
174� © 2020 Journal of Medical Signals & Sensors | Published by Wolters Kluwer - Medknow

Address for correspondence: 
Dr. Maryam Zekri, 
Department of Electrical 
and Computer Engineering, 
Isfahan University of 
Technology, Isfahan, Iran. 
E‑mail: mzekri@cc.iut.ac.ir

Abstract
Background: Diabetes mellitus  (DM) is a chronic disease that affects public health. The prediction 
of blood glucose concentration  (BGC) is essential to improve the therapy of type  1 DM  (T1DM). 
Methods: Having considered the risk of hyper‑  and hypo‑glycemia, we provide a new hybrid 
modeling approach for BGC prediction based on a dynamic wavelet neural network  (WNN) 
model, including a heuristic input selection. The proposed models include a hybrid dynamic 
WNN  (HDWNN) and a hybrid dynamic fuzzy WNN  (HDFWNN). These wavelet‑based networks 
are designed based on dominant wavelets selected by the genetic algorithm‑orthogonal least square 
method. Furthermore, the HDFWNN model structure is improved using fuzzy rule induction, 
an important innovation in the fuzzy wavelet modeling. The proposed networks are tested on 
real data from 12 T1DM patients and also simulated data from 33 virtual patients with an UVa/
Padova simulator, an approved simulator by the US Food and Drug Administration. Results: 
A  comparison study is performed in terms of new glucose‑based assessment metrics, such as gFIT, 
glucose‑weighted form of ESODn  (gESODn), and glucose‑weighted R2  (gR2). For real patients’ data, 
the values of the mentioned indices are accomplished as gFIT = 0.97 ± 0.01, gESODn = 1.18 ± 0.38, 
and gR2 = 0.88 ± 0.07. HDFWNN, HDWNN and jump NN method showed the prediction error (root 
mean square error [RMSE]) of 11.23 ± 2.77 mg/dl, 10.79 ± 3.86 mg/dl and 16.45 ± 4.33 mg/dl, 
respectively. Conclusion: Furthermore, the generalized estimating equation and post hoc tests show 
that proposed models perform better compared with other proposed methods.
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Introduction
Diabetes mellitus

Diabetes mellitus  (DM) is a disease known 
as abnormality in the level of blood 
glucose. DM is a significant risk factor 
of cardiovascular diseases, neuropathy, 
nephropathy, and retinopathy.[1] Worldwide, 
DM is one of the most fast‑growing 
diseases. As reported by the International 
Diabetes Federation, the number of 
people who have diabetes worldwide was 
over  425 million by 2017and is estimated 
to exceed 693 million by 2045.[2] DM is 
usually classified into type  1 DM  (T1DM), 
type  2 DM  (T2DM), and gestational 
diabetes. In the first case, the patient has 
high blood glucose concentration  (BGC) 
due to an inadequate beta‑cell or pancreas 

insulin production, while, in the second 
case, the disease results from the body’s 
inefficient use of insulin. Gestational 
diabetes, however, progresses during 
pregnancy.[3] T1DM symptoms suddenly 
occur and are not currently curable or are 
at least challenging to treat.[4] Nonetheless, 
subcutaneous insulin injections, insulin 
infusion, diet, and exercise are the 
commonly‑used treatments applied for 
T1DM.[5] In advanced treatment, insulin 
infusion is continuously used via an insulin 
pump known as “artificial pancreas.” In 
the insulin pump, control strategies such 
as model predictive control  (MPC) is 
employed to regulate BGC by justifying the 
amount of infused insulin.[6‑8] MPC is an 
advanced control method suitable for severe 
multivariate control problems which need 
to remove constraints.[9,10] MPC has been 
proven to be effective to be applied in BGC 
control in DM patients.[11,12] However, BGC 
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control methods, particularly MPC, require the prediction 
of BGC.[13,14] Thus, it is essential to develop a model that 
can predict BGC.[15]

