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Abstract: Smart home platforms show promising outcomes to provide a better quality of life
for residents in their homes. One of the main challenges that exists with these platforms in
multi-residential houses is activity labeling. As most of the activity sensors do not provide any
information regarding the identity of the person who triggers them, it is difficult to label the sensor
events in multi-residential smart homes. To deal with this challenge, individual localization in
different areas can be a promising solution. The localization information can be used to automatically
label the activity sensor data to individuals. Bluetooth low energy (BLE) is a promising technology
for this application due to how easy it is to implement and its low energy footprint. In this approach,
individuals wear a tag that broadcasts its unique identity (ID) in certain time intervals, while fixed
scanners listen to the broadcasting packet to localize the tag and the individual. However, the
localization accuracy of this method depends greatly on different settings of broadcasting signal
strength, and the time interval of BLE tags. To achieve the best localization accuracy, this paper
studies the impacts of different advertising time intervals and power levels, and proposes an efficient
and applicable algorithm to select optimal value settings of BLE sensors. Moreover, it proposes an
automatic activity labeling method, through integrating BLE localization information and ambient
sensor data. The applicability and effectiveness of the proposed structure is also demonstrated in a
real multi-resident smart home scenario.
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1. Introduction

The digital technologies that are deployed in smart home environments provide a lot of benefits for
the residents, including efficiency and comfort enhancement [1,2]. The main objective of this platform
is automation and energy management [3,4]; however, it can also provide different services for other
applications, such as health and security. This platform uses different wireless sensors (that are mainly
installed in the house), such as motion, power, humidity, and temperature, to continuously monitor
residents and record their events. These recorded raw data will be used to recognize the residents’
activities and detect any abnormal event that requires further actions [5].

There are several challenges in the activity recognition research area that are still the focus of
researchers around the world. One of the main challenges that exists includes activity recognition in a
smart home with multiple residents. When there is only one resident, all of the recognized activities
can be easily assigned to a certain profile. However, when there are multiple residents living in the
same home, their activities cannot be properly recognized and separated, as the sensors’ data do
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not provide any information about the identity of the person who triggers the sensor. Therefore, to
have accurate activity recognition in a smart home with multiple residents, an approach is needed to
distinguish between different residents, while helping to label the sensor data. Individual localization
and identification technologies are suitable options to be applied for this purpose.

Several types of approaches that can provide identity (ID) information are introduced in the
literature. These approaches include the following:

Vision-based approach: This approach uses cameras to monitor multiple residents while
recognizing their activities [6]. Biometric information, such as height and face, are the features
that are used to identify multiple residents. The main issue with this approach is privacy.

Signature-based approach: In this type of approach, technologies such as microphone [7], passive
infrared (PIR) [8], ultrasound [9], and ultra-wide band (UWB) [10] are used to generate a signature for
residents. It is shown that this signature is unique and can be used to distinguish between residents
while they are moving around the house. The accuracy and capability of this approach in a real smart
home is still the focus of researchers’ attention.

Tag-based approach: In this approach, targets carry a tag as a unique ID, which uses different
communication technologies, such as radio-frequency identification (RFID) [11–13], Bluetooth [14–20],
ZigBee, and Wi-Fi [21–24], to broadcast their unique ID in a specific time interval. Additionally, there
are scanners allocated in different areas that listen to the broadcasting packets to localize the tag and
the individual.

