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Abstract

Mapping the polymorphisms responsible for variation in gene expression, known as Expression Quantitative Trait Loci
(eQTL), is a common strategy for investigating the molecular basis of disease. Despite numerous eQTL studies, the
relationship between the explanatory power of variants on gene expression versus their power to explain ultimate
phenotypes remains to be clarified. We addressed this question using four naturally occurring Quantitative Trait Nucleotides
(QTN) in three transcription factors that affect sporulation efficiency in wild strains of the yeast, Saccharomyces cerevisiae.
We compared the ability of these QTN to explain the variation in both gene expression and sporulation efficiency. We find
that the amount of gene expression variation explained by the sporulation QTN is not predictive of the amount of
phenotypic variation explained. The QTN are responsible for 98% of the phenotypic variation in our strains but the median
gene expression variation explained is only 49%. The alleles that are responsible for most of the variation in sporulation
efficiency do not explain most of the variation in gene expression. The balance between the main effects and gene-gene
interactions on gene expression variation is not the same as on sporulation efficiency. Finally, we show that nucleotide
variants in the same transcription factor explain the expression variation of different sets of target genes depending on
whether the variant alters the level or activity of the transcription factor. Our results suggest that a subset of gene
expression changes may be more predictive of ultimate phenotypes than the number of genes affected or the total fraction
of variation in gene expression variation explained by causative variants, and that the downstream phenotype is buffered
against variation in the gene expression network.
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Introduction

Mapping the loci that control quantitative variation is a crucial

step towards understanding complex disease [1–3]. Genome-wide

association studies (GWAS) have shown that a large proportion of

human disease-risk alleles consist of non-coding variants [4]. Since

alterations in transcriptional regulation can drive disease states,

there have been extensive studies to map eQTL, the genetic

variants responsible for variation in gene expression [5–10] (for

reviews, see [11–14]). Finding eQTL is now a widely accepted

strategy for identifying new variants that potentially affect

phenotype [15], for screening GWAS alleles to find those that

affect disease risk by altering transcription [16], and for

uncovering the molecular pathways underlying disease [17].

These studies make a distinction between cis-eQTL (genetic

variants that affect the expression of physically linked genes) and

trans-eQTL (variants that are physically unlinked from their target

gene) [18]. cis-eQTLs also have effects in trans on unlinked genes

that are downstream targets of the gene linked to the cis-eQTL. A

large amount of effort is now directed towards the identification

and analysis of eQTL. However, it remains extremely difficult to

identify the precise nucleotide variant/s responsible for the

changes in gene expression or phenotype, even in model

organisms.

eQTL studies rely on an assumption that an unknown subset of

the transcriptional changes in the target genes of the eQTL are

responsible for the downstream disease phenotype. cis-eQTL that

affect transcription factors are considered particularly interesting

as they may identify the transcriptional program involved in the

disease. However, despite numerous studies linking GWAS and

eQTL results [16,17,19], fundamental questions remain about

how a variant’s effect on gene expression relates to its effect on

phenotype. It is unclear if the amount of gene expression variation

explained by an eQTL correlates with the amount of phenotypic

variation it explains. In addition, it remains to be established if cis-

eQTL play a more significant role in controlling gene expression

variation compared to trans-eQTLs. The best way to address these

questions would be to compare the effects of a set of variants that

are responsible for changes in both gene expression and the

ultimate phenotype.
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Our lab has been studying the genetic variation responsible for

the differences in sporulation efficiency in natural populations of

Saccharomyces cerevisiae (S. cerevisiae) [20]. In the presence of nitrogen

and non-fermentable carbon sources, diploid S. cerevisiae cells face a

cell fate decision that involves a switch from fermentation to

aerobic respiration and the cessation of mitosis followed by the

initiation of meiosis [21–23]. Sporulation efficiency is defined as

the percentage of cells in a culture that form meiotic spores, and is

a highly heritable, complex trait [20,24–26]. We have identified

the exact nucleotide variants responsible for most of the variation

in sporulation efficiency between a natural oak tree isolate

(YPS606) and a vineyard strain (BC187) [27]. The oak tree isolate

sporulates at 100% efficiency while the vineyard strain sporulates

at 3.5% under sporulating conditions [27,28]. By swapping the

causative nucleotides in the vineyard background for the oak

nucleotide variants, we generated an isogenic panel of vineyard

strains that have completely identical genomes except at the

causative variants [27]. Here, we describe the use of this allele

replacement strain panel to study the primary question posed

above: What is the relationship between the effect of causative

nucleotides on the variation in gene expression and in phenotype?

There are four quantitative trait nucleotides (QTNs) in three

genes (IME1, RME1 and RSF1) that are responsible for most of the

differences in sporulation efficiency between the oak and vineyard

strains [27]. The four QTN consist of two non-coding and two

coding variants. The non-coding regions of RME1 (RME1nc -

RME1(indel-308A)) and IME1 (IME1nc - IME1(A-548G)) contain

one causative variant each, implying that changes in RME1 and

IME1 expression may be responsible for the differences in

sporulation efficiencies between the parent strains. The remaining

two QTN are coding variants in IME1 (IME1c - IME1(L325M))

and RSF1 (RSF1c - RSF1(D181G)). Strikingly, the three QTN-

containing genes are either known (IME1 [29,30] and RME1 [31])

or putative (RSF1 [32,33]) transcription factors. Given their role in

transcriptional regulation, it is reasonable to assume that the four

sporulation QTN affect phenotype through changes in gene

expression. The allele replacement panel is isogenic at all loci,

except for the causative variants. Since the sporulation QTN are

the only genetic variants in the panel, they must be responsible for

all reproducibly observed gene expression variation among the

panel strains. Consequently, the sporulation alleles are nucleotide

variants responsible for the variation in phenotype (QTN) as well

as variation in gene expression (eQTN).

