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Abstract

Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary
lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how
FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not
differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We
identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T
cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by
both DC-signals as well as interferon-c produced by primed CD8+ T cells. Importantly, iNOS expression was induced during
viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in
Inos2/2 mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC
cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.
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Introduction

Adaptive immune responses are initiated most efficiently within

secondary lymphoid organs (SLO), such as the spleen or lymph

nodes (LN), where pathogens (or foreign antigens) are filtered from

body fluids and presented to recirculating T cells. Typically,

dendritic cells (DC) residing in peripheral tissues capture foreign

antigens and danger signals inducing their maturation, including

up-regulation of the chemokine receptor CCR7 allowing DC to

migrate via lymphatic vessels into the paracortex (T zone) of the

draining SLO. There they present antigen-derived peptides in the

context of surface MHC molecules to thousands of naı̈ve

recirculating T cells. Only the rare antigen-specific T cells become

activated, start secreting cytokines and undergo multiple rounds of

cell division. Finally, they differentiate into effector cells and leave

the LN as a large cohort that migrates specifically to the site of

inflammation [1,2,3,4].

Both in mice and humans, the microenvironment where T cells

encounter DC is spanned by a 3-dimensional (3D) network of T

zone fibroblastic reticular cells (T-FRC or TRC) known to

produce the extracellular matrix scaffold, including microvessels

called conduits [2,4,5,6,7,8,9]. More recently it has become clear

that TRC are not only cells providing a 3D microenvironment but

play an active role in adaptive immunity. They physically guide

lymphocytes during their several hours-long migration across the

T zone by forming a ‘road system’ [2]. TRC also actively recruit

CCR7 expressing T cells and DC into the T zone by constitutively

secreting CCL19 and CCL21 [9,10,11]. These chemokines not

only retain T cells in the T zone but also promote their motility

[12]. Furthermore, incoming and resident DC adhere to TRC as

well as their associated matrix structures [2,4,8]. Finally, TRC are

the major constitutive source of IL-7 in LN and access to LN TRC

is critical for naı̈ve T cell survival [9,13].

As the processes of selection, amplification and differentiation of

antigen-specific T cells all take place within the TRC environment,

it raises the possibility that TRC positively influence these steps.

Several lines of evidence support this hypothesis: First, the TRC

network appears to increase the frequency of DC-T cell encounters

leading to a faster selection of antigen-specific T cells whose

frequency is estimated to be around 1 out of 100’000 T cells for a

given protein antigen. Both physical and chemical guidance cues

provided by TRC are thought to contribute to this effect [2,4].

Second, the homeostatic chemokines CCL19 and CCL21 act as co-

stimulatory signals for T cell activation and proliferation in vitro

[14,15]. These chemokines also increase DC maturation and

function (reviewed in [16]). Third, IL-7 enhances T cell responses to
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viral infections in vivo [17,18]. Together, these observations have

strengthened the notion that TRC help in the induction of T cell

responses by accelerating T cell priming and expansion.

However, recent reports have suggested that TRC may also

negatively regulate T cell responses. TRC were shown to express

the inhibitory programmed death ligand 1 (PD-L1) thereby

reducing CD8 T cell mediated pathology [19]. TRC also express

self-antigens in the context of MHC class I thereby promoting

CD8+ T cell tolerance [20,21] (reviewed in [22,23]). In addition,

stromal cells isolated from neonatal or adult spleen were shown to

induce over 1–2 weeks the development of DC that inhibit T cell

proliferation in vitro. The spleen contains many stromal cell subsets

and the precise identity of the cells used as well as their localization

relative to DC and T cells has remained unclear [24,25].

Together, these observations indicate that lymphoid tissue stromal

cells may also inhibit T cell responses.

Currently, the exact role of LN TRC in T cell activation and

differentiation is not known. This is in part due to the difficulty of

isolating sufficient numbers of TRC for in vitro experiments and the

lack of appropriate tools to investigate TRC in vivo. Here we used a

combination of in vitro and in vivo approaches to study the effect of

TRC on CD8+ T cell priming by antigen-pulsed DC. We

demonstrate that TRC diminish T cell expansion by releasing

NO. They share this property with a subset of DC. We show that

NO production by TRC and DC is strongly dependent on

cytokines from activated T cells suggesting a negative feedback

loop once T cell priming has started. Our in vivo findings using

Inos2/2 mice indicate that TRC and DC limit the speed of T cell

expansion possibly to ensure organ functionality during the early

phase of acute lymph node swelling.

Results

Lymph node TRC dampen T cell expansion
To dissect the role of TRC in T cell activation and

differentiation, we initially adopted a reductionist approach: T

cells were co-cultured with antigen-pulsed bone-marrow derived

DC (BM-DC), either in the presence or absence of TRC. Given

the difficulties in isolating pure TRC populations, several

independent TRC cell lines were established from peripheral

lymph nodes (pLN = pool of inguinal, axillary and brachial LN) of

C57BL/6 wild-type (WT) mice (referred to as ‘pLN1’ and ‘pLN2’)

or GFP-expressing mice (‘GFP-pLN’). All these lines showed

typical fibroblastic morphology and a uniform surface marker

expression pattern comparable to ex vivo isolated TRC (Fig. S1 and

data not shown). In contrast to ex vivo TRC [9] cell lines expressed

only low levels of Ccl19, Ccl21 and Il7 transcripts. To circumvent

this caveat, initial experiments included exogenously added

CCL19, CCL21 and IL-7 protein with no difference in the

outcome (data not shown).

To study T cell priming CD45.1+ congenic ovalbumin (OVA)-

specific OT-I T cell receptor (TCR) transgenic CD8+ T cells were

labeled with the proliferation dye carboxyfluorescein succinimidyl

ester (CFSE), mixed with unspecific WT T cells (CD45.2+) in a

ratio of 1:50, and cultured together with antigen-pulsed BM-DC

on top of an adherent layer of the TRC line. TRC were previously

irradiated to limit their proliferation and nutrient consumption.

Surprisingly, the total OT-I cell number was strongly decreased in

presence of the TRC line pLN2 (Fig. 1A). Using CFSE dilution to

measure T cell proliferation, both the percentage and number of

dividing OT-I T cells were strongly reduced in the presence of

pLN2 (Fig. 1B). The increase in cell size (FSC) and CD44

expression (Fig. 1C) as well as the loss of CD62L expression

(Fig. 1D) occurred in presence of TRC but to a reduced extent.