Related works

BGC predictive models often used in the MPC 
controllers are divided into data‑driven and hybrid 
models.[16] Data‑driven models are derived from time‑series 
analysis using advanced methods, such as artificial and 
computational intelligence, soft computing, machine 
learning, data mining, and intelligent data analysis.[17] In 
BGC modeling, data‑driven models are often combined 
with mathematical equations derived from physiology to 
develop a hybrid model as an improved solution.[18] For 
instance, the glucose absorption submodel described by 
Dalla Man et  al.[19] and the insulin absorption submodel 
proposed by Dalla Man et  al.[20] were used as a hybrid 
structure in the study by Zecchin.[21] One of the most 
common data‑driven models, called neural networks (NNs), 
has been proposed, either in a hybrid mode with linear 
models or on its own, to predict BGC. For example, the 
artificial NNs,[22] the MLP NN,[23] the RBF NN,[24] and the 
jump NN[25] have been used to predict BGC. The jump NN 
is a feed–forward NN whose inputs are linked not only to 
the nonlinear neurons in the hidden layer but also to the 
output layer.[25] Among the efforts recently been made 
to improve the accuracy of BGC prediction, the study 
by Zecchin et  al.[25] has been one of the most thorough 
and accurate studies in the area of BGC prediction. 
Nevertheless, it is expected not to choose input derivatives 
in modeling. Moreover, the NN has some deficiencies, 
however, in presenting a clear interpretation of the system, 
providing an analytical procedure of the structure selection, 
and making assurance of the NN convergence.[26] Wavelet 
NN  (WNN) is introduced,[27] to consider such deficiencies. 
WNN is a nonlinear input–output mapping, which can 
approximate any functions to desirable precision.[28] This 
network was used for BGC prediction in the study by 
Zainuddin et al.[29]

In this study, a collection of wavelets with random 
parameters was initially formed, and then, the least‑squares 
approach was used to calculate WNN coefficients. 
However, no practical approach was applied to choose 
dominant wavelets. WNN has additionally been combined 
with fuzzy logic to formulate the uncertainty of data 
in the model, resulting in an improvement of function 
approximation, especially when there are uncertainties.[26] 
In the study by Zarkogianni et al.,[30] a neuro‑fuzzy network 
with wavelets, as activation functions, was used to predict 
BGC, while no solutions, no approaches, and no ways 
were ordered to select the important wavelets, to organize 
the structure, and to initialize model parameters properly. 
According to what was mentioned above, in general, there 
have been deficiencies in the provided models concerning 
BGC prediction. The specified defects include insufficient 

attention to the selection of influential inputs, lack of a 
proper procedure to form the model structure based on 
BGC data, and lack of attention to the various risks of 
prediction errors in BGC modeling in normal BGC, low 
BGC (hypoglycemia), and excessive BGC (hyperglycemia).

Purpose of this research

In this paper, we propose new wavelet‑based models 
for BGC prediction while trying to eliminate the defects 
of previous models. Initially, the physiological insulin 
and meal models are applied. Then, the input selection 
is considered to select the most effective factors in the 
foreseeable model for each patient. Next, based on the 
selected inputs, candidate wavelets with various parameters 
are created, while only dominant wavelets, proper for BGC 
prediction, are chosen through a cross‑validation genetic 
algorithm‑orthogonal least square  (GA‑OLS) method. 
Then, the selected dominant wavelets form a WNN, 
the first proposed wavelet‑based model. Next, to handle 
uncertainties common in BGC data, chosen wavelets are 
incorporated with fuzzy inference. Therefore, as a second 
proposed model, a novel fuzzy WNN  (FWNN) is created. 
In this novel FWNN, to prevent an extreme increase in the 
parameters, two solutions are considered. First, similar to 
the first proposed WNN model, only the chosen dominant 
wavelets are used. Second, fuzzy rule induction is used 
to prune unnecessary parts. Furthermore, in all steps, 
various weighting rates, based on expert knowledge of 
diabetes, are used for estimating the modeling errors of 
normal, hypoglycemia, and hyperglycemia episodes. While 
particular attention has been paid to the choice of model 
inputs, to form the data‑based structure of each patient, 
efforts have been made to simplify the structure to have a 
lot of capabilities.

Paper organization

The case study used in the BGC prediction system, together 
with the proposed wavelet‑based models, is introduced 
in “Subjects and Methods” Section. In “Result” Section, 
the results of the proposed system, the validation process, 
and the comparison between the proposed models and 
the state‑of‑the‑art are presented. Finally, the concluding 
remark is stated in “Conclusion” Section.

Subjects and Methods
In this Section, after a brief introduction of the case study 
used in our BGC prediction problem, the process of 
input selection, the equations of the proposed models, the 
validation method, and the proposed modeling algorithm 
are briefly discussed.