We present the results of a study in which we measured the

effects of individual single-nucleotide variants on both gene

expression and sporulation efficiency in a controlled setting. Since

the QTN underlying variation in sporulation efficiency reside in

transcription factors, and have been swapped individually and in

all combinations into a clean background, our experiment

represents a rigorous test of the relationship between the effect

of a variant on gene expression and on the ultimate phenotype.

Our analysis reveals that 1) the amount of variation in gene

expression explained by a polymorphism is not always correlated

with the amount of phenotypic variation explained by that same

polymorphism, 2) genetic interactions between variants are

responsible for a larger proportion of gene expression variability

than phenotypic variability, and 3) that alleles that change either

the level or activity of a transcription factor affect expression

variation of the same genes to different extents. We also find that

while the allele replacement panel displays extensive variation in

gene expression, the downstream phenotype is largely buffered

from the variation in the upstream transcriptional network.

Results

Single QTN are responsible for variation in both gene
expression and sporulation efficiency

To explore the relationship between genetic variation, gene

expression and phenotype, we utilized a panel of sixteen isogenic

strains in the vineyard background. The panel was generated by

swapping causative vineyard nucleotides with their oak allele

counterparts [27]. This panel includes the vineyard parent, the

‘‘vineyard converted’’ strain that has all four oak QTN in place of

the vineyard alleles, as well as strains with all possible combina-

tions of oak and vineyard alleles at the four QTN. Using

conditions which differed slightly from those in Gerke et al [27] (see

Materials and Methods), we first measured the sporulation

efficiencies of the allele replacement strains to quantify the effects

of the QTN on sporulation efficiency under these conditions

(Table S1). We assessed the effect of genotype on sporulation

efficiency by building a linear model of the effects of the four QTN

on sporulation efficiency (Table S2). The analysis of variance

shows that the allelic status of the QTN explains 98% of the

differences in sporulation efficiencies between the strains in the

panel (Table 1). 93% of the variance in sporulation efficiency is

due to a simple linear combination of the individual (main or

additive) effects of the four vineyard QTN alleles (Table 1). The

variation in sporulation efficiency explained by the main effects of

the vineyard alleles of RME1nc, RSF1c and IME1c is almost equal

while the vineyard allele of IME1nc explains a smaller but

significant amount. An additional small but significant amount of

variance (5%) can be explained by the genetic interactions

between the vineyard alleles. The small number of significant

interaction parameters indicates that a simple additive model of

the main effects between the four QTN explains almost all the

variation in the phenotype under these conditions.

We next measured the effect of each QTN on global-expression

profiles during the cell fate decision phase when all three genes are

active. RSF1 is required for transcription of mitochondrial genes

[32] and respiration is known to be required for Ime1 expression

and meiosis [34]. In addition, RME1 [31] and IME1 [30,35]

control some of the critical transcriptional changes during this

phase. IME1 expression is induced rapidly after the switch to

sporulation medium [35]. We showed previously that differences

Author Summary

There have been major efforts in the study of human
disease to identify genetic polymorphisms that cause
changes in gene expression. The assumption underlying
these studies is that gene expression changes will be
responsible for the disease. However, it is unclear if we can
predict how a polymorphism affects the variation in
disease based on the extent to which it explains variation
in gene expression. We have taken advantage of four
genetic polymorphisms that affect the ability of budding
yeast cells to form spores. The variants were identified in
naturally occurring strains, subject to natural selection
pressures in the wild, and not from lab strains. These
variants lie in factors that control gene expression, which
gives us power to compare how the polymorphisms affect
variation in both gene expression and the downstream
phenotype. We find that the amount of variation in gene
expression explained by the variants does not correlate
with the amount of variation observed in spore formation,
which has implications for studies that attempt to infer the
effect of a polymorphism on phenotypic variation by
studying its effect on gene expression variation.
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between the oak and vineyard strains in making the decision to

sporulate occur very early after the switch to non-fermentable

carbon, before meiotic DNA synthesis [20]. We, therefore, used

RNA-Seq [36] to measure global mRNA expression-profiles in all

sixteen strains in the panel after two hours in sporulation medium,

before meiotic DNA replication begins. We surmised that the

causative QTN would be active during this period and that the

differences in gene expression between the strains at this time point

would be linked to the differences in sporulation efficiencies. We

obtained good reproducibility between the biological replicates

(the range of mean Pearson’s correlation coefficients for pair-wise

comparisons between replicates of each strain was 0.86–0.93). The

coefficient of variance, CV, (standard deviation/mean), for the

biological replicates is a measure of the variance in our

measurements. The CV for gene expression (median CV = 0.15)

is slightly greater than the CV for sporulation efficiency (median

CV = 0.076) but is consistent with reports from previous RNA-Seq

experiments [37,38].

We assessed the effects of the QTN on the expression of each

gene in the genome by regressing genotype on gene expression

patterns across the sixteen strains in the panel. After removing the

effect of day-to-day experimental variation (see Materials and

Methods), we applied a linear model framework to assess how

much of the variation in the expression of each gene could be

explained by the allelic status of the sporulation QTN (Table S3).

After correcting for multiple hypothesis testing, we obtained 289

significant gene-specific models (,5% of the genome) in which

gene expression was significantly affected by the allele status of the

QTN (Figures 1 & S1).

