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Purpose: This study aims to demonstrate the feasibility of clinical implementation of
automated treatment planning (ATP) using voxel-based dose prediction and post-
optimization strategies for rectal cancer on uRT (United Imaging Healthcare, Shanghai,
China) treatment planning system.

Methods: A total of 180 previously treated rectal cancer cases were enrolled in this study,
including 160 cases for training, 10 for validation and 10 for testing. Using CT image data,
planning target volumes (PTVs) and contour delineation of the organs at risk (OARs) as
input and three-dimensional (3D) dose distribution as output, a 3D-Uet DL model was
developed. Based on the voxel-wise prediction dose distribution, intensity-modulated
radiation therapy (IMRT) plans were then generated automatedly using post-optimization
strategies, including a complex clinical dose target metrics homogeneity index (HI) and
conformation index (CI). To evaluate the performance of the proposed ATP approach, the
dose-volume histogram (DVH) parameters of OARs and PTV and the 3D dose
distributions of the plan were compared with those of manual plans.

Results: By combining clinical post-optimization strategies, the automatically generated
treatment plan can achieve better homogeneous PTV coverage and dose sparing for
OARs except the mean dose for femoral-head compared with the use of the mean square
error objective function alone. Compared with the manual plan, no statistically significant
differences in HI, CI or global maximum dose were found. The manual plans perform
slightly better than plans with post-optimization strategies in other dosimetric indexes, but
these plans are still within clinical requirements.

Conclusions: With the help of clinical post-optimization strategies, the proposed new
ATP solution can generate IMRT plans that are within clinically acceptable levels and
comparable to plans manually generated by dosimetrists.

Keywords: automated treatment planning, dose distribution prediction, clinical post-optimization strategies, rectal
cancer, intensity-modulated radiotherapy
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INTRODUCTION

Intensity-modulated radiotherapy (IMRT) is an important
treatment modality and has been widely used for many types
of cancer (1). This radiotherapy technology has the advantage of
achieving higher dose coverage of planning target volumes
(PTVs) with steep dose gradients at the transition to orangs at
risk (OARs). The design of the IMRT plans requires several
optimization cycles with manual adjustments of the weights and
the addition of new optimization objectives to meet the clinically
specific criteria. It is a time-consuming and labor-intensive
process and extremely dependent on the experience of the
designer. Consequently, the quality of a plan depends
drastically on planners (experience, skill and available time)
(2). This variability may lead to suboptimal plans, resulting in
a negative impact on tumor control in patients (3, 4).

Recently, deep learning (DL)hasbeenused to automate treatment
planning and has received considerable attention in the radiotherapy
community (5, 6). An approach to reducing user variability and
improving the quality and efficiency of treatment plans is the use of
so-called knowledge-based planning (KBP). KBP has been
implemented in the commercial treatment planning system (TPS)
Eclipse as the RapidPlan module (Varian Medical Systems, Palo
Alto, CA). This strategy uses a large number of previous
acceptable or superior clinical patient databases to estimate
specific dose metrics or dose-volume histograms (DVHs) for a new
patient (7–11). The main limitation of this method is the lack of
spatial information, and planners still need to use hand-crafted
features from statistical analysis (9, 12–19). To solve this problem,
DL-based 3D dose distribution prediction techniques for automated
treatment planning (ATP) have become a major focus of research.
Based on popular convolutional neural networks (CNNs), the
patient-specific three-dimensional (3D) dose distribution can be
achieved and later used as an objective to generate a treatment plan
automatically. Accurate spatial dose distribution prediction can
eliminate dependence on handcrafted features completely and
potentially improve plan quality and consistency (20–22).