Data description

In this work, a real dataset from 12 adolescents with 
type  1 diabetes provided in the study by Elleri et  al.[31] is 
considered. Data of each patient include both basal insulin 
delivery and conventional pump therapy for 36  h. 
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Subcutaneous glucose values are taken every 5  min using 
the Dexcom continuous glucose monitor  (CGM). The 
relative absolute difference of the Dexcom CGM median 
is obtained to be 14.7%  (7.0%–25.3%),[31] the accuracy 
calibration of which is verified every 12  h. Furthermore, 
data from meal intake in the carbohydrate unit and the 
exercise at 0 or 1 level are recorded. More details are 
provided in the study by Elleri et  al.[31] All procedures 
followed in this study, involving human participants, are 
following the ethical standards of the Southampton and 
South West Hampshire Research Ethics Committee, also 
complying with the principles laid down in the Declaration 
of Helsinki. Participants  <16  years of age provide consent 
for the study procedures, and the parent or caregiver 
signed the informed consent. Participants  >16  years of 
age sign their consent letters before participation.[31] 
Moreover, 33 T1DM in silico patients are simulated using 
a UVa/Padova simulator conformed to the US Food and 
Drug Administration in 2013.[32] Data simulated by this 
simulator have been used as a benchmark in numerous 
papers.[18,21,33,34] The UVa/Padova simulator model involves 
several submodels, describing insulin injection, appearance 
rates of glucose, and meal intake.[35] Equations of the model 
are presented in detail.[32]

Input selection

Input selection, the first step in system identification, 
enhances model generalization because numerous input 
terms lead to overfitting or high model complexity.[36] In 
particular, for BGC modeling, the prediction accuracy 
of the model is affected by input variables and their 
different time lags.[29] The main input variables affecting 
BGC prediction are meal, insulin, physical activities, and 
stress.[37] In previous works, prior knowledge, correlation 
analysis,[21] and principal component analysis[29] have been 
used to select the main effective model inputs concerning 
BGC prediction, while the effect of severity of each input 
has somehow varied from person to person.[24,38] Therefore, 
important regressors should be selected from the input 
dynamic regressor space. The input dynamic regressor space 
is a set that includes input variables with varying time lags. 
This set includes delayed regressors showing meal eaten 
by a person, different delayed regressors showing physical 
activities, different delayed regressors showing injected 
insulin, BGC time‑delayed regressors, and any other factors. 
Orthogonal‑based methods are proper options for selecting 
inputs from a large collection of regressors,[39] which OLS 
method is a well‑known simple one to provide information 
about the structure in linear‑in‑the‑parameter models. In 
this method, the reduction ratio of criterion error  (err) is 
introduced to omit insignificant terms in the model.[40] On 
the other hand, the OLS mostly faces difficulty in terms 
of nonlinear system input selection.[41] Thus, the OLS is 
enhanced using a heuristic method, i.e., a GA. The GP‑OLS 
is a hybridization of OLS and genetic programming to 
introduce input regressors for nonlinear system modeling 

and is more robust than the OLS.[42] In this work, the 
GA‑OLS[43] is used for choosing the main effective input 
variables among the candidate regressors. First, through 
the OLS method, the initial main effective regressors are 
chosen. After choosing the initial regressors, GA at this 
initial input selection is then used to search for final main 
effective regressors from the candidate regressors that 
result in minimum root mean square error  (RMSE) in the 
validation data. Furthermore, as reporting the data of bolus 
insulin and meal values is in the discrete format, it is more 
convenient to consider the subcutaneous insulin model for 
the bolus insulin data[44] and the glucose absorption model[45] 
for the meal data. Using these physiological submodels 
contributes to incorporating the term “hybrid” in the title of 
the proposed models in this article.

Proposed wavelet‑based models

The structure of the proposed model is nonlinear, 
auto‑regressive with exogenous inputs  (NARX). For 
nonlinear system identification, NARX models have 
widely been used in the literature, such as in the study 
by Billings.[36] NARX formulation used in this work is 
described as:
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Where the noise e(k) is an independent sequence; Ĝ  is the 
prediction of BGC; G is the BGC measured by CGM; PH 
is the prediction horizon; G(k), G(k  −  1),…, G(k  −  ng); 
u(k), u(k  −  1),…, u(k  −  nu) are the regressors selected 
as the model input; and F is the term estimated by the 
proposed wavelet‑based models.