Within these 289 genes, the genetic status of the QTNs explains

45–88% of the observed variation in expression (median 49%)

(Figure 1 (inset), Table S4). The best model of gene expression (for

URC2, a putative Zn(II)Cys6-containing transcription factor [39])

explains 88% of the variance in this gene’s expression. These

results stand in stark contrast to the model of sporulation

efficiency, which explains 98% of the variation in this phenotype.

The median variance explained by the polymorphisms depends on

the exact FDR we chose in our analysis (a lower FDR would yield

a higher median variance explained). However, for any FDR

threshold, the gene expression models are always less predictive

than the sporulation model. Applying a similar linear model

framework to log-transformed expression counts did not increase

the gene expression variance explained by the QTN (Figure S2)

and, therefore, we analyzed the models using untransformed gene

expression counts. These results suggest that the statistical

relationship between QTN and phenotype is simpler than the

link between eQTN and gene expression.

Balance between main and interaction effects on the
variation in gene expression versus sporulation efficiency

Genetic interactions between the QTN account for a large

fraction of the variation in gene expression. We found that all four

QTN play a role in the expression of most of the 289 significantly

affected genes, either through main or interaction effects (Tables 2

& S3). As RME1, IME1 and RSF1 act at similar points in the

sporulation network [23,33,34], it is not surprising that interac-

tions between the alleles explain a major portion of the variation in

gene expression (Figure 2). Main and interaction effects explain

almost equal amounts of the variation in gene expression, which

stands in contrast to the model for sporulation efficiency, in which

main effects explain the vast majority of the variation in

phenotype. The median variance in gene expression explained

by main effects of the QTN across all 289 genes is 20% and by the

interaction effects is 29.7%. Only a small fraction of the genes (26/

289) show the additive-interaction balance observed in the

sporulation model where main effects account for over 90% of

the explained expression variance. These genes include RIM4 (a

Table 1. Analysis of variance (ANOVA) table of sporulation efficiencies in allele replacement strains.

Source of Variation Df Sum of Squares Mean Square Error F value P value
Fraction of variance
explained (%)

RME1nc 1 7702.0 7702.0 864.2 ,2e-16 34.32

RSF1c 1 4517.0 4517.0 506.8 ,2e-16 20.13

IME1c 1 7212.0 7212.0 809.3 ,2e-16 32.13

IME1nc 1 1459.1 1459.1 163.7 ,2e-16 6.50

RME1nc*RSF1c 1 293.7 293.7 33.0 6.22e-07 1.31

RME1nc*IME1c 1 134.3 134.3 15.1 0.0003 0.60

RME1nc*IME1nc 1 84.6 84.6 9.5 0.0034 0.53

RSF1c*IME1c 1 118.6 118.6 13.3 0.0007 0.38

RSF1c*IME1nc 1 32.9 32.9 3.7 0.6062 0.15

IME1c*IME1nc 1 124.6 124.6 14.0 0.0005 0.56

RME1nc*RSF1c*IME1c 1 161.4 161.4 18.1 9.59e-05 0.72

RME1nc*RSF1c*IME1nc 1 4.4 4.4 0.5 0.4865 0.02

RME1nc*IME1c*IME1nc 1 136.3 136.3 15.3 0.0003 0.61

RSF1c*IME1c*IME1nc 1 34.6 34.6 3.9 0.0546 0.15

RME1nc*RSF1c*IME1c* IME1nc 1 0.1 0.1 0.01 0.9230 0.00031

Residuals 48 427.8 8.9 1.91

All experiments were performed in the vineyard strain background. The four sporulation QTN are: RME1nc: RME1(indel-308A), RSF1c: RSF1(D181G), IME1c: IME1(L325M),
IME1nc: IME1(A-548G). The source of variation in sporulation efficiency is due to the effect of changing the genotype from the oak to the indicated vineyard allele in the
vineyard converted strain (all four oak alleles in the vineyard background). P-values#0.05 are in bold.
Fraction of variance explained: Additive Factors = 93.08%; Interaction Factors = 5.02%.
doi:10.1371/journal.pgen.1004325.t001
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known target of Ime1 [40]), RME1 itself, and PRD1 (a zinc

metalloendopeptidase that is involved in the degradation of

mitochondrial proteins [41]). Our results show that, while complex

interactions between the QTN drive most of the variation in gene

expression patterns, additive effects of the QTN account for most

of the variation in sporulation efficiency under the conditions

tested here. Given the significant differences between the

explanatory power of the gene expression models and the

sporulation efficiency model, our results suggest that the down-

stream phenotype is robust to expression variation in the network.

We also found that the balance between main and interaction

effects on the variation in gene expression was different for

different QTN (Figure 3). RSF1c’s role in controlling expression

variation was primarily through its main effects while RME1nc and

both IME1 alleles exerted their influence on expression variation

primarily through interactions with the other alleles. These results

are not surprising as RME1 and IME1 act at the same point in the

sporulation transcriptional network [23] with Rme1 binding

directly to the promoter of IME1 [31].