The co-cultures were supplemented with IL-7 and IL-2, so a lack

of known pro-survival factors for naı̈ve and activated T cells is

unlikely to be the cause. In line with that, the number of naı̈ve,

undivided OT-I T cells was not affected by the TRC presence, nor

was the up-regulation of the high-affinity receptor chain for IL-2,

CD25, on dividing T cells (Fig. 1E). Importantly, several other

fibroblast lines established independently from LN and spleen [26]

not only shared the same surface phenotype (Fig. S1) but also the

inhibitory effect on T cell expansion with a reduction in

proliferating OT-I T cell numbers of 60–90% (Fig. 1F). Impor-

tantly, primary TRC isolated from naı̈ve pLN limited T cell

expansion at least as strongly as TRC lines (Fig. 1G). Even TRC

isolated from pLN of mice immunized 3 days earlier with NP-

CGG in Montanide adjuvant maintained these inhibitory

properties (Fig. 1G). Next, we examined the effect of TRC on

CD8+ T cell differentiation. OT-I T cells primed in presence of

TRC expressed intracellular interferon gamma (IFNc) protein

(Fig. 2A) and killed target cells (Fig. 2B), although with markedly

reduced efficiency (Fig. 2B). Together these results demonstrate

that the presence of TRC during T cell activation diminishes the

expansion or survival of CD8+ T cells and to a lesser extent their

differentiation into effector cells.

Fibroblasts from non-lymphoid organs also attenuate T
cell proliferation

It has been reported that murine and human fibroblasts can

have anti-proliferative effects on activated T cells, similar to

mesenchymal stem cells (MSC) and certain tumor lines

[27,28,29,30,31]. Therefore we tested in our system the inhibitory

potential of several fibroblastic cell lines established de novo from

different non-lymphoid organs, as well as their ex vivo equivalents

(CD452CD352CD312EpCAM2gp38+; see Fig. S2), and com-

pared them to our pLN2 line. In addition, epithelial-like cells from

the epidermis and kidney, a MSC line and two tumor cell lines

(MC38 colon carcinoma and B16-F10 melanoma) were tested. All

cell lines inhibited OT-1 T cell proliferation to an extent

comparable with pLN2 (Fig. 3 A–D), highlighting that inhibition

of T cell expansion is a property common to many cell types,

including fibroblasts from various non-lymphoid organs.

TRC directly inhibit T cell proliferation and render DC less
stimulatory

MSC have been shown to inhibit T cell proliferation by

intracellular expression of enzymes such as indoleamine 2,3-

dioxygenase (IDO) and arginase-1, surface expression of PD-L1,

or by secretion of molecules like NO, prostaglandin E2 (PGE2), IL-

10 and TGFb(reviewed in [30,31]). The proposed pathways

included direct inhibition of T cell proliferation or conversion of

DC to a non-stimulatory or suppressive phenotype (reviewed in

[31,32]). To examine whether TRC can directly interfere with T

cell proliferation pLN2 were co-cultured with anti-CD3/CD28

bead-stimulated T cells. Clearly, TRC diminished the number of

dividing T cells but the inhibitory effect was only half of what we

had observed in the BM-DC-induced T cell activation assay

(Fig. 4A). Next, potential effects of TRC on the stimulatory

capacity of antigen-pulsed BM-DC were investigated by co-

culturing first pLN2 with BM-DC before incubating these ‘TRC-

conditioned’ BM-DC alone with T cells. The capacity to stimulate

T cell proliferation was reduced by half in conditioned relative to

unconditioned BM-DC (Fig. 4B). Together these results indicate

that TRC limit T cell expansion in two additive ways, by making

DC less immunogenic and by directly inhibiting T cell

proliferation or survival.

Lymph Node Fibroblasts Limit T Cell Expansion
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Figure 1. TRC dampen the expansion of antigen-specific CD8+ T cells. Flow cytometric analysis of T cell activation: CFSE-labeled OT-I T cells
were mixed in a ratio of 1:50 with WT T cells (50% CFSE-labeled) and cultured with LPS-activated and OVA-peptide pulsed BM-DC. The assay was
performed without stromal cells (‘no stroma’) or in the presence of TRC from distinct sources (1:1:200 ratio of TRC to BM-DC, and to T cells). (A) Total
OT-I numbers on day 2, 3 and 4 in absence or presence of the pLN2 TRC line. (B) Proliferation of OT-I (black) or polyclonal T cells (gray) as assessed by
CFSE dilution on day 3 or 4 with or without pLN2. Histograms (left) show the percentage (6 standard deviation) of divided OT-I cells and bar graphs
the absolute OT-I cell numbers per CFSE dilution peak (right). (C) Dot plots (left) show CFSE dilution versus cell size (FSC) or CD44 expression of OT-I T
cells after 3 days. Bar graphs (right) indicate the median FSC values or fluorescence intensity. (D) Histograms show CD62L expression and bar graphs
the percentage of CD62Llow OT-I T cells. (E) As c, but showing CD25 expression on OT-I T cells after 4 days of co-culture with or without pLN2. (F,G)
Bar graphs show the percentage inhibition of OT-I T cell proliferation as based on the proliferating OT-I cell numbers after 3 days of co-culture with
different TRC lines (F) or ex vivo isolated and enriched TRC (G). The latter are derived from pLN of unmanipulated B6 mice or from mice s.c. injected
with NP-CGG/Montanide 3 days prior to the TRC harvest (‘activated TRC’). Different symbols indicate different experiments. Data are representative of
.10 (A–D), 3 (E,G), 2–3 (F) experiments; different symbols indicate different experiments. * P,0.05, ** P,0.01, *** P,0.001, P-values relate to ‘no
stroma’ controls.
doi:10.1371/journal.pone.0027618.g001
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TRC limit T cell expansion by producing NO
To gain insight into the nature of the TRC-derived inhibitory

factor T cells and BM-DC were either separated from the pLN2

by a permeable-membrane (transwell) or simply incubated with

supernatant (SN) from pLN2. Both settings led to a decrease in T

cell expansion, but this was smaller than in co-cultures where all

the three cell types are intermingled (Fig. 5A). These results

suggest a role for either a soluble factor which acts only efficiently

at short distance, or for at least two inhibitory factors, one being

soluble and the other being cell-cell contact dependent. It also

argues against a role for TRC in presenting antigen to T cells and

thereby inhibiting T cell proliferation.