For the application of these technologies in smart homes, the authors of [11] use an RFID tag
as the unique ID for the resident, while a received signal strength indication (RSSI) index is used to
find the resident’s location in a smart home. In a similar fashion, the authors of [12] present the latest
research progress in an effort to include RFID antenna gain patterns in model-based received signal
strength (RSS) localization algorithms. In the same work, it is shown that real-world, non-isotropic gain
patterns of RFID badges are not a problem to be ignored, but a means to improve localization accuracy.
A demo on fine-grained RFID localization via UWB emulation is presented in [13], where the proposed
system allows users to move RFID-tagged objects to any location in line-of-sight, non-line-of-sight,
and multi-path rich settings, and check that the system can accurately localize the objects. Another
tag-based approach—based on the use of emerging Bluetooth low energy (BLE) devices (beacons),
coupled with a mobile app and its intrinsic features—is outlined in [15]. It is recommended by the
authors that to ease the localization, appropriate filtering or data processing after the initial distance
estimation should be carried out. The researchers in [16] propose a hybrid real-time indoor localization
architecture, based on smartphone and BLE beacons exploiting the complementary characteristics of
the proximity (RSS method) and pedestrian dead-reckoning (PDR) approaches. Likewise, the authors
of [17] report the design, implementation, and evaluation of an Internet of Things (IoT)-based system for
indoor localization using BLE technology. Although the proposed approach could estimate the position
with good precision, it requires a long training process and the use of different machine learning
classifiers, which makes it inefficient for application in big office halls or larger areas. The performance
of BLE technology for indoor positioning systems in different transmission conditions is also discussed
in [18], where the localization method is implemented based on the RSSI value. In the same subject
area, the researchers in [19] propose a method to render indoor localization and tracking practical,
using only BLE sensors. In the same work, a distribution of RSSI values (fingerprint measurements)
for every position inside the region of interest is estimated, and a direct relationship between the
accuracy of the radio map and the accuracy of localization and tracking is extracted. However, as in
the proposed approach, initial scene analysis is a must because it is not practical to collect data from a
high number of locations.

The authors of [23] use the smartphone and its Bluetooth technology as the tag for the resident.
The work also proposes that Bluetooth should be used rather than Wi-Fi, as it can provide good
accuracy for room-level localization because of its limited energy level, which is usually limited to
within a single room. On the other hand, the authors of [24] present a positioning method with special
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wireless signal module configuration rules to reduce the complexity of the calculation process, and
the running time. However, the proposed approach suffers from an error that is caused by the energy
error due to the distant nodes’ positions.

As can be understood from the reviewed literature, there are plenty of methods and technologies
to detect and monitor devices/people in an indoor environment, and each of them has its own
pros and cons. However, in the case of healthcare systems, especially those applied for aged care,
it is recommended to use technologies that fulfill requirements such as low cost, low power, high
accuracy and reliability, real time operation, and good resistance to fading (caused by multipath
propagation) [25]. Based on these requirements, BLE is one of the promising technologies.

In this paper, BLE devices are used as the tag for multiple residents to localize and label their
activities in a smart home. This solution not only provides an efficient way of transferring messages
with low energy, but also gives high positioning accuracy, simple position estimation, and a lightweight
and easily deployable tracking system. Compared to the reviewed literature, the contributions of this
work can be summarized as follows:

• Room-level accuracy is considered as the required accuracy for localization in smart home
applications. In this system, the resident is carrying a BLE tag as his/her identity, which broadcasts
a unique ID in a specific time interval.

• To handle energy error issues, BLE scanners are optimally allocated in each room; they listen to
the advertising packet and RSSI index to detect the presence of the resident in a given room.

• A comprehensive study is conducted to examine the impacts of broadcasting parameters on RSSI
and to design a high accuracy localization approach.

• The possibility of knowledge extraction from other sensory networks for better localization is
explored. As there are activity sensors installed in different rooms for the purpose of activity
recognition, it is shown that the data from these sensors can also be used to improve the accuracy
of localization and activity labeling.

2. Localization in Smart Homes Using BLE Technology

BLE technology is a promising communication technology for future smart homes because of its
low energy consumption [26]. This technology, due to its low data rate and low energy consumption,
is applied in several studies for the purpose of indoor localization. To this end, the researchers in [27]
provide a comprehensive study on the performance of this technology for indoor localization, while
the authors of [28] make a comparative study with Wi-Fi for the purpose of indoor localization.

Figure 1 shows the implemented structure of the multi-residential localization approach in the
Commonwealth Scientific and Industrial Research Organization (CSIRO) smart safer home (SSH)
platforms [29] using BLE technology. As shown in this figure, this structure includes two main parts.
The first part includes BLE tags that are generic iBeacons carried by the residents. Tags have a MAC
address as a unique ID, which is considered as the identity of the resident. Tags advertise this unique
ID in a fixed time interval (advertising interval (TA)).

The second part includes BLE Scanners, which are Android mobile phones in this case. As room-level
accuracy is required, one scanner is considered for each room. A mobile application is developed,
as the scanner, to listen to the BLE tags’ advertisements every second at the scanning time interval (TS).
During the scanning duration, if there is any BLE tag that is in the range of a BLE scanner, it has the
possibility of being detected. For instance, in Figure 2, BLE tag i has the possibility of being detected
by the scanner, while BLE tag j cannot be detected. Beside this ranging criterion, there are other criteria
that need to be met for the BLE tag to be detected by the scanner. The details of these criteria can be
found in [14].