However, the clinical implementation of current DL-based
ATP solutions remains stymied by two points. First, the
performance of the DL method strongly depends on the
database used for training. The optimal result of the automated
generated plan is to make each voxel dose the same as the
predicted dose. Thus, the current voxel-based dose prediction
methods cannot obtain a better plan, or the plan quality is
limited by the predicted dose results. Second, given the high
safety requirements of medical applications, generating
executable clinical automated treatment plan based on 3D dose
distribution in closed commercial software architecture remains
a challenge. To the best of our knowledge, previous studies have
generally focused on algorithms to improve the accuracy of 3D
dose distribution prediction (21–23) or have used the open-
source toolkit matRad to generate radiation treatment planning
for educational purposes and research (20, 24).

Consequently, a DL model was developed for predicting a 3D
dose distribution in this study. To decrease the quality limits of
the training data, clinical post-optimization strategies were used
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in the process of automated plan generation based on the 3D
prediction dose. We extensively collaborated with United
Imaging Healthcare (UIH) Co., Ltd. (Shanghai, China) to
achieve the clinical implementation of ATP in its TPS uRT.
MATERIALS AND METHODS

Patient Data Collection
A total of 180 rectal cancer patients undergoing radiotherapy
between 2017 and 2019 in our cancer center were enrolled in this
study. For analysis, data were randomly divided into 160 training
sets, 10 validation sets and 10 testing sets. Simulation CT images
(slice thickness 5 mm; 512×512 matrix) were acquired using a
Philips Brilliance Big Bore multidetector-row spiral CT scanner
(Philips Healthcare, Cleveland, OH). Radiation oncologists
delineated the gross tumor volume (GTV), clinical target volume
(CTV) and OARs in the planning CT. The prescription of each
patient was 50 Gy in 25 fractions (2 Gy per fraction). The IMRT
treatment planswere calculated and optimized in Pinnacle 8.0-9.10
TPS (Philips Radiation Oncology Systems, Fitchburg, WI, USA).
All these treatment plans were generated with 9 equiangular 6-MV
photon beams.

Model Architecture
A 3D U-net was developed in this study and is illustrated in
Figure 1. The number of filters for each convolutional layer was
32, 64, 128, 256, and 512, and the feature map size was reduced
by half after the max-pooling layer. All convolutional layers
applied a 3×3×3 kernel except the output layer with a 1×1×1
kernel. The input data were CT images and contours of regions
of interest (ROIs), including the PTV, body bladder, left femoral
head and right femoral head. The output data were the 3D
predicted dose distribution. The model was implemented in
Keras, and the loss function used in the training process was
the mean square error. The Adam optimization algorithm was
used to minimize the loss function value between the predicted
dose and the clinical truth. The network parameters of the mode
were initialized using the He_normal initialization method (25).

Automated Planning
To provide a more complete picture, the overall description of the
framework of this paper is displayed in Figure 2. First, using
previously treated plans generated and optimized in Pinnacle TPS
as training data, a DL model was developed for predicting a 3D
dose distribution. Second, a new patient CT with contouring
information of the target and OARs was input to automatically
generate the 3D dose distribution of the current case by our DL
model. Third, based on these 3D dose predictions, automated
IMRT plans were then generated using two methods in UIH TPS.
One approach uses the mean square error (MSE) optimization
function only. Another combines MSE and clinical post-
optimization strategies, which include the complex clinical dose
target metrics homogeneity index (HI) and conformation index
(CI). All plans were generated automatically using 9 equally
spaced fixed coplanar 6-MV photon beams in UIH TPS.
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The function of MSE is described as follows:

FMSE =oi∈V (d
calc
i − dpredi )2 (1)

where V denotes all voxels, di denotes the dose of i
th voxel, and

dcalc and dpred represent the input and prediction dose in the
iteration process, respectively.

The optimization function of HI is described as follows:

Fobi = WHI ∗½(D98 − D50)
2 + (D2 − D50)

2� (2)

where WHI is the weight of the objective function, and DX is the
corresponding dose of X% volume of the target in each iteration.

The optimization function of CI is described as follows:

Fobi = WCI ∗ (fCI − Cindex)
2 (3)

FCI = TVRI ∗
TVRI

(VRI ∗TV)
(4)

where WCI is the weight of the objective function, TV is the
volume of the target, VRI is the volume of the reference isodose,
TVRI is the interaction volume of the reference isodose and TV,
and Cindex is constant (typically fixed as 1).