To identify the molecules responsible for suppressing T cell

expansion in our assay several candidates or their synthesis

pathway were blocked, including PD-L1, TGFb, IL-10, IDO and

arginase-1 but none of them neutralized the TRC-mediated

inhibition (Fig. S3). However, blocking the enzymatic activity of

Figure 2. CD8+ T cells primed in presence of TRC still produce
IFNc and kill target cells. The T cell activation assay (see legend of
Fig. 1) was performed without stroma (‘no stroma’) or in presence of the
pLN2 TRC line for 4 days followed by flow cytometric analysis of OT-I T
cell effector function. (A) Dot plots (left) show intracellular IFNc
deposition versus CFSE dilution in OT-I T cells after in vitro re-
stimulation with 1 mM SIINFEKL peptide in presence of brefeldin A. The
right panel shows the median fluorescence intensity of IFNc expression
in OT-I T cells. (B) The cytotoxic capacity of OT-I T cells was assessed by
co-incubating OT-I T cells ( = effector cells, E) from the T cell activation
assay in the indicated E:T ratios with SIINFEKL-pulsed-eFluor670high-
labeled splenocytes ( = target cells, T) mixed 1:1 with unpulsed-
eFluor670low-labeled splenocytes ( = internal control). After overnight
culture the percentage of eFluor670high versus eFluor670low spleno-
cytes was analyzed and plotted as histograms. Indicated as percentage
is the survival index for the target cells, as based on the ratio of peptide-
pulsed eFluor670high relative to unpulsed eFluor670low cells (6 standard
deviation). (A, B): n = 3, representative of 3 independent experiments.
* P,0.05, ** P,0.01, *** P,0.001, P-values are relative to the
corresponding ‘no stroma’ control.
doi:10.1371/journal.pone.0027618.g002

Figure 3. Stromal cells from various non-lymphoid organs
decrease antigen-specific T cell proliferation. The T cell activation
assay (see legend of Fig. 1) was performed in presence of either stromal
cell lines (A,B,D) or ex vivo isolated stromal cells (C). OT-I T cells co-
cultured for 3 days were analyzed for CFSE dilution using flow cytometry.
Representative histograms of CFSE dilution (left panel) and the number
of proliferating OT-I cells as percentage inhibition are presented (right
panel, as in Fig. 1). Shown are assays with a (A) mouse embryonic
fibroblast line (MEF) and lung fibroblast line, (B) lines derived from
different non-lymphoid organs (dermis, heart, femoral muscle, kidney),
(C) ex vivo isolated adherent cells from the dermis, epidermis or kidney,
(D) Mesenchymal stem/stromal cell (MSC) line and the tumor cell lines
B16-F10 (melanoma) and MC-38 (colon carcinoma). (A–D) n$3,
representative for $2 experiments. Different symbols indicate different
experiments. * P,0.05, ** P,0.01, *** P,0.001, if not indicated otherwise
p-values are relative to ‘no stroma’. The dotted line indicates the
inhibition observed by pLN2 cells within the same experiment.
doi:10.1371/journal.pone.0027618.g003
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iNOS (NOS2) or cyclooxygenase (Cox) 21 and 22 partially

rescued T cell proliferation with the effects of the two

pharmacological inhibitors used being partially additive (Fig. 5B).

This result demonstrates that iNOS-dependent NO and Cox-1/2

dependent factors are responsible for most of the inhibitory effect

observed. We focused our attention on iNOS as transcripts for Inos

but not Cox2 were enhanced in stimulated TRC (as shown later).

Strikingly, Inos2/2 TRC had lost all suppressive activity and

showed even an enhancement of T cell proliferation, in contrast to

the inhibitor 1400W that partially abolished the suppressive effect

of ex vivo WT TRC (Fig. 5C), reminiscent of the effects seen for the

pLN2 line (Fig. 5B). To show directly the expression of iNOS

protein in TRC and assess the frequency of iNOS-expressing cells,

antibodies to iNOS were used in immunofluorescence microscopy.

Surprisingly, iNOS protein could only be detected in pLN2 co-

cultures with BM-DC and activated T cells. However, iNOS was

only detected in a small fraction of gp38+ TRC (Fig. 5D).

Occasionally, iNOS protein staining was observed in BM-DC-like

cells (gp382) but never in lymphocytes (not shown). These

experiments establish that TRC are a source of iNOS that inhibits

T cell proliferation. They also demonstrate that the inhibitory

activity of TRC on T cell expansion is not due to metabolic effects

of co-culture.

As a readout of iNOS activity, we measured extracellular nitrite

levels in the SN. In absence of TRC the SN of T cells activated by

BM-DC contained very low levels of nitrite. Presence of pLN2 or

ex vivo TRC in this assay increased the NO2
2 concentration 2- and

5-fold, respectively (Fig. 5E), further strengthening the notion that

NO production by TRC leads to inhibition of T cell proliferation

or survival. In the case of ex vivo TRC approximately half of the

nitrite was due to iNOS activity in TRC as suggested by the use of

1400W or Inos2/2 TRC. They also suggest a contribution of NO

production by one of the two other NOS isoforms which are

insensitive to the concentrations of 1400W used and possibly

expressed in TRC or in the few endothelial cells found within the

adherent cell fraction. As the levels of iNOS protein correlate

better with NO-mediated inhibition of T cell expansion than those

of extracellular nitrite, the subsequent analysis was focused on the

factors inducing iNOS expression in TRC.

IFNc and other T cell derived cytokines induce iNOS
protein expression in TRC

To look at the role of T cells in inducing iNOS protein in TRC,

pLN2 were co-cultured with T cells and fixed cells analyzed for

intracellular iNOS protein by immunohistology. Non-activated T

cells induced iNOS in only a few TRC whereas T cells activated

with anti-CD3/CD28 beads up-regulated iNOS in a large

proportion of TRC (Fig. 6A). This suggests that most TRC have

the potential to express iNOS upon activation but typically only a

small proportion shows detectable protein. IFNc is a T cell-

derived cytokine known to induce iNOS expression in various cell

types [33,34,35,36]. Indeed, adding recombinant IFNc was

sufficient to induce iNOS expression in a fraction of pLN2

(Fig. 6A). Comparable results were obtained with ex vivo LN cells

when the adherent cells enriched for gp38+CD312 TRC were

used in presence of naı̈ve or activated T cells or IFNc (Fig. S4A).