Scanners record the data of each BLE tag, including the time of scanning, tag ID (MAC address),
and RSSI, and send them to the CSIRO database for further processing. This set-up is implemented as
part of the SSH platform to see how these data, and data from activity sensors, can be used for accurate
activity labelling of multiple residents.
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The objective of this paper is to localize the residents at each time step of T. In other words, the aim
is to localize the residents in different rooms during each time period (T), if they are at home. The value
of T depends on the minimum time that a resident is in a room. For instance, if the individuals are
likely to stay in a room for at least 30 s before transitioning to different rooms, the maximum time step
T for the localization should be 30 s, in order to have an acceptable localization accuracy.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 16 

 

the maximum time step T for the localization should be 30 s, in order to have an acceptable 

localization accuracy. 

 

Figure 1. Implemented setup for multi-resident localization using Bluetooth low  

energy (BLE) technology. 

 

Figure 2. p-RSSI index. 

As the scanning zones of the scanners may interfere with each other, one tag may be scanned by 

two or more scanners in the same time step. RSSI will be used to associate the tag with the closest 

scanner and room. Additionally, as the advertising interval is usually less than T, the scanner may 

record more than one RSSI for each tag in each time step T. Therefore, to decide on the location of the 

tag, the representative RSSI value should be considered in each T. Two representative indices are 

used in this paper. The first index is named as p-RSSI index that considers the maximum RSSI as the 

representative RSSI of the tag scanned by the scanner in each T. If there are k recorded RSSI values for 

tag i in a given time T, then the representative RSSI for this tag is the maximum RSSI during this period, 

as given in Figure 2. 

The second index (which is named as m-RSSI) calculates the average of the RSSIs based on their 

histogram, as shown in Figure 3. 

 

Figure 3. m-RSSI index. 

The algorithm used in the proposed structure includes two main parts to detect and localize each 

resident. The first part in this algorithm uses raw BLE data and the representative RSSI to localize the 

residents in each room during each T. This algorithm includes the following steps for each tag: 

BLE Scanner

ID
Home ID:AEHRC

Scanner ID: 2
Scan Frequency:5 sec.
Scan Duration:6 sec.

Bluetooth Status
Scanning

Last scan: 5 March 2016 15:03:52
Found 4 devices

Upload Status
Uploaded 48/48 records

Last upload: 5 March 2016 15:03:43

BLE tag j

Home Router

BLE tag i

CSIRO Database

Time Address scanner RSSI

11-05-2016 11 09:58:53 SC:31:3E:38:8A:FA Kitchen -99

11-05-2016 11 09:58:58 SC:31:3E:38:8A:FA Kitchen -98

11-05-2016 11 09:59:08 SC:31:3E:38:8A:FA Kitchen -98

11-05-2016 11 09:59:23 SC:31:3E:38:8A:FA Kitchen -98

11-05-2016 11 09:59:28 SC:31:3E:38:8A:FA Kitchen -99

11-05-2016 11 09:59:43 SC:31:3E:38:8A:FA Kitchen -99

11-05-2016 11 09:59:48 SC:31:3E:38:8A:FA Kitchen -99

11-05-2016 11 09:59:53 SC:31:3E:38:8A:FA Kitchen -98

11-05-2016 11 09:45:03 SC:31:3E:38:3E:FA Livingroom -97

11-05-2016 11 09:45:08 SC:31:3E:38:3E:FA Livingroom -96

11-05-2016 11 09:45:13 SC:31:3E:38:3E:FA Livingroom -102

11-05-2016 11 09:45:18 SC:31:3E:38:3E:FA Livingroom -101

Sc
an

n
e

r

Scanning Zone

RSSIi1(t)

RSSIi2(t)

RSSIik(t)

.

.

.

Max (RSSIi1(t), RSSIi2(t), … , RSSIik(t)) p-RSSIi(t)

RSSIi1(t)

RSSIi2(t)

RSSIik(t)

.

.

.