The total normalized objective function is noted as follow:

Ftotal = aFMSE +oi∈DbDFD (5)

where Ftotal denotes the total objective function; a and b are the
weight of the function of MSE and the clinical optimization
index, respectively; and D represents the different index.

Dosimetric Plan Evaluations
To evaluate the performance of the two proposed ATP methods,
the DVH parameters of OARs and PTV and the 3D dose
distributions of plan were compared between the ATP and
original clinical plan. The clinically relevant dosimetric
indexes, including the mean dose (Dmean), D2, D5, D95, and
Frontiers in Oncology | www.frontiersin.org 3
D98 for PTV (here, Di means the dose received by i% of PTV
volume) and Dmean, V15, V25, V35, and V50 for OARs (here,
Vi means volume fraction of OARs irradiated by i Gy), were
calculated. HI (26) and CI (27) for PTV were further calculated
using the following formulas:

HI =
D5

D95
(6)

CI =
VR ∗VR

VPtv ∗Vp
(7)

where VPTV and VP are the volume of the PTV and the
prescription dose region, respectively, and VR is the irradiated
PTV volume of the prescription dose. These results were
compared using a paired-samples t-test for the two models
with p < 0.05 considered statistically significant.
RESULTS

Isodose comparisons between the two plan-generated methods for
a representative example case are shown in Figure 3. As evident in
the graph, the MSE optimization plan (Figure 3C) delivered a
substantially greater dose (110% of prescription with yellow line)
to the PTV compared with the other methods. It is also worth
noting that the plan (Figure 3B) using clinical post-optimization
strategies resulted in approximately the same homogeneous PTV
coverage as the manual plan (Figure 3A). To further illustrate the
performance of the three methods. The OAR and PTV dose
metrics are shown in Figures 4, 5 as violin plots.

Figure 4 represents the violin plots for HI and CI. The
performance of manual plans and dose prediction-based post-
optimization plans were greater than those of MSE optimization
plans. Significant differences were observed between MSE
optimization plans and the other two approaches. For HI and
FIGURE 1 | Architecture of the 3D U-Net used for dose prediction.
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CI, no significant differences were identified between manual
plans and with clinical post-optimization strategies.

More clinically relevant dosimetric indexes and DVH are
shown in Figures 5, 6, respectively. For dosimetric indexes of
PTV, significant differences were observed between the MSE
optimization plan and the other two methods. The MSE
optimization plan did not outperform any dose metrics for
PTV but had the lowest mean dose for femoral heads
Frontiers in Oncology | www.frontiersin.org 4
compared with the other two approaches. Of the specific dose
metric constraints for the bladder, the manual plans achieved the
lowest dose volume (V15, V25, V35 and V50) and mean dose
followed by the dose prediction based post-optimization plans
and then the MSE optimization plans. The global maximum dose
doses of these four plans are presented in Figure 5D. Similarly,
the MSE optimization approach was inferior to all methods and
showed significant differences.
FIGURE 2 | Overview of the automated treatment planning workflow.
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DISCUSSION

In this study, new optimization strategies directly related to
clinical targets were used to improve the quality of ATPs. To
our knowledge, this is the first study that implements clinical
post-optimization strategies in the process of automated
treatment planning for rectal cancer. We designed a deep
learning model with clinical post-optimization strategies, as
summarized in Figure 2. With the help of these intelligent
strategies, the proposed optimization methods can pull high
target dose and spare more OAR dose to obtain a better auto
plan. This method can improve the plan quality of automated
plans, which are limited by the quality of the training dataset.