Comparison of the effect of QTN on variation in gene
expression and sporulation

We next asked whether the fraction of variation in gene

expression explained by sporulation QTN was similar to that

explained for sporulation efficiency. We found that the proportion

of gene expression variation explained by the QTN was not

predictive of the explanatory power in the sporulation efficiency

model. RSF1c controls the variation in expression of a large

number of genes. It affects the expression of almost all of the 289

genes with significant expression models and explains a significant

proportion of the variation of 71% of the target genes (205/287

genes) (Table 2). The main effect of RSF1c also explains the largest

proportion of the variation in gene expression compared to the

other three QTN (median variance explained by RSF1c main

effect = 8.5%, Figure 3). However, it is surprising that, despite its

significant role in gene expression, RSF1c does not have the largest

role in explaining the variation in sporulation efficiency. The

RSF1c allele explains 23% of the variation in sporulation efficiency

as compared to RME1nc (38%) and IME1c (35%) (Table 1B,

Figure 4). Little is known about RSF1 except that it may be a

transcriptional modulator of respiration [32] which is known to be

required for sporulation in S. cerevisiae [34]. These results suggest

that RSF1 plays a significant role in the transcriptional cascade

that initiates sporulation along with the known sporulation

transcriptional regulators, RME1 and IME1. However, it is also

possible that, despite being responsible for a large fraction of the

variation in gene expression, only a subset of RSF1c’s target genes

affect sporulation efficiency. In contrast, RME1nc or IME1c may

account for a greater proportion of the variation in the phenotype

as more of their target genes may be directly involved in

sporulation.

RME1nc and IME1c both explain a comparatively modest

fraction of the variation in gene expression (Figure 4). The main

effects of both alleles account for the expression variation of 35%

of their targets (Table 2) but exert their influence primarily

through interactions with the other QTN (Figure 3). As stated

before, this is not surprising as Rme1 and Ime1 act at the same

point of the transcriptional cascade [23] and RME1 is a known

repressor of IME1 expression [31]. The expression of RME1 itself

is a notable exception. The main effect of RME1nc explains 75% of

Figure 1. Histogram of R-squared values obtained for the linear models describing the effect of genotype on the expression of
individual genes. The R-squared values obtained are on the x-axis and the numbers of gene expression models with the particular R-squared
values are on the y-axis. A) Histogram of the R-squared values for all 5792 genes in the S. cerevisiae genome. B) Histogram of the R-squared values for
the 289 significant gene expression models (inset). Significant models have an unadjusted model p-value#0.006.
doi:10.1371/journal.pgen.1004325.g001
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the variation in RME1 expression (Table 3). The expression of

RME1 is almost bimodal with increased expression in strains

containing the RME1nc oak allele and reduced expression in the

presence of the vineyard allele. These results are striking given the

role of the two QTN on the variation in sporulation efficiency.

The main effects of RME1nc and IME1c explain a large proportion

of the variation in sporulation efficiency (Table 1, Figure 4).

However, their role in controlling gene expression variation is not

as significant as RSF1c and occurs primarily through interactions

with the other alleles (Figure 3). These results, again, highlight the

differences between the QTN in their control of gene expression

and sporulation efficiency variation.

IME1 is considered the primary regulator of the sporulation

transcriptional cascade [30,42]. However, the IME1nc allele does

not explain as much of the variation in gene expression as RSF1

(Table 2) possibly because RSF1 acts earlier than IME1 and affects

both respiration and sporulation genes. Accordingly, RSF1 is

responsible for a significant proportion of the variation in IME1

gene expression (Table 3) though it is unclear if it directly affects

the transcription of IME1. Similar to RME1 and the coding allele

Figure 2. Fraction (%) of sporulation and gene expression variance explained by main (pink) and interaction effects (cyan) of all four
sporulation QTN together. Only the 289 ORFs with significant gene expression models are shown. The ORFs are ordered by fraction of total
variance explained in the full model. Each column represents the amount of variation in gene expression explained for a given ORF. The last column
represents the fraction of sporulation efficiency variance explained by the QTN. Only the significant ANOVA factors in both the sporulation efficiency
and gene expression models were considered to calculate the fraction of variance explained by main and interaction effects (f-statistic p-value,0.1).
doi:10.1371/journal.pgen.1004325.g002

Table 2. Summary of sporulation QTN effects on gene expression.*

Sporulation QTN

Number of
ORFs with
significant
main &/or
interaction effects

Number of
ORFs with
significant
main effect

Fraction of ORFs
where allele has
significant main
effect (%)

Median total
variance
explained (%)

Median
additive effect
(%)

Median
interaction effect (%)

RME1nc 264 92 35 15 0 12

RSF1c 287 205 71 29 8.5 16

IME1c 275 97 35 17 0 14

IME1nc 273 134 49 19 0 16

* Results shown are for the 289 genes with significant gene expression models.
Total Variance Explained: For each gene with a significant model (model p-value#0.006), fraction of total variance explained by all significant effects of the allele in
the ANOVA table (F-test p-value of effect ,0.1).
Main (Additive) Effect: For each gene with a significant model (model p-value#0.006), fraction of total variance explained by significant main effect of the allele in
the ANOVA table (F-test p-value of effect ,0.1).
Interaction Effect: For each gene with a significant model (model p-value#0.006), fraction of total variance explained by all significant interaction effects of the allele
in the ANOVA table (F-test p-value of effect ,0.1).
doi:10.1371/journal.pgen.1004325.t002
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of IME1, IME1nc affects gene expression through genetic

interactions with the other three alleles (Figure 3). The main

effects of IME1nc explain the variation of a slightly larger number

of genes than IME1c (134/273 genes) (Table 2). It is striking,

therefore, that IME1nc, is responsible for the smallest proportion of

the variation in sporulation efficiency (Figure 4) showing that a

genetic variant such as IME1nc can cause significant changes in the

variability of gene expression upstream in the network but play a

modest role in the variation of the ultimate phenotype. Our results

thus indicate that the proportion of variation in gene expression

explained by a QTN is not predictive of the amount of phenotypic

variation that it explains.