Histogram (RSSIi1(t), RSSIi2(t),…, RSSIik(t)) m-RSSIi(t)
1

1

( ). ( )

( )

M

j

M

j

count j bin j

count j









[count, bin]

Figure 1. Implemented setup for multi-resident localization using Bluetooth low energy (BLE) technology.
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Figure 2. p-RSSI index.

As the scanning zones of the scanners may interfere with each other, one tag may be scanned by
two or more scanners in the same time step. RSSI will be used to associate the tag with the closest
scanner and room. Additionally, as the advertising interval is usually less than T, the scanner may
record more than one RSSI for each tag in each time step T. Therefore, to decide on the location of
the tag, the representative RSSI value should be considered in each T. Two representative indices are
used in this paper. The first index is named as p-RSSI index that considers the maximum RSSI as the
representative RSSI of the tag scanned by the scanner in each T. If there are k recorded RSSI values
for tag i in a given time T, then the representative RSSI for this tag is the maximum RSSI during this
period, as given in Figure 2.

The second index (which is named as m-RSSI) calculates the average of the RSSIs based on their
histogram, as shown in Figure 3.
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Figure 3. m-RSSI index.
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The algorithm used in the proposed structure includes two main parts to detect and localize each
resident. The first part in this algorithm uses raw BLE data and the representative RSSI to localize the
residents in each room during each T. This algorithm includes the following steps for each tag:

• Step 1: For each time interval T, all of the RSSI for the tag, scanned by different scanners,
are recorded.

• Step 2: The representative RSSI in each scanner is determined based on either the p-RSSI or the
m-RSSI model, shown in Figures 2 and 3.

• Step 3: Based on the representative RSSI of the tag, the resident is in the room with the scanner
with the maximum RSSI value.

The flowchart of localization using the p-RSSI index is shown in Figure 4.
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Figure 4. Flowchart of room-level localization in a smart home using raw BLE data (Algorithm 1).

3. Choose Optimal Advertising Parameters

The set-up shown in Figure 1 is implemented in a home to examine the impact of advertising
parameters on improving the localization accuracy. The architecture of the smart home is shown in
Figure 5. The main area of this home monitored by sensors, includes Bedroom 2, Kitchen, Bathroom,
and Living room. Four motion sensors are used as the activity sensors, while four BLE scanners are
installed to localize the resident. As there is no difference between single- and multi-residency in this
case, we only consider a single resident in this environment, to assess the impact of the advertising
time interval and the advertising power level on localization accuracy.
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3.1. Impact of the Advertising Time Interval

To study the impact of the advertising time interval on the accuracy of the localization, the ground
truth path, shown in Figure 6, is used. As shown in this figure, two types of room change events are
considered in this study: 20 events with a duration of 30 s in each room, and 20 events with a duration
of 60 s in each room. In total, a 30 min ground truth path is followed by an individual. Four tags
are programmed to advertise with specific time intervals, given in Table 1. Residents carrying all the
tags (to have a unique test environment for all of the advertising time interval scenarios) are moving
around the house based on the ground truth path.
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Table 1. Advertising time interval for tags.

Tag Advertising Time Interval (ms)

1 500
2 1000
3 1500
4 2000

Figure 7 shows the localization accuracy using the two defined RSSI representatives. As noted
above, the aim was to localize the resident at different T using two indices. Based on the provided
results in Figure 7a, the following points can be concluded for the localization using the p-RSSI index:

• The localization accuracy is nearly constant for an advertising interval <1000 ms.
• The localization accuracy does not decline considerably when T is more than 5 s.
• The localization accuracy is maximized at T = 15 s.
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Moreover, Figure 7b shows the results for the m-RSSI index. The following points can be extracted
from this figure:

• The localization accuracy is nearly constant for an advertising interval <1000 ms.
• The localization accuracy declines considerably for advertising intervals more than 1000 ms.
• The localization accuracy increases when the time step increases.

By comparing the results of both indices, the parameters listed in Table 2 are proposed to have
the highest accuracy.

Table 2. Optimal advertising parameters.