Hybrid dynamic wavelet neural network model

The structure of the proposed HDWNN model for BGC 
prediction is presented in Figure  1a. The main practical 
input dynamic regressors are first selected using the 
GA‑OLS method. Then, the selected dynamic regressors 
are entered into the wavelet layer. The wavelet layer 
includes neurons with activation functions which dominate 
wavelet functions φi for 1  ≤  i ≤ n. Dominant wavelets are 
selected from a lattice of wavelets with scaled and shifted 
parameters varying in specific intervals.[46] )( ,i ia Bϕ , i = 1, 2., r 
are scaled and shifted versions of the mother wavelet. In 
this work, the single‑scale multidimensional Mexican hat 
wavelet is used as the mother wavelet:

( ) ( ) ( )2 2m /2  U U exp Uϕ = −  −  � (2)

Where U is the input regressor vector and m is the 
dimension of the input vector. Then, the output of the 
HDWNN model is calculated from the n dominant wavelets 
as:
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in which ai are scaled parameters, Bi are the vector for 
the shifted parameters of the n dominant wavelets, and 

, ( )
i ia B Uϕ  is given below:

( )(  /
,

 2)( ) [2 2 ] i i

i i

a m a
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Hybrid dynamic fuzzy wavelet neural network model

The structure of the proposed HDFWNN model for BGC 
prediction is depicted in   Figure  1b,  composed of different 
layers relating inputs to the output. In the input layer, 
the selected inputs ui, i  =  1, 2,…, m are entered into the 
fuzzification layer using GA‑OLS. The fuzzification layer 
comprises na fuzzy rules Rl, 1,…, na complementing each 
other to make the final output model.
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Where each fuzzy rule corresponds to a single‑scale 
parameter of sub‑WNN, na is the number of unique scale 
parameters of the selected dominant wavelets  (the number 
of fuzzy rules), Nl is the number of selected dominant 
wavelets with same‑scale parameter, al, al is the  l‑th 
unique scale parameter of the selected dominant wavelets 
corresponding to the l‑th rule, Bil (i = 1,…, na) are the shift 
parameter vectors of the dominant wavelets corresponding 
to the l‑th rule, and w(i, l) are the weight coefficients between 
hidden and output layers of the  l‑th sub‑WNN. The l‑th 

sub‑WNN has m inputs and Nl nodes in the hidden layer 
and one output  (ηl). The sub‑WNN is constructed of the 
same‑scaled wavelets from the selected dominant wavelets. 
Furthermore, the AND operator is the multiplication, and 
Al

j are Gaussian fuzzy membership functions calculated as 
follows:

2
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Where mulj and sulj are the mean and standard 
deviation  (SD) values of Gaussian fuzzy membership 
functions.

In this work, to improve the proposed HDFWNN model, 
fuzzy rule induction is applied to upgrade the fuzzy rules 
using the imperialist competition algorithm  (ICA). Here, 
the fuzzy rule induction includes optimizing the antecedent 
parts of fuzzy rules and allocating a weight to each rule. 
The antecedent part of fuzzy rule optimization specifies 
the role of each input in each rule. This role is represented 
as 0 or 1 in ICA. Thus, the calculation of the contribution 
degree of each fuzzy rule should be modified to remove the 
function of one or more input variables. Therefore, there 
are different numbers of input variables playing a role in 
various fuzzy rules. Then, in the study by Das et  al.,[6] to 
determine the contribution degree of the l‑th fuzzy rule, 

Figure 1: (a) The proposed hybrid dynamic wavelet neural network modeling structure and (b) the proposed hybrid dynamic fuzzy wavelet neural network 
modeling structure, in which I(k−DI), M(k−DM), and G(k−Dg) are the exogenous insulin rate, carbohydrate, and blood glucose concentration delayed 
regressors, respectively; u1, u2,…, um are the useful selected inputs; Φ(a1, b1), Φ(a2, b2), …, Φ(ap, bq) are all wavelet lattice neurons; Φ1, Φ2, …, Φn are 
the selected dominant wavelet neurons; W1, W2, …, Wn are the weights attributed to the dynamic wavelet neural network output layer; WNN1, WNN2, …, 
WNNna are the na subwavelets made from the n dominant selected wavelets, v1, v2, …, vna are na weights attributed to the dynamic wavelet neural network 
output layer; a1 2 nµ ,µ ,…,µ are membership functions of each rule in the dynamic fuzzy wavelet neural network modeling; and PH is the prediction horizon

b

a
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instead of just multiplying the membership functions of 
input variables, their geometric mean, participating in each 
rule antecedent part, is calculated as follows:

( ) ( ) ( )1
1 2 

l ll
m ml c ccd

l mA A Aµ = × ×…× � (7)

Where 
1

m
l

l i
i

d c
=

= ∑  and  l
ic  (l = 1, 2,…, na, j = 1, 2,…, m) are 

the antecedent assignments represented as 0 or 1.