The number of eQTL targets has also been used to identify ‘‘hot

spots’’ of regulatory activity that may be important for the disease

phenotype [5,10,43,44]. In addition, there has been some

discussion that trans-eQTL are more likely to be eQTL ‘‘hot

spots’’ than cis-eQTL as their effects may be more pleiotropic [45].

The oak and vineyard parental strains used in these studies also

exhibit some pleiotropy as they differ in the size of the cells

entering meiosis, the relative numbers of dyads, triads, and tetrads

in fully sporulated cultures, and growth on non-fermentable

carbon sources [20]. While we know that the RSF1c is not

responsible for the growth differences of the parental strains on

glycerol [27], it is possible that some of the sporulation QTN-

dependent genes may influence these other phenotypes. All four of

the eQTN studied here affect the expression variation of a large

number of overlapping genes (Table 2), thereby, behaving as

expression ‘‘hot spots’’. As expected, the cis-eQTL affect the

variation in gene expression of the linked genes (RME1 and IME1)

but also affect the variability of many genes in trans. We do not

observe any consistent differences in the number of genes whose

expression variation is affected by either the cis-eQTL (RME1nc

and IME1nc) or the trans-eQTL (RSF1c and IME1c). We also do

not find significant enrichment for any particular gene ontology

(GO) category (P.S & B.A.C, unpublished data). More importantly, as

described above, even though all four eQTN behave as ‘‘hot

spots’’ for transcriptional changes, there are significant differences

in the amount of downstream phenotypic variation that they

control. The comparisons indicate that the number of genes

affected, the balance between the additive-interaction effects in

their control of expression variation and the fraction of gene

expression variance explained are not predictive of the effect of the

QTN on sporulation efficiency.

Comparison of the IME1 coding and non-coding QTN
One striking result is the difference between the effects of the

two IME1 QTN on the variation in sporulation efficiency. The

non-coding allele of IME1, IME1nc, affects the expression level of

IME1 and consequently, the amount of Ime1 protein. The coding

allele of IME1, IME1c, probably affects the activity of Ime1 protein

as it lies in a domain of Ime1 that is responsible for protein-protein

interactions with Rim11 and Ume6 [30], two factors that are

required for the initiation of sporulation. Given that both alleles

occur in the same transcription factor, we investigated if their

effects on the variation in gene expression matched their roles in

controlling variation in sporulation efficiency. While the distribu-

tions of the effects on the variation in gene expression for the two

alleles look very similar and they affect similar sets of genes

Figure 3. Fraction (%) of gene expression variance explained by main (pink) and interaction effects (cyan) of each of the four
sporulation QTN. The QTN effect on the 289 ORFs with significant gene expression models is shown. The ORFs are ordered by fraction of total
variance explained in the full model. Plot includes only those models in which the fraction of gene expression variance explained by the particular
QTN is greater than zero. Each column represents the amount of variation in gene expression explained for a given ORF. Only the significant ANOVA
factors (f-statistic p-value,0.1) for each QTN were considered.
doi:10.1371/journal.pgen.1004325.g003
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(Figure 4), the IME1c allele explains a larger proportion of the

variation in sporulation efficiency than IME1nc (Table 1). Closer

inspection of the expression data revealed that while both alleles

explained the expression variation of the same set of genes, the

rank order of the amount of variance explained by each of the

alleles is quite different (p-value,0.005, Wilcoxon rank sum test).

In other words, the two IME1 alleles both affect the same set of

genes, but expression variation of specific genes is more or less

sensitive to either the coding or non-coding allele. These

differences can be seen by comparing the fraction of variance

explained by the two IME1 alleles in individual gene expression

models. While the expression variation of most IME1-dependent

genes is affected by both alleles when the full model is applied, the

proportion of variance explained varies between the alleles

(Figure 5a, correlation coefficient, r = 0.43). This difference

between the alleles is magnified when only the variance explained

by main effects is considered (Figure 5b). While there are a few

genes where the main effects from both alleles affect a significant

Figure 4. Histogram of total fraction (%) of gene expression variance explained by each QTN. For each QTN, total fraction of gene
expression variance explained (x-axis) is calculated by the sum of the significant main and interaction terms. The number of significant gene
expression models with the given fraction is plotted on the y-axis. Only the significant ANOVA factors (f-statistic p-value,0.1) for each QTN were
considered. The black line represents the fraction of the variation in sporulation efficiency that is explained by the given QTN (also listed in each
figure).
doi:10.1371/journal.pgen.1004325.g004

Table 3. Gene expression models for the genes containing the sporulation QTN.

Gene Gene Expression Model* Multiple R-squared# F-test p-value

RME1 ERME1 = 2116.1+256 RME1ncV 0.8 1.9e-12

IME1 EIME1 = 394.62506 RSF1cV2223 IME1ncV 0.6 1.8e-05

RSF1 ERSF1 = 24 0.3 0.2

*E,gene. represents the residual expression of the particular gene after the effect of experimental variation is removed. The first term in the model (intercept) is the
mean residual expression of the gene in the vineyard strain with all four oak QTN (Vineyard OOOO). Each subsequent term in the model represents the gene expression
effect of replacing the oak allele of the particular QTN with the vineyard allele in the Vineyard OOOO strain (2/+ indicates direction of effect). Only significant terms in
the model are shown Pr(.|t|),0.1.
#R-squared value obtained from applying the full model containing all possible main and interaction effects between the four sporulation QTN.
doi:10.1371/journal.pgen.1004325.t003
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proportion of the variation, the expression variation of most of the

dependent genes is affected primarily by only one or the other

allele. The difference between subsets of genes in their sensitivity

to either the level (IME1nc) or the activity (IME1c) of Ime1

manifests itself as a dramatic difference in the effects of the two

IME1 alleles on sporulation efficiency.