Parameter p-RSSI Index m-RSSI Index

Time step Topt. = 15 s Topt. = max(T) = 30 s
Advertising interval TA, opt. = TS = 1 s TA, opt. = TS = 1 s

It is interesting to notice that the RSSI index, due to its inherited nature as a radio signal, is not
a stable measurement. That is why, in Figure 7a, we can see a small variation in accuracy when
T = 15 s, which performs better than others while the advertising interval is between 1000 to 2000 ms.
To mitigate the effects of instability of the RSSI signal, we propose using two types of measurements
here, i.e., m-RSSI and p-RSSI. Specifically, since m-RSSI adopts mean RSSI values, its performance is
more resistant to environmental changes, as shown in Figure 7b. On the other hand, p-RSSI may have
better accuracy, but it is more vulnerable to influences from the surrounding environment.
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3.2. Impact of the Advertising Power Level

In this case, tags are programmed to advertise with different power levels to achieve various
broadcasting signal strength. Table 3 lists all of the power levels used in our tests, which are represented
as decibel-milliwatts (dBm), the power ratio to one milliwatt (mW). Let x be the value of dBm, then the
actual power, P, can be calculated as:

P = 1 mW × 10
x

10

Therefore, 0 dBm corresponds to 1 mW, 4 dBm means 2.5 mW, while −30 dBm means 0.001 mW.
These settings affect how strongly the tag broadcasts its information. The advertising time interval is
also set to 1000 ms for all tags.

Table 3. Advertising power level for tags.

Tag E (dBm) Tag E (dBm)

1 −20 4 0
2 −12 5 +4
3 −4 - -

The same ground truth path is followed to assess the performance of this approach for different
advertising power levels. The results of localizing these tags using p-RSSI values are shown in Figure 8a.
The following points can be extracted from the results:

• Power level 4 has better results for the p-RSSI index. This means that with a higher advertising
power level, the fluctuation of RSSI caused by environments can be mitigated effectively.

The following points can also be extracted from the results in Figure 8b for the m-RSSI index:

• The accuracy is continuously increasing with the increasing of the advertising power level.
• The localization accuracy is maximized when T = 30 s.
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It is interesting to note that although the authors of [23] claimed that Bluetooth has better
performance for room-level accuracy—because of its lower advertising power level, compared to Wi-Fi
technology—we observed in our experiments that, on the contrary, higher power settings are generally
favored in terms of boosting localization accuracy. It can be seen that the higher power can improve the
localization accuracy for the m-RSSI index. Therefore, it can be concluded that the advertising power
level, which needs to be tuned properly, has an important impact on localization accuracy. The optimal
advertising parameters for the proposed BLE localization are summarized in Table 4.

Table 4. Optimal parameters for the proposed localization approach.

RSSI Index Time Step Advertising Interval Advertising Power Level

m-RSSI max(T) TS max(E)

4. Integrating Activity Sensors to Improve Accuracy

As the RSSI value is so sensitive to the environment, there may be some error in the localization.
To improve the accuracy of the localization, a supplementary algorithm is proposed that uses the
output of the previous algorithm and the data of activity sensors in smart homes. The flowchart is
given in Figure 9. For each time step, if the detected room for the resident is different from the previous
detected room, the event of the activity sensors in the new room is checked. If there is a new event
during this time step, the new room is considered as the correct detection. However, if there is no
event in the new room, the previous and next samples in the room output data are used to detect the
correct room. Based on the experiment set-up in Figure 5, the results of applying this algorithm to
two sample cases are shown in Tables 5 and 6. These results, when compared with the results using
Algorithm 1, show that the supplementary algorithm can improve the accuracy of the localization.
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Figure 9. Flowchart of room-level localization in smart homes using BLE data and the activity sensor
(Algorithm 2).

Table 5. Results of two algorithms (TA = 1 s; E = −4 dB; RSSI index = m-RSSI index).

Time Step 1 3 5 10 15 30

Localization accuracy with Algorithm 1 84.89 87.67 88.61 92.22 96.67 100
Localization accuracy with Algorithm 2 87.61 90.33 91.94 93.89 96.67 100

Table 6. Results of two algorithms (TA = 1 s; E = 4 dB; RSSI index = m-RSSI index).