Consistent with these data a significant increase in nitrite was

observed in the SN of TRC lines or ex vivo TRC upon IFNc
stimulation or upon addition of T cells with or without anti-CD3/

28 activation (Fig. S4B). To obtain a more quantitative assessment

of iNOS-expressing TRC, iNOS-expressing cells were measured

using intracellular staining and flow cytometry. This analysis

showed that while IFNc induced few TRC to become iNOS-

positive, there was a strong synergistic effect when both IFNc and

Figure 4. TRC dampen T cell proliferation by modifying both T cells as well as BM-DC. (A) Flow cytometric analysis of T cell proliferation
induced by anti-CD3/CD28 beads as based on CFSE dilution after 3 days of culture. WT T cells were cultured with beads and in presence of the pLN2
TRC line (T cell to TRC ratio of 100:1) or their absence (‘no stroma’). Representative histograms (top) show the percentage (6 standard deviation) of
divided CD8+ T cells and bar graphs (bottom) the absolute CD8+ T cell numbers per division. The bar graph (right) shows percentage of inhibition (as
in Fig. 1). Similar data were obtained for CD4+ T cells suggesting TRC may also suppress their expansion (data not shown). (B) Flow cytometric
analysis of cell proliferation induced by TRC-conditioned BM-DC. LPS-activated and SIINFEKL-pulsed BM-DC were co-cultured with pLN2 TRC at a ratio
of 1:1, or cultured alone. After overnight culture TRC-conditioned-BM-DC were re-isolated by MACS, counted and subsequently co-cultured for 3 days
with CFSE labeled OT-I cells mixed 1:50 with unspecific WT T cells (of which 50% are CFSE labeled). Representative histograms (top) show the
percentage (6 standard deviation) of divided OT-I cells and bar graphs (bottom) the absolute cell numbers per CFSE dilution peak. Percentage of
inhibition (as in Fig. 1) is shown in the bar graph on the right. (A,B) n = 3, (A) representative for $3 experiments, (B) representative for 2 experiments.
* P,0.05, ** P,0.01, *** P,0.001, if not indicated otherwise P-values are relative to ‘no stroma’.
doi:10.1371/journal.pone.0027618.g004

Lymph Node Fibroblasts Limit T Cell Expansion
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Figure 5. Suppression by TRC is mediated via NO and COX-1/2 dependant factors. (A,B,C) Flow cytometric analysis of the T cell activation
assay (as described in Fig. 1): (A) pLN2-TRC in the assay were present in the same well (‘normal’), separated by a permeable membrane (transwell) or
30% pLN2-TRC-conditioned-supernatant taken after 72 h from sub-confluent irradiated cultures was added to the cultures. The bar graph shows
percentage of inhibition. (B) Pharmacological inhibitors against iNOS (1400W, 1 mM) and/or Cox-1/2 (indomethacin, 10 mM) were added to the co-
cultures after optimization of their concentrations (tested range for 1400W: 1–10 mM; for indomethacin: 1–10 mM). The middle panel shows the
percentage of divided OT-I cells (6 standard deviation) and the bar graph (right) shows the percentage of inhibition. (C) T cell activation assay was
carried out in the presence of ex vivo isolated enriched TRC from WT or Inos2/2 mice along with the indicated inhibitors. The right panel shows the
percentage of divided OT-I cells (6 standard deviation) and the bar graph (middle) shows the percentage of inhibition. (D) Immunohistochemical
analysis of iNOS expression in pLN2 TRC lines. pLN2 cells were cultured alone (top) or in presence of OT-I and WT T cells together with LPS activated,
SIINFEKL-pulsed BM-DC (ratios as in Fig. 1) (bottom). Insets of higher resolution images are shown to indicate the generally increased iNOS expression
level in pLN2 co-cultured with BM-DC, antigen and T cells. (E) Bar graph showing NO2

2 levels in the co-culture supernatant from the T cell activation
assay shown in (b,c) as determined using a Griess assay. (A,B,C,E) n = 3, (D) n = 3–4, (A,C) representative for 2, (B) representative for $3 experiments,
(D) 1 experiment; * P,0.05, ** P,0.01, *** P,0.001, if not indicated otherwise P-values are relative ‘no stroma’.
doi:10.1371/journal.pone.0027618.g005

Lymph Node Fibroblasts Limit T Cell Expansion
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Figure 6. iNOS expression in TRC can be induced by IFNc. (A) Immunohistochemical analysis of iNOS expression in pLN2 TRC lines. pLN2 were
cultured for 2 days either alone (1st row), in the presence of WT T cells without (2nd row), with anti-CD3/28 beads (3rd row), or in the in the presence
of recombinant IFNc bottom row. The first column shows iNOS expression in red and nuclei stained with DAPI in blue, the second column shows
iNOS in red and gp38+ TRC in green. Tiny nuclei are from T cells, larger nuclei from BM-DC and pLN2. Scale bar: 50 mm. (B) Flow cytometric analysis of
intracellular iNOS expression in pLN2 TRC or BM-DC, cultured for 2 days either alone or together and with or without recombinant IFNc. The
histograms show the % of iNOS-expressing TRC (gp38+CD452CD312; upper panel) or BM-DC (CD45+; lower panel) (6 standard deviation). (C) NO2

2

concentration in the supernatant from the co-cultures shown in (b). (D) Quantitative RT-PCR analysis for Inos mRNA of pLN2 cells stimulated with
various cytokines or agonistic anti-LTbR (aLTbR) antibody for 7 h or 24 h. The expression levels relative to two housekeeping genes are shown.
Different symbols indicate different experiments. (A,D) n = 3–5, representative for 2 experiments. (B,C) n = 2, 1 experiment; * P,0.05, ** P,0.01,
*** P,0.001; if not indicated otherwise P-values are relative to ‘no stroma’.
doi:10.1371/journal.pone.0027618.g006

Lymph Node Fibroblasts Limit T Cell Expansion
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BM-DC were present in the co-culture with up to 25% TRC being

positive (Fig. 6B). Given that BM-DC were occasionally observed

to express iNOS in the co-cultures, we assessed the influence of

IFNc and TRC on the ability of BM-DC to express iNOS.

Interestingly, both IFNc and TRC induced iNOS protein

expression in around 3% of BM-DC, but having both IFNc and

TRC in the co-culture led to a strong synergistic iNOS expression

in up to 30% of BM-DC (Fig. 6B). This synergy was reflected in

the almost 10-fold increase in extracellular nitrite levels detectable

in the SN (Fig. 6C). Interestingly, more than 50% of the nitrite

seemed to be due to iNOS expression in TRC rather than BM-DC

as assessed using Inos2/2 BM-DC. At present, a contribution by

the two other NOS isoforms to nitrite production can not be

excluded.