Discussion

We have used a set of individual single nucleotide variants in

known or putative transcriptional regulators that are causative for

variation in sporulation efficiency to explore the relationship

between genetic variants and their effects on gene expression and

phenotype. The allele status of the QTNs explains almost all of the

variation in sporulation efficiency but the median variation in gene

expression explained is only 49%. In addition, variation in gene

expression results from many interactions between the alleles while

simple additive effects of the QTN explain most of the variation in

sporulation efficiency. It is intriguing that gene expression varies

more than the phenotype as the four QTN represent the sole

genetic changes in the panel. Why might the QTN show a

stronger correlation with sporulation efficiency than with expres-

sion variation, even though the QTN reside in transcriptional

regulators? It is possible that our gene expression measurements

are ‘‘noisier’’ than those of sporulation efficiency as RNA-Seq may

be more sensitive in measuring variation in gene expression than

the fluorescence measurements used to assess sporulation efficien-

cy. It is also possible that experimental variation was introduced

during sample preparation. We know that day-to-day variation in

media conditions, oxygen levels, etc. can affect sporulation

efficiency and expect that they would affect gene expression as

well. We accounted for this variation by including the day of

growth as a covariate in our gene expression models. However, it

is possible that there is some additional unexplained gene

expression variation even among strains grown on the same day.

The fact that genotype better explains sporulation efficiency

than the ‘‘endo-phenotypes’’ of gene expression suggest that

sporulation efficiency is buffered from changes in the transcrip-

tional network. Developmental biologists have invoked the

concept of ‘‘phenotypic robustness’’ to explain how body patterns

remain invariant despite perturbations in the upstream gene

regulatory network [46,47]. QTL mapping studies in Arabadopsis

lines have also suggested that genetic variation in gene expression

does not always manifest itself as phenotypic variation [48].

Phenotypic changes often require gene expression changes beyond

certain thresholds. As long as transcriptional fluctuations do not

cross the threshold, the phenotype does not vary. When

transcription is tuned to be close to the threshold, variability in

gene expression has been shown to be responsible for incomplete

penetrance [49]. Conversely, surplus gene expression i.e. gene

expression levels that are considerably higher than the threshold

needed to cause phenotypic change, can result in ‘‘wild-type’’

phenotypes [50]. The fact that, in our conditions, main effects

account for most of the variation in sporulation efficiency whereas

allele interactions account for a significant, but much smaller

amount of the phenotypic variation, suggests that the sporulation

efficiency phenotype is buffered from the variation in the

transcriptional network. The sporulation transcriptional cascade

contains multiple points for feedback control [51] which probably

impose several thresholds on gene expression levels. One obvious

possibility is that cells only sporulate when the levels of the

sporulation transcriptional activators are above a certain level.

This also implies that, in properly powered studies, genotype will

be more strongly associated with phenotype than with gene

expression.

Our analyses of the relationship between gene expression

variation and sporulation efficiency variation are based on

expression measurements taken at a single time point. We chose

to analyze the gene expression changes at this early stage of

sporulation as the transcription factors containing the sporulation

QTN exert their effects soon after the switch into sporulation

medium. In addition, Gerke et al. [20] showed that the critical

differences between the oak and vineyard parental strains also

occur early in sporulation. Gene expression changes at later time

Figure 5. Scatter plot comparing the total fraction of variance explained by the Ime1nc and Ime1c alleles. a) Fraction of variance
explained by main and interaction effects. b) Fraction of variance explained by main effects alone. For each QTN, fraction of expression variance
explained is calculated by using the significant main and interaction terms of the QTN (f-statistic p-value,0.1). Results are shown for the 289 ORFs
with significant gene expression models.
doi:10.1371/journal.pgen.1004325.g005
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points are likely to correlate better with sporulation efficiency, but

this correlation will be driven by gene expression changes due to

differences in the numbers of actively sporulating cells. Our

expression measurements reflect the early gene expression changes

in the decision to sporulate during the period when the QTN are

active, not the downstream effectors of sporulation.

The main effects of the two IME1 alleles, IME1nc and IME1c,

play distinct roles in controlling the variation in gene expression,

despite residing in the same transcription factor. Our results

suggest that individual target genes are more dependent on either

the level (IME1nc) or activity (IME1c) of Ime1. Ime1 binds its target

promoters through Ume6, which encodes a DNA-binding protein

[52]. Binding of Ime1 for Ume6 activates transcription of early-

meiosis genes by displacing the repressive activities associated with

Ume6 [30]. The IME1c allele probably affects the affinity of Ime1

for Ume6 or other co-factors as it lies in a domain of Ime1 that is

responsible for protein-protein interactions with Rim11 and Ume6

[30]. Given this mode of action, the differences between the two

IME1 alleles suggest that changing the affinity of Ime1 to Ume6 or

other co-factors has a different effect on IME1-dependent

promoters compared to changing the concentration of Ime1. It

is possible that Ime1 exhibits cooperativity at IME1nc-dependent

genes but not at IME1c-dependent genes, rendering these

particular targets more sensitive to changes in Ime1 levels but

insensitive to changes in the affinity of Ime1 binding. An initial

search for transcription factor motifs uncovered the Ume6 binding

site in both sets of genes, but did not reveal any notable differences

in the motif content of the two sets of target promoters (P.S &

B.A.C, unpublished data). However, it remains possible that each set

of promoters contains a unique combination of motifs and co-

factors that control the allele-dependent response.

