediated neuroprotection via enhancing
Frontiers in Pharmacology | www.frontiersin.org 6
autophagy in glaucoma (Han et al., 2013). Moreover, previous
studies stated that RAP rescued RGCs via downregulating retinal
protein REDD1 and working on the mTOR/HIF-1 pathway to
vascular endothelial growth factor (VEGF) production in the
photoreceptors and retinal pigment epithelial cells case (Bird, 2010).

Electron microscope observation and immunohistochemical
analysis indicated that swollen and increased mitochondria
accompanied by overexpressed extracellular matrix were observed
in the Dex-Ace-treated mice, but not in Dex-Ace+RAP-treated
mice. Damaged mitochondrial quality emphasized the impaired
mitochondrial dynamics and mitophagy. Cell damage caused
dynamic change in mitochondrial fission, leading to fragmental
division of mitochondria and ultimately resulting in cell death
(Saxena et al., 2019). Several publications reported that
mitochondria affected oxidative stress (Osborne et al., 2014). It
was also reported that these swollen mitochondria induced
FIGURE 4 | RAP normalized Dex-Ace-induced ultrastructural changes of trabecular tissues at 4 weeks. In the control and RAP-treated group (A, C), the cell
membrane was intact, the nuclear staining was uniform, and the normal mitochondria were arranged in a bundle of collagen fibers. In the Dex-Ace-treated group
(B) the trabecular space was not obvious. The cytoplasm showed abnormal swelling of the mitochondria, increased and disorderly arranged elastic fibers, thicker,
and denser outer sheath of the elastic fibers. In the Dex-Ace+RAP-treated group (D), abnormal swelling of the mitochondria were also showed in the cytoplasm,
but the disorderly arranged elastic fibers didn’t been found. (*: trabecular mesh gap; N, nucleus; CF, collagen fiber; EF, elastic fibers; boxes indicate swollen
mitochondria; n=5; magnification; 1,700×).
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transient elevation of cytosolic calcium concentration, which in
turn activated the calmodulin-dependent pathways (Kfir-Erenfeld
et al., 2010). Themechanism ofmitochondrial regulation byRAP is
complex and multiplex. RAP might inhibit cytoplasmic mTORC1,
causing a reduced hypoxia-inducible factor (HIF)-1a and glycolytic
flux to elevate mitochondrial oxygen consumption simultaneously
(Hudson et al., 2002). Another research showed that mTORC1
improved mitochondrial biogenesis and metabolism through
transcription factors YY-1 and PGC-1a (Cunningham et al.,
2007). Moreover, RAP significantly induced autophagy, and
suppressed oxidative stress as well as apoptosis, possibly via
eliminating injured mitochondria (He et al., 2019).

In our previous study, Dex-Ace treatment induced autophagy
to dispose of damaged TM cells. However, increased abnormal
mitochondria indicated that autophagy was insufficient to resolve
GC-induced damage (Zeng et al., 2019). In our current study, the
subsequent rise of Beclin-1 and LC3-II/LC3-1 ratio, together with
the reduction of the autophagic substrate p62/SQSTM-1, highly
Frontiers in Pharmacology | www.frontiersin.org 7
suggested the outcome of an ascending autophagic flux after RAP
treatment in GIG mice. Previous research stated that p62 might be
involved in the neurodegenerative processes because the
overexpression of p62 promoted apoptosis through increasing
production of caspase-8, and the knockdown of p62 reduced
human glioma cell death (Zhang et al., 2013). Further studies
reported that RAP-induced autophagy inhibited axonal growth
in cortical neurons and that autophagy negatively regulated
axonal extension through the RhoA-ROCK pathway, resulting
axonal regeneration of RGCs (Ban et al., 2013; Munemasa and
Kitaoka, 2015). Myocilin in TM cells is a short-lived protein
(Mizushima, 2007; Su et al., 2017). The mutation of myocilin
induced a toxic gain in cellular function in the endoplasmic
reticulum stress of TM cells through misfolding and abnormal
amyloidosis of myocilin protein (Suntharalingam et al., 2012). In
conclusion, an abnormal increase in extracellular matrix caused
by Dex-Ace treatment resulted in increased IOP, dysfunctional
aqueous humor outflow, TM cell death, and ultimately optic
FIGURE 5 | RAP normalized Dex-Ace-induced ultrastructural changes of mitochondria at 4 weeks. In the Dex-Ace-treated group (A, B), the mitochondria were
swollen and deformed, mitochondrial crests disappeared, and autophagic mitochondria fused into huge autophagosomes. In the Dex-Ace+RAP-treated group
(C, D), the mitochondria maintained normal shape and arrangement, and the mitochondrial membrane and crests were clearly visible. (arrows indicate mitochondrial;
n=5; magnification: 5,000×).
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FIGURE 6 | RAP decreased Dex-Ace-induced a-actin expression in mouse trabecular tissues. The fluorescence intensity of a-actin in trabecular tissues was
increased in the Dex-Ace-treated group at 4 weeks. (Immunofluorescence: SC, Schlemm’s canal; magnification: 400×; scale bar: 50 mm; n = 5; *, p < 0.05; H&E:
Magnification: 200×; scale bar: 50 mm; n = 3).
A

B

C D
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FIGURE 7 | RAP enhanced Dex-Ace-reduced TM cell autophagy and Dex-Ace-induced GIG-related protein expression at the 4th week. The relative protein
expression levels of Beclin-1 and LC3-II/LC3-I ratio were upregulated, and p62 was downregulated in the Dex-Ace-treated group. RAP treatment further increased
beclin-1 and LC3-II/LC3-I ratio, and downregulated p62 (A, B, C, D). Myocilin and a-actin were upregulated in the Dex-Ace-treated group and neutralized by RAP
treatment (A, E, F). (n = 6; *, p < 0.05).
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nerve damage (Jacobson et al., 2001). Therefore, enhanced
autophagy, which degraded the misfolded myocilin and other
increased extracellular matrix, might restore TM function and
reduce pathological changes in glaucoma.
CONCLUSIONS

In this study, the relationship between autophagy and GIG was
further observed by using autophagy activators. Our results
indicated that RAP ameliorated increased IOP, damaged
RGCs, and TM ultrastructure changes induced by Dex-Ace.
Our results further elucidated the neuroprotective function of
RAP, which supported the concept that RAP was potentially
therapeutic target for GIG patients.
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