To allocate the weights, a continuous weight vi 
(i  =  1, 2,…, na) inside within  [0, 1] is allocated to each 
na fuzzy rule. This weight specifies the significance of the 
given rule in the proposed HDFWNN model. The fuzzy 
rules with weights smaller than the threshold are eliminated 
from the HDFWNN model. Consequently, fuzzy rules 
with optimized structures are provided using fuzzy rule 
induction.

After calculating the output of the dynamic wavelet 
network, the defuzzification step  –  as an inference 
process – is implemented, and the final output is computed 
as:
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Model parameters learning

In the final step of BGC prediction, according to the 
structure of the model constructed for each patient, the 
unknown parameters of the wavelet‑based models should 
be adjusted to match the model output with the personal 
BGC physiological behavior of a given patient. For the 
HDWNN model, the model parameters, including the 
weight coefficients of the output layer, are learned using 
the LS method. Further, for the HDFWNN model, the 
parameters of the HDFWNN model, including the mean 
and SD values of Gaussian fuzzy membership functions, 
the translation and dilation parameters of the wavelets, 
and the weights of the output layer should be adjusted. 
In the HDFWNN structure, the importance of the output 
layer is learned by the LS method, while other parameters 
mentioned above are tuned using ICA.

Model validation

For the sake of validation, a three‑fold cross‑validation 
procedure is applied. For each patient, the dataset is 
divided into training, validation, and testing sets, each of 
which includes one‑third of the total data. The training 
set is used to extract the model architecture and optimize 
its related parameters, while the validation data are used 
to end the training algorithm through the cross‑validation 
process. The outcomes of the models’ performance for 
both training and validation datasets are expressed in train 

metrics. For the testing dataset, however, they are shown 
in test metrics.

Performance metrics

The performance of the proposed models is expressed 
in terms of goodness‑of‑fit. Various goodness‑of‑fit 
measures have been introduced in the literature. In 
BGC prediction, RMSE and R2 are used as well‑known 
metrics for comparing different BGC models.[33,47] 
In addition, due to various risk levels of hypo‑  and 
hyper‑glycemia in the assessment of prediction errors 
of BGC,[6] glucose‑specific MSE  (gMSE), as another 
metric, is used.[48] The criterion gMSE can be interpreted 
as a weighted MSE, the weights of which are extracted 
from the Clark error grid. Based on this view, other 
metrics, for example, glucose‑weighted root mean square 
error  (gRMSE), glucose‑weighted ESOD  (gESOD), and 
glucose‑weighted R2  (gR2), can be used to make a better 
judgment about the potential of the models in predicting 
BGC. Then, gRMSE between the predicted ˆ  and the 
real output y is computed as:

( )
( ) ( ) ( )( )
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n
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Where ( ) ( ) ( )( )w k Pen y k ,  ŷ k=  was described in the 
study by Del Favero et  al.[48] In this work, gRMSE is 
represented as gFIT = 1 − gRMSE for judging the results, 
similar to other metrics introduced here. R2, another 
metric for testing the goodness‑of‑fit, is more sensitive 
to outliers;[34] the glucose‑weighted form of R2 is thus 
calculated as

( ) ( ) ( )( ) ( ) ( )( )
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Normalized ESOD is the predicted output of ESOD 
normalized by the real output of ESOD. The 
glucose‑weighted form of ESODn is defined as the 
following ratio:

( ) ( ) ( ) ( )( )
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The lower amounts of gESODn denote a decrease in the 
prediction error in the case of hypo‑and hyper‑glycemia. 
The gFIT, gESODn, and gR2 between the predicted and 
the real BGC are analyzed for all patients, reported as 
mean ± SD.
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Statistical analysis

Descriptive statistics are reported as mean  ±  SD. In this 
work, the generalized estimating equation  (GEE) statistical 
test is used to find significant factors  (i.e., methods) 
affecting the goodness‑of‑fit of the model. Multiple 
comparison post hoc tests are later used for the sake of 
pairwise comparison.