Next we analyzed the speed of iNOS induction in pLN2 by

looking at transcript levels. Already 7 h after IFNc stimulation Inos

mRNA was induced 10-fold and further increased after 24 h

indicating direct transcriptional regulation of the Inos promoter

(Fig. 6D). Interestingly, several pro-inflammatory cytokines (IFNa,

TNFa, LTa3) or LPS showed a similarly rapid and strong

induction of Inos transcripts while their maintenance at 24 h

differed. In summary, these results demonstrate that a subset of

both TRC and BM-DC can be triggered to express Inos transcripts

and proteins leading to the release of NO. Various pro-

inflammatory signals can serve as triggers in TRC, including

signals derived from newly primed T cells suggesting the possibility

of a negative feedback loop leading to inhibition of T cell

expansion in our in vitro co-culture assay.

Inos deficiency leads to exaggerated CD8+ T cell
responses in vivo

To characterize the expression of iNOS during immune

response in vivo, mice adoptively transferred with OT-I T cells

were immunized with OVA-expressing vesicular stomatitis virus

(VSV-OVA) and draining LN analyzed. By pressing LN across a

40 mm mesh a soluble fraction containing most hematopoietic cells

was obtained as well as a non-soluble stromal cell fraction,

including TRC and part of the DC [9,10]. Interestingly, one day

after immunization Inos transcripts were induced in both fractions

and dropped back to pre-immunization levels on day 2 and 4 (Fig.

S5A). These levels were always 5–10-fold higher in the fraction

enriched in stromal relative to hematopoietic cells. To identify

more precisely the cell type and frequency of iNOS expressing

cells in the draining LN intracellular iNOS protein expression was

analyzed by flow cytometry along with lineage markers. A subset

of at least 2.6% TRC were identified as major iNOS source

appearing on day 1 and being again undetectable on day 2 and 4

post infection (Fig. 7A). DC showed a weak induction of iNOS

expression on day 1 without reaching statistical significance

relative to day 0. Few macrophages (CD11b+ CD11c2) were also

found to express iNOS protein (data not shown). This result

emphasizes the inducible and transient activation of iNOS both at

the mRNA and protein level, consistent with pro-inflammatory

molecules inducing it. It also strengthens the notion of more than

one cell type expressing iNOS within the T zone of draining LN,

most notably TRC and DC. Our attempts to identify and localize

iNOS protein-expressing cells in situ were not successful (data not

shown), consistent with the low iNOS expression detected by flow

cytometry. As a next step the impact of Inos-deficiency on OVA-

specific T cell expansion and survival was measured in the LN

draining the site of VSV-OVA injection. While on day 4 after

immunization the total CD8+ T cell number was similar in both

mouse strains the percentage and number of OT-I T cells was 2-

fold higher in Inos2/2 relative to WT mice (Fig. 7B). On day 6 and

8 after immunization, the difference in OT-I T cell numbers was

minimal between the two strains presumably due to many effector

cells having left the LN between day 5 and 8. This scenario is

supported by the strong increase in OT-I cells in blood between

day 4 and 6 as well as by the significantly higher frequency of OT-

I cells in blood of Inos2/2 relative to WT mice (Fig. 7C). As a

consequence 2-fold more effector OT-I T cells accumulated within

day 8 spleen in Inos2/2 relative to WT mice (Fig. 7D).

Interestingly, the differentiation into effector cells occurred

efficiently in the absence of iNOS, as based on the analysis of

IFNc expression and in vitro killing activity of effector CD8+ T cells

from LN and spleen (Fig. S5 B,C). To address whether iNOS

expression is critical in hematopoietic or non-hematopoietic cells

bone marrow chimeras were generated. Unfortunately, a cell

trapping defect was observed in inflamed LN if the stromal cell

compartment was Inos-deficient, presumably due to a role of NO

in vasodilation in irradiated mice but not straight Inos2/2 mice

(Fig. S6). Therefore, no conclusions could be drawn from these

experiments. In summary, the in vivo data indicate that acute

inflammation associated with a viral infection leads to the transient

expression of NO by TRC and DC found within the LN T zone,

which slows down and lowers the antigen-specific T cell expansion

but does not seem to impact on the differentiation and migration

of effector T cells.

Discussion

Inflamed LN as well as the TRC network are generally

considered as strongly immune-stimulatory for T cell immunity.

Surprisingly, we obtained several lines of evidence demonstrating

an inhibitory role of TRC in early T cell activation: 1) In vitro TRC

limit the expansion of CD8+ T cells primed by antigen-pulsed BM-

DC or anti-CD3/28 beads at TRC-T cell ratio’s as low as 1:100

with T cell effector function being reduced as well. 2) TRC reduce

the T cell activation potential of antigen-loaded BM-DC. 3) TRC

constitutively express transcripts for Cox-2, the enzyme required

for the synthesis of PGE2 and related factors [37]. Inhibition of

Cox-1/2 markedly reduces this suppressive effect. 4) When

exposed to pro-inflammatory cytokines pLN2 and ex vivo TRC

transiently express iNOS protein leading to NO2
2 synthesis. This

correlates with rapid induction of Inos transcripts in activated

pLN2. Inhibition of iNOS or use of Inos-deficient TRC markedly

reduces the suppression with this effect being enhanced by a Cox-

2-inhibitor. 5) Upon immunization, iNOS protein gets transiently

expressed in TRC and DC within the draining LN. 6) Absence of

iNOS in vivo correlates with an exaggerated primary CD8+ T cell

response, consistent with the previous observation of an exagger-

ated memory T cell response in Inos2/2 mice [38]. Thus, while

TRC may have several ways of enhancing T cell activation, our

assays have only revealed attenuating effects.

Attenuating effects of TRC on T cell immunity have been

reported recently based on the expression of self-antigen in the

context of MHC I as well as PD-L1 expression on TRC leading to

modulation of CD8+ T cell responses [19,20,21]. Here we have

used fibroblasts of the LN T zone to show that they are a source of

soluble immunomodulators such as NO and COX-1/2 dependent

factors strongly inhibiting T cell expansion in response to a foreign

antigen, with no role observed for PD-L1. Another study had

noted iNOS expression in reticular LN fibroblasts upon infection

with Leishmania major parasites, but the precise nature and

localization of these cells have remained unclear. In addition,

NO was in that case shown to be important for the control of the

parasite rather than for adaptive immunity [34]. Together these

data suggest TRC may help control CD8+ T cell responses to both
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self- and foreign-antigens. Whether they also modulate the

deletion of self-reactive T cells still needs to be tested.