Finding consistent patterns among the hundreds of eQTL is a

major challenge in the study of quantitative variation in gene

expression [13]. Investigators have focused on cis-eQTL, the

number of targets, or the effect size of a given eQTL as ways to

screen eQTL for the variants most likely to be important. We find

that that the fraction of variation in gene expression explained by

the sporulation QTN is not predictive of the fraction of variation in

phenotype that they explain. The results are surprising since all four

QTN lie in known or putative transcriptional regulators and,

therefore, must exert their phenotypic effects through changes in

gene expression. It remains to be determined if this same trend will

hold for causal genes that are not TFs. Perhaps the indirect effects of

non-TFs on gene expression will better correlate with downstream

phenotypes than the direct effects of TFs. However, early studies on

laboratory-derived mutations showed that there were no significant

differences between TFs and non-TFs in terms of their effects on

gene expression [53]. Therefore, we suspect that our results will be

applicable to naturally occurring polymorphisms in non-TFs as

well. We have also not found any distinction between cis- and trans-

QTN. While all four QTN act like eQTL ‘‘hot spots’’, either cis- or

trans-eQTL can can explain large proportions of the variation in

gene expression (RSF1c and IME1nc) or in phenotype (RME1nc and

IME1c). These results suggest that, along with the amount of gene

expression variation explained by a given QTN, the identity and

function of the particular genes affected may be important in

identifying the eQTL that has the most significant role in controlling

phenotypic variation.

Materials and Methods

Experimental design
The culture conditions for sporulation efficiency were modified

from Gerke et al. [27] to accommodate larger samples for RNA-Seq

preparations. Two replicates each of the 16 strains in the vineyard

background allele replacement panel were grown for 14 hours at

30C in 96-well blocks containing 500 ul of Yeast Peptone

Dextrose (YPD) medium with 2% dextrose. The replicates were

pooled and diluted 1:50 into 250 ml conical flasks containing

50 ml of 1% potassium acetate to induce sporulation. Cultures

were grown for 30 hours and sporulation efficiencies were

measured as described in Gerke et al. [27]. The entire procedure

was repeated on different days until we had four biological

replicates for each strain.

For RNA-Seq, cultures were grown as described above but

growth was stopped after 2 hours in potassium acetate by spinning

cells down and freezing the cell pellets at 280uC. Cells were

harvested at this stage and total RNA was extracted [20]. The

entire procedure including total RNA extraction was repeated on

different days until we had four biological replicates for each

strain.

mRNA was extracted with the DynaI mRNA DIRECT kit (Life

Technologies) and fragmented with a Covaris Focused ultra-

sonicator. mRNA extraction and fragmentation, random hexamer

priming of cDNA and Illumina library preparations were done by

the Genome Technology Access Center (GTAC) at Washington

University in St. Louis (https://gtac.wustl.edu) using standard

procedures [54]. The liquid handling steps from the mRNA

extraction stage onwards were performed on all 64 samples

simultaneously using the Caliper Sciclone Automated Liquid

Handling Workstation (PerkinElmer).

RNA-seq
Illumina libraries were prepared from the cDNA of each of the

64 samples. We obtained libraries from all the samples except the

strain with vineyard alleles of RME1nc, RSF1c, IME1nc and oak

allele of IME1c which had only 3 replicates for the subsequent

analyses. The libraries were indexed separately and pooled into

one sequencing reaction. The pool was run on multiple lanes until

we obtained a minimum of 4 million reads per sample. The

sequencing reads for each sample were combined across all

sequencing runs. If present, adapter dimers were removed and the

sequencing reads were aligned to the Verified and Uncharacter-

ized open reading frames (ORFs) in the S. cerevisiae reference

genome (S288C, genome release R63-1-1, Saccharomyces Ge-

nome Database (SGD, http://www.yeastgenome.org/)) using

Bowtie, version 0.12.7 [55]. Only unique alignments with

maximum 2 mismatches in the –best alignment mode were

accepted. The counts for all the reads aligned to a given ORF were

summed to give the raw counts per ORF. The raw counts were

scaled to account for differences in sequencing depths per sample

by calculating the normalized count values across all samples as

described in DESeq, version 1.9.11 [56]. To normalize samples,

the ratio of a gene’s counts to its geometric mean across all the

samples was calculated for each gene. Assuming that most genes

are not differentially expressed, the scaling factor for each sample

was the median of the ratios of all the genes in the sample. For

each gene in a given sample, the counts were then normalized by

the scaling factor for that sample. The normalized gene counts

were used for all further analyses. The lowest 20th percentile of

ORFs, based on the sum of the normalized counts across all

samples for the given ORF, was removed to reduce the number of

tested hypotheses and false positives. 4633 ORFs out of the initial

5792 ORFs remained after the filtering stage.

The normalized gene counts and the raw expression data

discussed in this publication have been deposited in NCBI’s Gene

Expression Omnibus [57] and are accessible through GEO Series
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accession number GSE55409 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE55409).

Statistical analyses
All statistical analyses were performed in R [58]. Linear

regression was performed using the lm function in R. The genes

whose expression is best explained by the genotype of the

sporulation QTN were found in a two-step process. To eliminate

any variation due to growing the allele replacement panel on

different days, for a given ORF, i, we computed the residual gene

expression (ei) for all 4633 ORFs after removing the additive effect

of the day of growth (DAY) on the normalized counts (Ni) of each

ORF. Thus, the DAY model was applied on a gene-by-gene basis

resulting in 4633 gene-specific DAY models.