Time Step 1 3 5 10 15 30

Localization accuracy with Algorithm 1 89.39 92.5 95.56 98.89 100 100
Localization accuracy with Algorithm 2 91.28 93.83 96.67 100 100 100

5. Multi-Residential Activity Labelling Using BLE Localization Technology

The proposed multi-residential localization approach has been trialed in a real smart home.
There are two residents that are living in this home. The architecture of this smart home is shown in
Figure 10. Three types of smart home sensors—including five motion sensors, two switch sensors,
and one power sensor—are used to monitor the residents’ activities. Additionally, five BLE scanners
are used to localize the residents in the main monitoring area. The main monitoring area includes a
Kitchen, Study room, Living room, Laundry, and Bedroom 1, as residents spend most of their time in
these areas. For the purpose of this paper, if residents use the Bathroom or Storage, then they will be
considered to be in Bedroom 1. Moreover, presence in the Office and Bedroom 2 will be associated
with the room with the closest scanner, which is the Living room in this case.
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Figure 10. Multi-resident smart home architecture.

The main aim of this trial is to study some of the main features of multi-residential activity
labelling through BLE localization. The advertising interval for the tags is set to 1 s. The set-up is
trialed for 1 week. The localization results for the whole week are shown in Figure 11. To see more
details, three sample days are shown.

Figure 12 shows the results of localization and activity labelling for the residents on the seventh
day. Figure 12a shows the localization results of the residents in different rooms during this day. It can
be seen that resident 2 leaves Bedroom at 06:25 a.m., does some activities in the Laundry, Kitchen, and
Living room, and then leaves the house at 11:50 a.m. While resident 1 wakes up at 09:17 a.m. and then
stays in the home for the whole day. Based on the localization data, the events that are generated by
the activity sensors are labelled using the individual’s location. Figure 12b shows those activities that
cannot be labelled based on the localization data. Based on this figure, there are six sensor activities
(out of 239 events during this day) that cannot be labelled by any resident. This is because we cannot
be 100% accurate in localizing and labelling the activities, as the RSSI changes quickly or we may have
missing RSSI. Also, these two residents are seniors and they will have community service providers
that are working at their home from time to time. These “activities” may be caused by those caregivers
and thus cannot be correctly labelled through RSSI. Based on these results, it can be said that the
residents were carrying their tags during the whole day, as most of the sensor data can be labelled by
the identity of the individuals.
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Figure 13 shows the results for the fourth day. It can be seen that there are a lot of sensor events
that cannot be correctly labelled based on localization data. It can be predicted that residents take
off their tags at night, while forgetting to wear them in the morning. For instance, based on the tag
localization, it can be said that resident 2 left the Bedroom at 06:28 a.m. However, there are some
events that occur before this time which can be considered as attributable to the resident of interest as
the other resident usually wakes up around 10:00 a.m. The same thing is happening with the second
resident, as there are some events that occur before the tag leaves the Bedroom (10:59 a.m.), while the
other resident is not at home. It can be seen that these two sequences of events can be associated with
the residents to improve the performance of this approach. In conclusion, it can be said that forgetting
the tag can clearly impact the performance of sensor data labelling.
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Figure 14 shows a worst-case scenario, which is the sixth day. It can be seen that there are a lot
of sensor events that cannot be labelled during this day. The missing events include two main parts.
The first part is when resident 2 wakes up, which can be associated with this resident as the other
resident is still asleep. However, it can be seen that after 10:00 a.m., resident 2 is in the Bedroom for the
whole day. It can be said that this resident left the tag in Bedroom for the whole day. Therefore, there are
a lot of activities that cannot be associated with the residents. In some cases (like the previous scenario),
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forgetting the tag can be detected and can be considered to improve the localization. However, in some
cases, it is very difficult to associate the activities with the residents.
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6. Conclusions

This paper studied the performance of BLE technology for the purpose of resident localization
and activity labelling. We focused on improving room-level accuracy, as required by many smart home
applications. The impacts of different localization parameters on the accuracy of this approach were
studied. Additionally, an optimal tuning parameter was proposed to localize each resident, based
on their tag RSSI value. The results with a ground truth path demonstrated promising outcomes
for these algorithms. This localization method was also tested in a smart home with two residents,
to automatically label their activities that were captured by the activity sensors.

We found that although BLE approaches can achieve high accuracy, forgetting the tag is always
one of the main issues with this wearable approach, which greatly reduces the activity labelling
accuracy. Also, in this paper, we assumed that no interfering signals, such as Wi-Fi from neighboring
devices, coexist on the same frequency band. Investigation into the impact of these interferences is a
potential area of research for future works.
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