Two previous reports have highlighted the capacity of spleen-

derived stromal cells in inhibiting T cell activation. A mix of

adherent stromal cells, possibly including TRC, was shown to

promote development of BM-derived progenitor cells into IL-10+

regulatory DC [25] or the conversion of mature BM-DC into NO+

regulatory DC [24]. We did not observe consistent changes in the

surface phenotype of TRC-conditioned DC, possibly because our

co-cultures were less than 16 h allowing only short-term changes.

In contrast, the previous reports were based on co-cultures of 1–2

weeks allowing developmental changes. While we have not yet

identified the reason for the decreased stimulatory capacity of

TRC-conditioned DC it may be due to the rapid induction of

iNOS in BM-DC.

Our results are reminiscent of observations with MSC known to

modulate many aspects of innate and adaptive immunity,

including T cell proliferation [30,31]. In vitro BM-derived MSC

were shown to block mitogen- and DC-induced T cell prolifer-

ation by many different pathways, including NO and PGE2

production [36,39,40]. In settings of allografts and autoimmune

disease large numbers of injected MSC strongly suppress T cell

responses due to their anti-inflammatory properties, and due to

their efficient homing to inflammatory sites and lymphoid tissues

[30,31,41]. Interestingly, mature mesenchymal cells such as

fibroblasts from various non-lymphoid tissues also dampen T cell

expansion [27,28,29,31] suggesting mesenchymal cells at several

maturation stages share this property. Alternatively, MSC and

fibroblasts may be hard to distinguish [28]. We propose that LN

and spleen TRC have conserved this immunosuppressive property

that they share with MSC and fibroblasts from non-lymphoid

tissues. The extent of inhibition was highly dependent on the

number of TRC being present in the culture (unpublished

observation) which may explain the difference in the extent of

NO-mediated suppression observed in vitro versus in vivo. Our

preliminary results suggest that this inhibitory effect not only

affects CD8+ but also CD4+ T cells. Besides affecting T cell

expansion and possibly apoptosis, TRC presence partially reduced

T cell effector differentiation in vitro but not in vivo. While the

reason for this difference is not known, it may be explained by the

presence of lower NO concentrations or additional factors found in

vivo that positively influence CD8+ T cell differentiation. Given

Figure 7. Lack of iNOS in vivo leads to increased an primary T cell response after viral infection. (A–D) WT or Inos2/2 mice were retro-
orbitally grafted with 100’000 splenocytes from OT-I transgenic mice one day prior to subcutaneous infection with VSV-OVA. Draining pLN, blood or
spleen from infected mice were harvested at the indicated time points after infection and cell suspensions generated by using collagenase digestion
(A) or by mechanical homogenization (B, D). (A) Intracellular iNOS protein expression in TRC (gp38+CD452CD312CD352) or DC
(CD11c+MHCII+CD45+) as analyzed by intracellular flow cytometry. Representative histograms show the percentage (6 standard deviation) of
iNOS expressing TRC (top) and DC (bottom) in WT versus Inos2/2 mice. (B) The graph on the left side shows the total CD8+ T cell numbers, the graph
in the middle the percentage of OT-I T cells among the CD8+ T cells and the graph on the right side the total OT-I number in pLN (pool of 6 draining
LN). No significant difference was observed in total LN cell numbers between immunized WT and Inos2/2 mice (not shown). (C) Shows the
percentage of OT-I T cells among the CD8+ T cells in the blood, (D) shows the total number of OT-I T cells in the spleen. (A–D) n$3, 1 out of 2
independent experiments is shown. * P,0.05, ** P,0.01, *** P,0.001.
doi:10.1371/journal.pone.0027618.g007
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that TRC and non-lymphoid fibroblasts can be grown easily from

many accessible tissues in humans, such as tonsils or skin, they may

represent an interesting source of immunomodulatory cells. A very

recent study using skin fibroblasts has established their potential in

efficiently suppressing the clinical signs of experimental arthritis in

mice [29].

Different mechanisms of suppression have been described for

MSC: they can either directly inhibit T cell activation or reduce

the stimulatory capacity of DC by using several pathways [30,31].

MSC can produce high amounts of NO upon contact with T cells,

which interferes with STAT-5 phosphorylation and therefore IL-2

signaling [42]. MSC-mediated T cell suppression could be

partially neutralized using inhibitors of iNOS or Cox-2, or using

Inos2/2 MSC [36,40] thus showing clear parallels in MSC- and

TRC-mediated T cell mechanisms. In our in vitro experiments we

have obtained evidence for an additive inhibitory effect of NO and

COX-1/2-dependent factors (possibly PGE2), but additional

factor(s) probably remain to be identified to explain the entire

inhibitory effect. Blocking TGFb, PD-L1, IL-10, arginase-1 and

IDO activity did not influence TRC mediated inhibition, however,

additional studies will be necessary to fully rule out their

contribution. Furthermore, we cannot exclude that the other

two NOS isoforms, eNOS and nNOS, are expressed in TRC and

contribute to the TRC mediated inhibition.

The expression and activity of iNOS is tightly controlled at

several levels with the best-characterized positive regulators being

IFNc IFNab, TNFa IL-1 and LPS [35]. Indeed, iNOS

expression in TRC was induced by all of these pro-inflammatory

cytokines confirming and extending previous data using LN

fibroblasts, MEF and MSC [33,34,35,36]. Interestingly, only a

subset of IFNc-stimulated TRC expressed iNOS, even when a

TRC clone was used (data not shown), in line with previous

reports on other fibroblast types [33,34] as well as our

observation on BM-DC reported here. Recent results suggest

that IFNc is not restricted to immune synapses but more widely

accessible throughout the T zone [43] which may explain why

TRC obtain this signal in the absence of cognate interaction with

primed T cells. Several reports showed that IFNc during T cell

priming influences the degree of CD8+ T cell contraction

(reviewed in [44]). While IFNc signaling within T cells may lead

to this outcome [44], our results suggest that IFNc-signalling in

TRC and DC leading to NO production early after infection

might not only control the expansion, but also the contraction

phase of CD8+ T cells, such as by nitrosylating and thereby

altering key proteins of the IL-2 or TCR signaling pathway

[42,45]. More experiments will be necessary to test this

hypothesis and to understand the underlying mechanism.