Ni*DAYzei

The residual gene expression from the DAY models was used in

subsequent analyses. For each gene, the effect of the sporulation

QTN on gene expression was computed in a second linear model

by regressing the genotype of each of the four QTN (RME1nc,

RSF1c, IME1c and IME1nc) on the residual gene expression from

the previous modeling step. Again, 4633 gene-specific expression

models were run. The � in the model below indicates that both

additive and interaction effects were considered.

ei*RME1nc�RSF1c�IME1c�IME1nc

The effect of the sporulation QTN on gene expression was also

compared to results from alternative model where the effect of

DAY as well as the genotype of each of the four QTN (RME1nc,

RSF1c, IME1c and IME1nc) was regressed on the log-transformed

normalized expression counts of each gene.

log Nið Þ*DAYzRME1nc�RSF1c�IME1c�IME1nc

We used the Benjamini-Hochberg procedure [59] on the model

p-values to control the False Discovery Rate (FDR) to 10% and

obtained 289 significant models. The unadjusted p-value of the

significant models was 0.006 or lower. We also assessed

significance of the gene expression models by permuting the

genotype designations on all 63 samples and regressing the effect

of the permuted genotype on the residual expression from the

DAY model for all ORFs. The p-value corresponding to the lowest

5th percentile was obtained from the distribution of model p-values

across the genome. The permutations and genotype modeling

were repeated 1000 times to determine the distribution of the 5th

percentile of model p-values. We found the unadjusted p-value

threshold from the FDR control to be almost 2 standard deviations

below the average of the distribution of 5th percentile model p-

values obtained from the permutations. Since the FDR p-value

threshold was more stringent than that obtained from the

permutations above, we performed the remaining analyses on

the 289 significant models.

The effect of individual QTN on gene expression was found by

comparing nested models using ANOVA and calculating the

fraction of variance explained by all significant factors of the given

allele. In the ANOVA analysis, individual factors were considered

to be statistically significant with a fairly permissive threshold (f-

statistic p-value,0.1). We chose to report the effect of each variant

as the computed variance explained by each variant, rather than

the magnitude of the regression coefficients. We chose this metric

because genes are expressed on very different scales which makes it

difficult to interpret effect sizes across genes.

The coefficient of variation (CV =s/m) of the expression of

each ORF across all four biological replicates was calculated for all

5792 ORFs in the genome. For a given ORF, s represents the

standard deviation of gene expression counts across the four

biological replicates and m represents the mean of gene expression

counts across the biological replicates. To remove the effect of day

of growth and to perform this particular analysis on the original

expression scale, the normalized expression counts (using the

DESeq normalization procedure) for each gene were further

normalized for day-to-day variation as follows. A given day was

arbitrarily chosen as Day A. For each ORF, the fitted values from

the DAY model for all samples grown on a given day represent the

mean expression of the ORF across all 16 strains in the panel for

the given day. Variation due to the growing the allele replacement

panel on different days was removed by dividing Ni, the

normalized gene expression counts for the ORF by the ratio of

the mean expression of the particular ORF on a given day to the

mean expression of that ORF in the 16 strains grown on day A.

These ‘‘day-corrected’’ expression values were used for the CV

calculations as well as for the heat map (Figure S1).

The wilcoxon rank sum test was applied using the standard

wilcox.test function in R [58]. Enrichment analysis for gene-ontology

(GO) categories was performed using the functional category

analysis tools at DAVID Bioinformatics Resource 6.7 [60,61].

Supporting Information

Figure S1 Expression profiles of the genes significantly affected

by the sporulation QTN. The expression profiles of the 289 genes

with significant gene expression models are shown. All 16

genotypes are represented by the columns (x-axis) while the rows

(y-axis) represent hierarchically clustered z-scores of gene expres-

sion of each gene across all 16 genotypes. Each expression value is

the mean expression of the gene in the given genotype across four

replicates using the residual expression of the gene after removing

the effect of the day of growth. The only exception is the strain

with vineyard alleles of RME1nc, RSF1c, IME1nc and oak allele of

IME1c which only had three replicates. The genotypes of each

strain are shown below the heatmap where ‘O’ represents the oak

allele and ‘W’ represents the vineyard allele. The mean

sporulation efficiencies (%) from four replicates of each strain in

the allele replacement panel are also shown.

(TIF)

Figure S2 Comparison of linear models of the effect of genotype

on gene expression using log-transformed and untransformed

expression values. a. Histograms comparing R2 values obtained for

linear models of gene expression using log-transformed (red) and

untransformed (blue) expression data for all 5792 genes in the

genome. The R2 values obtained (x-axis) and the numbers of

models with the particular R2 value (y-axis) are shown. b. Scatter

plot comparing the R2 values obtained for linear models using

untransformed (x-axis) and log-transformed (y-axis) expression data

for the 289 genes with significant expression models using

untransformed expression data. The blue lines represent the R2

value for the sporulation efficiency model.

(TIF)

Table S1 Sporulation efficiencies of allele replacement panel

strains.

(XLSX)
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Table S2 Effect of sporulation QTN on sporulation efficiency.

(DOCX)

Table S3 Effect of sporulation QTN on gene expression.

(XLSX)

Table S4 R-squared values for the expression models for genes

significantly affected by the sporulation QTN.

(XLSX)
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