It is worth mentioning that the GEE statistical test is 
more rigorous than RM‑ANOVA  (one of the primary 
proposed methods for analyzing correlated responses) due 
to higher power achievement, while the smaller sample 
size or the lower number of repeated measurements is 
accessible in both complete and missing data scenarios.[49] 
This feature can significantly benefit studies in which data 
are skewed or the distribution of data is difficult to verify 
due to a small sample size, while RM‑ANOVA requires 
normally‑distributed data.[50] Then, due to the GEE, the level 
of statistical significance is set to be P = 0.05. The statistical 
analysis is performed using SPSS version  16  (SPSS for 
Windows, Released 2007, Chicago, SPSS Inc., USA).

The proposed methods

In the following, we describe the steps taken to develop 
the proposed wavelet‑based modeling algorithm. Also the 
glossary of terms is mentioned in Table 1.
0.	 Preprocessing step: Data of meal and insulin infusion 

are entered into their submodels. Then, all the data are 
scaled to 0 or 1

1.	 Input selection: First, different time lags of various 
available variables that might influence BGC to form 
a regressor array. Then, among the shaped regressor 
arrays, regressors with the most significant impact on 
BGC prediction are selected as the input vector using 
the GA‑OLS

2.	 Wavelet selection: For the inputs chosen in the 
previous step, the lattice of wavelets is created with 
different scaled and shifted forms of the mother 
wavelet. The dominant wavelets are selected through 
the GA‑OLS

3.	 Proposed wavelet‑based models: First, a linear 
combination of the selected dominant wavelets form the 
HDWNN model, the coefficients of which are adjusted 
by the LS method. Second, in the HDFWNN model, 
each rule corresponds to the sub‑WNN in its consequent 
part, composed of wavelets that have the same scale 
parameter among the selected dominant wavelets. 
Then, the fuzzy rule induction is used to improve 
the fuzzy rules. It includes rule weight allocation and 
rule antecedent arrangement. Finally, the HDFWNN 
model’s unknown parameters are learned via a heuristic 
algorithm, such as ICA and LS methods

4.	 Validation framework: The validation framework 
contains a three‑fold cross‑validation procedure, 
which includes residual assessment metrics, e.g., gFIT, 
gESODn, and gR2.

Results
The proposed wavelet‑based models are derived from 
clinical and simulated data. Along with the suggested 
methods, the jump NN model, introduced in the study by 
Zecchin,[21] is simulated to compare the results with the 
proposed wavelet‑based models. In the study by Zecchin 
et al.,[25] the BGC jump NN had four inputs which include 
currently measured BGC by the CGM sensor, information 
on the carbohydrate content of ingested meals, information 
on doses of the injected bolus of insulin, and the glucose 
rate of appearance and its derivative.

Modeling clinical data

In this work, the available data include meal data per 
carbohydrate unit, infused insulin boluses data per unit, 
closed‑loop insulin infusion rates described in unit/hour, 
and delayed BGC data in mg/dl. All the data are scaled 

Table 1: Glossary of terms
Term Definition
G Blood glucose concentration (mg/dl)

Blood glucose concentration estimation (mg/dl)
ng G regressor delay
k Time step
PH Prediction horizon
u Input regressor
nu u regressor delay
e Noise regressor
U Input regressor vector
m U dimension or number of selected inputs
ϕ Mother wavelet
ϕai, Bi

Shifted and scaled wavelet
Sub‑WNN Sub‑WNN
w Sub‑WNN wavelet weight
ai Scale parameter of wavelet
bi Shift parameter of wavelet
B Vector of shift parameters (b1, b2, …, bm)
n Number of selected dominant wavelets
Nl Number of l‑th sub‑WNN wavelets
R Fuzzy rule
η Sub‑WNN output
µl Degree of contribution of fuzzy rule
v Fuzzy rule weight
na Number of unique scale of selected dominant wavelets 

or number of fuzzy rules
A Gaussian fuzzy membership function
mu Mean value of Gaussian fuzzy membership function
su Standard deviation of Gaussian fuzzy membership 

function
c Antecedent assignment value
d Number of fuzzy rule inputs
NN Neural network
HDWNN Hybrid dynamic wavelet NN
HDFWNN Hybrid dynamic fuzzy wavelet NN
WNN Wavelet neural network
ICA Imperialist competition algorithm
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between 0 and 1. Furthermore, the PH is 30  min and the 
sample time sets to be 5  min. In terms of assessment 
metrics, the results are provided in Table  2. The RMSE 
of BGC prediction without weighing the test data is as 
follows: RMSE = 10.7939 ± 3.8567 mg/dl for the HDWNN, 
RMSE  =  11.2335  ±  2.7677  mg/dl for the HDFWNN, 
and RMSE  =  16.4466  ±  4.3253  mg/dl for the jump NN. 
Consequently, RMSE of BGC prediction for HDWNN 
and HDFWNN is significantly less in comparison with 
jump NN. CGM data, in comparison with various model 
predictions for one of the participants, are also plotted in 
Figure 2.