Strikingly, iNOS induction and NO2
2 production was highest

when TRC, activated DC and IFNc were present together

suggesting only adjacent TRC become licensed to suppress T cell

expansion with this being a highly controlled and transient

process. The DC-derived signals leading to iNOS expression in

TRC remain to be identified. Good candidates are IL-1a/b and

TNFa which may act synergistically with IFNc, similar to iNOS

expression in MSC [36]. NO effects are known to be highly dose-

dependent. Low NO doses can enhance T cell proliferation, as

possibly suggested by the decreased T cell expansion in some of

the BM chimera experiments (Inos2/2 into wt). Higher NO doses

are known to induce cell-cycle arrest and apoptosis of T cells

[35,46] indicating that the reduced expansion seen in presence of

TRC may represent a combined effect of reduced proliferation

and increased apoptosis of T cells. The dual role of NO may also

explain the only two-fold higher expansion of T cells in the

absence of iNOS. Given that NO is a highly reactive gas close

proximity to TRC is likely to be critical in inhibiting T cell and

DC activation. To further improve this process cytokine-

stimulated TRC could actively recruit or retain primed T cells,

as suggested for MSC [36]. Interestingly, TNFa-stimulated TRC

were shown to express the IFNc-inducible chemokine CXCL10

that attracts activated but not naı̈ve T cells [47].

Both in vitro and in vivo, we found not only TRC but also DC to

express iNOS and produce NO. It is possible that the iNOS+ DC

subset identified in vivo represents the inflammatory TipDC

(TNFa+iNOS+CCR2+) which are recruited into the splenic T

zone early during infection with Listeria monocytogenes [48] or other

pathogens [49] as they were also CD11cint in our analysis

(unpublished observation). Interestingly, increased T cell prolifer-

ation was also reported for Ccr22/2 mice lacking TipDC [48]. In

vitro we found iNOS expression in BM-DC to be induced in a

synergistic manner by IFNc and TRC presence, similar to

synergistic effects of IFNc and BM-DC on iNOS expression by

TRC. While the factors involved in the cellular crosstalk remain to

be identified these findings point to the interdependence of these

two cell types in inhibition of T cell expansion, an observation

which needs further in vivo studies with cell-type specific Inos

deletion. Based on our current results we propose the following

working model (Fig. S7): Low levels of iNOS expression are

induced in both immigrating DC and TRC when they meet in the

T zone early during the immune response. This may increase the

threshold required for T cell priming and thereby prevent the

activation of low-affinity T cells that are often self-reactive. Once

the first T cells are primed and produce IFNc they may boost

iNOS expression in both cell types in a transient fashion thereby

inducing a negative feedback loop dampening T cell expansion by

either slowing down their proliferation or diminishing their

survival.

The immunosuppressive feature of mesenchymal cells is

intriguing. It raises the question of why these cells have this

function, especially when considering TRC localize to the T zone

of SLO where inhibitory effects are less expected but well known

from TipDC and regulatory T cells. We would like to propose two

possible reasons: 1) Keeping the LN in a slightly suppressive state

might be a mechanism to limit the activation of potentially auto-

reactive cells while allowing strong immune responses to foreign

antigens to occur. In line with this hypothesis we found Cox2

transcripts to be highly expressed in naı̈ve LN. Others showed that

high iNOS and NO2
2 levels are frequently associated with

autoimmune disease and Th1-mediated inflammation [35,46].

Consistent with a protective role of this pathway in certain

autoimmune diseases, Inos2/2 and Ifng2/2 mice have a higher

incidence, increased severity and less relapses of experimental

autoimmune encephalitis that correlate with increased prolifera-

tion of auto-reactive T cells relative to WT mice [50,51]. Similarly,

in a mouse model for myasthenia gravis Inos2/2 mice develop

more self-reactive T and B cells, including epitope spreading [52].

2) In contrast to recirculating hematopoietic cells fibroblasts

resident in lymphoid and non-lymphoid organs have a function for

the organ itself: ensure its integrity and functionality. During

injury, such as infection or inflammation, fibroblasts perform tissue

repair to reestablish homeostasis. LN swelling during immune

response can be viewed as a threat to the organ as it is

characterized by the dramatic increase in organ size due to the

influx of many naı̈ve lymphocytes as well as the rapid expansion of

antigen-specific lymphocytes. The strong increase in lymphocyte

numbers within the T zone may be harmful for the existing TRC

network that functions as the structural platform for T cell priming

and probably also T cell differentiation. Destruction of the TRC

architecture, such as after LCMV infection, correlates well with
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immunodeficiency [6,32,53]. Limiting T cell expansion early in

the immune response might be necessary to give TRC the time to

adjust step-wise to the new space demands and to start

proliferating thereby increasing the scaffold size accommodating

T cells and DC. Such a process may ensure continuous

functionality of the growing organ which is finally also to the

benefit of efficient effector T cell generation.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the Swiss

act for animal welfare. All mouse experiments, including the

protocols, were authorized by the Swiss Federal Veterinary Office

(Bern, Switzerland) with permits issued to S.A.L. (number 1612.2),

B.J.M. (number 2216) and D.Z. (number 2308). All efforts were

made to minimize suffering.

Mice and immunizations
Mice used were C57BL/6 (B6, CD45.2+); Janvier), B6 OT-I

CD45.1+, Ubiquitin-gfp transgenic and Inos2/2 (Jackson laborato-

ries). For immunization mice were subcutaneously injected at six

sites in the back to target six pLN. 25 mg NP-CGG (Biosearch

Technology) was diluted in Montanide ISA 25 (25% in PBS;

Seppic). Alternatively, 0.336106 pfu VSV-OVA [54] were

injected after retro-orbitally grafting 0.16106 OT-I splenocytes.

Bone marrow (BM)-chimeras: BM from donor-mice was obtained

from femur and tibia by crushing bones with a mortar. 156106

BM cells were injected retro-orbitally into recipient mice

irradiated twice with 450 rad in a 4 h interval. The following 4

weeks mice received the antibiotic ‘Baytril 10%’ (1/1000) in the

drinking water. WT mice used were either CD45.2+ or Cd45.1+

while Inos2/2 mice were CD45.1+. All mice were maintained in

specific pathogen-free conditions.