There have been some studies on ATP techniques using
DL neural networks (20–23, 28–30). Unlike conventional inverse
optimization radiotherapy treatment planning with trial and error,
Frontiers in Oncology | www.frontiersin.org 5
ATP can be summarized into two steps: obtaining the predicted
dose distribution and generating an automated executable plan
(6). It was not easy to predict 3D voxel-wise dose distributions for
IMRT plans in previous years due to the complicated relationship
between OARs and PTV and the significant variability of PTV
shapes. With the rapid advancement of machine learning, the
accuracy of 3D dose distribution predictionmethods has increased
substantially. Compared with the DVH-based prediction
algorithms, the prediction models have significant advantage in
a way that it could provide spatial dose distribution information.
These methods evolve from 2D model (28)to the 3D model
(20, 29, 31, 32) and can provide a more robust predicted
dose distribution.

However, these existing ATP strategies use the predicted 3D
dose distribution as the end without any post-optimization. The
optimal result of the automated generated plan is to make each
A B

FIGURE 4 | Violin plots representing the mean (white dot), s (vertical rectangle), 95% percentile (black vertical line) and the probability distribution for the HI (A) and
CI (B). The asterisks represent p ≤ 0.05. (A) Manual plan, (B) dose prediction-based post-optimization plan and (C) MSE optimization plan.
A

B

C

FIGURE 3 | The dose distribution comparison of PTV region (green shaded area) for two methods with manual plan: (A) manual plan, (B) dose prediction based
post-optimization plan and (C) MSE optimization plan. The unit of color bar is Gy.
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voxel-wise dose the same as the predicted dose. Thus, current
voxel-based methods cannot obtain a better plan due to two
possible reasons. First, the performance of the deep learning-
based model requires a sufficiently large, high-quality database. If
the ground truth doses are suboptimal, the predicted doses will
also be suboptimal as noted in the “garbage in, garbage out”
paradigm. Second, more clinical conditions, such as significant
variability in PTV size and complicated spatially neighboring
anatomy, also have an impact on dose prediction. Previous
studies require only the predicted dose distribution for
optimization and did not take into consideration the diverse
clinical scenarios for each patient. Therefore, it is challenging to
achieve a specific plan for different patients, and the final plan
had a worse homogeneity index of the target. Based on the above
analysis, the proposed automated treatment planning strategy in
our study serves as a step forward and provides a new idea to
improve the performance of ATP.

The dose distribution in Figure 3 shows that the method
using clinical optimization strategies exhibited more accurate
homogeneous PTV coverage than the MSE optimization plan.
This conclusion is also strongly supported by more clinical
interested dosimetric indexes found on Figures 4–6. These
A B

C D

FIGURE 5 | This graph displays a column scatter chart with the mean (±SE): (A) minimum, maximum, D98 and D2 of PTV; (B) mean value of PTV, bladder, femoral
head-left and femoral head-right; (C) V15, V25, V35, and V50 for bladder; (D) violin plots of global maximum dose for three methods. The asterisks represent p ≤ 0.05.
(A) Manual plan, (B) dose prediction-based post-optimization plan and (C) MSE optimization plan.
FIGURE 6 | Mean DVHs of the manual plan (dotted line), MSE
optimization plan (solid line), and dose prediction based post-optimization
plan (dashed line).
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approaches can generate treatment plans that are within
clinically acceptable levels and noninferior to plans manually
generated by dosimetrists. The quality and consistency of
treatment planning for radiotherapy can be largely improved.

However, there are some limitations to address in this study. We
investigated the applicability of the clinical optimization of ATP for
rectal cancer. The feasibility of the automated plan strategy should
be demonstrated for nasopharyngeal cancer patients who have a
rather complicated relationship between OARs and PTV and
multiple targets, thus requiring different dose prescriptions. These
are important priorities of future research.
CONCLUSION

This paper demonstrates the feasibility of a new automated
treatment planning strategy that includes clinical dose metrics
post-optimization based on 3D dose distribution prediction. The
approach can generate treatment plans that are within clinically
acceptable levels and comparable to plans manually generated by
dosimetrists. This methodology has great potential to improve
the consistency and quality of IMRT planning by minimizing
human intervention in the process of plan design.
Frontiers in Oncology | www.frontiersin.org 7
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