The GEE analysis reveals that gFIT, gESODn, and gR2 
significantly differ in each method  (P  <  0.001). The 
post hoc tests additionally show that the HDFWNN model 
performs better compared with other methods, according 
to the gFIT and gR2 metrics  (P  <  0.01). For the gESODn 
metric, the post hoc test shows that the HDFWNN 
model has a better performance in comparison with the 
HDWNN (P < 0.04).

Modeling simulated data

After applying the proposed models to the clinical data, a 
UVa/Padova simulator is used to simulate 33 T1DM virtual 

participants.[32] For each participant, the simulation scenario 
consists of about 3  days of monitoring with three meals 
and one or two snacks per day. Breakfast for 3 days is set 
at 7:00, 8:00, and 09:00 h and consists of 45, 5, and 75  g 
of CHO, respectively. Lunch is scheduled at 12:00, 12:00, 
and 13:00 h and consists of 70, 90, and 30  g of CHO, 
respectively. The first snack is served at 16:00 h, composed 
of 20  g of CHO for only the 1st  and 2nd  day. The second 
snack is served at 23:00 h, including 20 g of CHO for the 
2nd  and 3rd  day. Finally, the dinner is held at 18:00, 17:00, 
and 18:00  h, consisting 80, 80, and 100  g of CHO. The 
diet is assumed to be the same for all patients. A  noise 
sequence embedded in the simulator is added to CGM data, 
considering to be similar to the real data. The CGM data, 
the data of insulin infusions, and the data of carbohydrate 
meals compose the simulated data. The sampling time is 
chosen to be 5  min. Similar to the procedure followed in 
the clinical data, the proposed models are applied to the 
simulated data.

The results are provided in Table  3, confirming the 
theoretical and practical potential of the wavelet‑based 
models for predicting BGC. In addition, the RMSE of BGC 
prediction for the test data is as follows:

Table 2: The performance of different models concerning blood glucose concentration prediction (two proposed 
models in comparison with the jump neural network) on the training and test real datasets (mean±standard deviation 

and P values of performance indices)
Model* n** Train gFIT Test gFIT Train gESODn Test gESODn Train gR2 Test gR2

Jump NN 49 0.94995±0.016387 0.94700±0.01601 2.7735±0.91820 4.0621±1.5402 0.89512±0.05262 0.88316±0.05410
HDWNN 15 0.96259±0.009308 0.96238±0.00971 2.9825±0.61039 4.3331±1.0674 0.93628±0.02691 0.93563±0.02693
HDFWNN 155 0.96762±0.007948 0.96749±0.00886 3.0081±0.64828 3.8187±0.7444 0.95349±0.01936 0.95239±0.02040
P <0.001 <0.001 <0.001
*Models are for PH=30 min, **The mean number of model parameters for each patient. NN – Neural network; HDWNN – Hybrid 
dynamic wavelet NN; HDFWNN – Hybrid dynamic fuzzy wavelet NN

Figure 2: Continuous glucose monitor signal (blue line), hybrid dynamic wavelet neural network model prediction (black triangle), hybrid dynamic fuzzy 
wavelet neural network model prediction (red square), and the reference jump neural network (magenta hexagram) for one of the real patient data. Horizontal 
red lines denote the hypo‑ and hyper‑glycemic thresholds
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RMSE  =  12.4186  ±  6.1671  mg/dl for the HDWNN, 
RMSE  =  11.1597  ±  5.4751  mg/dl for the HDFWNN, and 
RMSE = 20.8360 ± 11.4547 mg/dl for the jump NN.

The GEE analysis presents that gFIT, gESODn, and 
gR2 vary in the methods  (P  <  0.001). Then, the 
post hoc tests determine that the HDFWNN model has 
a better performance than other methods, according to 
gR2 (P < 0.02). However, based on gFIT, gESODn, and gR2, 
the post hoc tests show the HDFWNN model to perform 
better than the jump NN model (P < 0.001).

Discussion
The proposed wavelet‑based models are tested in a 
three‑fold cross‑validation procedure on the training, 
validation, and test data sets. A  comparison is performed 
between the results of the proposed wavelet models applied 
so far in the literature, and the jump NN model investigated 
here.[19] To evaluate the predictive accuracy of the proposed 
model, gFIT, gESODn, and gR2 metrics are presented. The 
statistical analyses of such metrics are performed using 
GEE and post hoc methods, showing that the HDFWNN 
performs the best in predicting BGC, based on both real and 
simulated data. The results of modeling the actual data are 
presented in Table  2. Although both wavelet‑based models 
perform better than the jump NN model in all mentioned 
metrics, the best BGC prediction is obtained from the 
HDFWNN model in terms of the gESODn parameter. This 
is due to more detailed features of the HDFWNN model 
compared with the jump NN and HDWNN. According to 
the post hoc tests in terms of gESODn, the HDFWNN model 
performs better than the HDWNN model, showing the 
effect of using fuzzy logic to prevent unwanted fluctuations. 
It can be seen that the oscillations are successfully predicted 
by the proposed HDFWNN [Figure 2]. For virtual patients, 
HDFWNN is the best model based on gR2.

According to the post hoc tests concerning gFIT and 
gESODn, the HDFWNN model performs better than the 
jump NN model. The results of the simulated data and the 
real data are alike  –  while the HDFWNN model enjoys 
more parameters. It can be concluded that the predictive 
accuracy of the HDWNN model is acceptable, although 
the number of parameters is considerably higher in other 
models. Looking from a different angle, i.e., based on 

the complexity of the model and the name of the selected 
parameters, we can come to the conclusion that the 
proposed HDWNN model is a better choice. As presented 
in Tables  2 and 3, the number of model parameters of the 
HDWNN is lower than that of the jump NN and HDFWNN 
models. The accuracy of the HDWNN model outperforms 
that of the jump NN model, and although it is less than the 
accuracy of the HDFWNN model, it is acceptable. Hence, 
it can be a more appropriate choice for applications where 
the simplicity of the model is essential, such as real‑time 
applications. This is due to its acceptable performance 
compared to the jump NN model and its lower number of 
parameters in comparison with the HDFWNN model.

Furthermore, in the proposed models, the derivatives of the 
existing data are not used in the model inputs in comparison 
with previous study.[42] Using derivatives can significantly 
decrease the efficiency of the model due to disturbance 
or noise. It is inferred from the overall results that the 
wavelet‑based models have acceptable predict accuracy, and 
perform better than the jump NN proposed by Berger and 
Rodbard[42] in terms of standard BGC metrics. It is worth 
noting that when applying the proposed models in real‑time 
data, it is recommended to use real‑time optimization. 
Thus, the gradual changes in the patient’s body made over 
time should be considered in predicting the BGC efficiency 
of the model due to disturbance or noise.

Conclusions
This work is focused on novel models based on hybrid 
dynamic wavelet‑based NNs to predict BGC in T1DM 
patients. In this study, two wavelet‑based models 
(namely HDWNN and HDFWNN) are proposed to 
organize the structure of the model based on the data 
for each patient. Different approaches are considered in 
normal, hypoglycemia, and hyperglycemia episodes of 
BGC behaviors. The obtained results demonstrate the 
potential of the proposed HDWNN model in applications 
where the number of the model parameters should be less. 
However, if further parameters are allowed in the model, 
and subsequently, more information is available concerning 
the patients, the proposed HDFWNN model is the best 
choice in terms of glucose‑based metrics. The results of 
this study can be enhanced using on‑line optimization in 
real‑time implementations.

Table 3: The performance of different models concerning blood glucose concentration prediction (two proposed 
models in comparison with jump neural network) on the training and test simulated datasets (mean±standard 

deviation and P values of performance indices)
Model* n** Train gFIT Test gFIT Train gESODn Test gESODn Train gR2 Test gR2

Jump NN 83 0.92994±0.039143 0.92771±0.04093 9.6496±4.03960 4.1111±1.6835 0.58705±0.14323 0.56716±0.15841
HDWNN 14 0.97123±0.014297 0.96950±0.01535 1.4776±0.58959 1.163±0.39090 0.87164±0.07016 0.85936±0.07716
HDFWNN 150 0.97476±0.012394 0.97183±0.01440 1.4487±0.50693 1.176±0.37807 0.89693±0.06268 0.87829±0.07105
P <0.001 <0.001 <0.001
*Models are for PH=30 min, **The mean number of model parameters for each patient. NN – Neural network; HDWNN – Hybrid 
dynamic wavelet NN; HDFWNN – Hybrid dynamic fuzzy wavelet NN
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