Flow cytometry
0.1–26106 cells were blocked (2% normal-mouse-serum

(Sigma) or anti-CD16/32 antibody (2.4G2) and then stained with

antibodies (see table S1) on ice. Dead cells were excluded using 7-

AAD (7-Aminoactinomycin-D) or DAPI (4,6-diamidino-2-pheny-

lindole), or Aqua (all from Invitrogen) in case of fixed cells.

Intracellular staining: Cells were fixed with 4% PFA, pemeabilized

using 0.1% saponin (Sigma) and incubated with anti-IFNc
(XMG1.2) (45 min) or anti-iNOS antibody (rabbit antibody;

Millipore) followed by Alexa488-coupled donkey-anti-rabbit IgG

(Molecular Probes) (30 min each). For IFNc staining: cells were re-

stimulated in vitro with 1 mM SIINFEKL peptide in the presence of

Brefeldin-A (10 mg/ml, AppliChem) for 3–4 h at 37uC. Data were

acquired on a FACSCanto or LSR II flow cytometer (both

BectonDickinson) and were analyzed with FlowJo software

(TreeStar).

Ex vivo stromal cell isolation
LN from CO2-killed mice were dissected, their capsule opened

with a 26-gauge needle and the organs digested for 30 min at

37uC in DMEM (Invitrogen) containing collagenase IV (3 mg/ml;

Worthington), DNAse-I (40 mg/ml; Roche), 2.5% FCS and

1.2 mM CaCl2, 10 mM HEPES and 50 IU/ml Penicillin,

50 mg/ml streptomycin. Subsequently, EDTA was added (5 mM

final) and remaining clumps dissolved by pipetting, passed through

a 40-mm mesh and re-suspended in complete RPMI containing

10% FCS. For cell isolation from femoral muscle, kidney and

heart, the respective organs were dissected, cut into small pieces

and digested as described above for 1 h at 37uC. Cell isolation

from ears: Ears were split with forceps and digested in 0.5%

trypsin (Sigma) and 5 mM EDTA for 20 min at 37uC to separate

dermal and epidermal sheets. These were cut into small pieces and

digested for 2 h as described. After digestion stromal cells were

enriched by panning using antibodies against CD45 (M1/9.4.3),

CD31 (GC-51), CD11c (N418) and CD11b (M1/70). Cells were

counted using trypan blue dye and an automated cell counter

(Countess, Invitrogen).

Cell lines and bone-marrow-derived dendritic cells (BM-
DC)

Stromal cells were isolated as described above from various

tissues of naı̈ve B6 or Ubiquitin-gfp B6 mice. After overnight culture

in complete RPMI non-adherent cells were washed away.

Adherent cells were cultured until confluent, then split on new

dishes. Cells were used between passage 5 and 25. Other B6-

derived cell lines used: B16-F10 and MC-38 tumor lines (kindly

provided by A.Donda, Lausanne) [55], spleen and lung fibroblasts

(C.Buckley [26]), MEF (M.Heikenwalder, Munich) and MSC

(P.Nelson, Munich [56]). B6 BM-DC were generated as previously

described [57].

T cell activation assay
Stromal cells: Per 24-well 16104 stromal cells from lines were

seeded in complete RPMI and after overnight culture irradiated

with 1000rad. Initially, experiments with non-irradiated or

irradiated pLN2 were performed with no difference in the

outcome (data not shown). Ex vivo stromal cells were isolated as

described above and non-adherent cells washed away after

overnight culture (density comparable with lines); they were non-

proliferative and therefore not irradiated. BMDC: They were

activated with 0.5 mg/ml LPS (Sigma) for 6 h at 37uC. 2 h after

LPS addition 1 mM SIINFEKL peptide was added. 16104 BM-

DC were added per 24-well. T cells: They were obtained ex vivo

from spleen and pLN dissected from CO2-killed WT B6 and OT-I

transgenic mice and suspended by meshing. Erythrocytes were

removed using red blood cell lysis buffer (Tris-Ammonium

chloride based). CD8 cells were enriched by panning using

antibodies to B220 (RA3-6B2), CD4 (H129.19.6), CD11b (M1/70)

and CD11c (N418). OT-I cells were labeled with 2 mM CFSE

(Invitrogen). Only 50% of WT B6 T cells were CFSE-labeled to

identify the peak of undivided cells, with the 50% unlabeled T cells

showing the background fluorescence of T cells. Per 24-well

0.046106 CFSE+ OT-I cells together with 0.986106 unlabeled B6

WT cells and 0.986106 CFSE+ B6 WT cells were added. The

assay was performed in complete RPMI enriched with 16MEM

(Invitrogen), 3 ng/ml murine IL-7 (Peprotech) and 10 U/ml

human IL-2 (Merck Serono). After 2–4 days, cells were harvested,

counted and analyzed by flow cytometry. Transwell assays used

were 0.4 mm transwell chambers (HTS 24-well, Vitaris). Blocking

experiments used 10 mM indomethacin (Sigma), 1 mM 1400W

( = dihydrochloride; Sigma), 10 mM 1-Methyl-L-tryptophan (1-

MT; Sigma), 200 mM (S)-(2-Boronoethyl)-L-cysteine (BEC, Cal-

biochem), 10 mg/ml anti-PD-L1 (MIH5, eBioscience), 20 mg/ml

anti-IL-10 (kind gift from F.Tacchini, Lausanne, Switzerland) or

30 mg/ml anti-TGFb (clone 1D11.16.8; BioXCell). To better

compare the decrease of T cell proliferation between experiments

the attenuating effect by the stromal cells was defined as percent

inhibition in divided OT-I T cell numbers relative to the ‘no

stroma’ control: {1-(number of proliferated cells)stroma/(number of

proliferated cells)no stroma}*100). The ‘no stroma’ control was

considered as 0% inhibition; absence of proliferating OT-I cells

was considered as 100% inhibition.
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T cell activation by anti-CD3 and anti-28 beads
2500 stromal cells were seeded per 96-well and after overnight

culture irradiated with 1000 rad. 2.56105 T cells mixed with

1.256105 anti-CD3/28 beads (Dynabeads, Invitrogen) were

added. After 2–3 days of co-culture cells were harvested by gentle

pipetting. Live cells were counted and analyzed by flow cytometry.

T cell activation by TRC-conditioned BM-DC
10’000 stromal cells were seeded per 24-well and after overnight

culture 10’000 LPS-activated and SIINFEKL-pulsed BM-DC

were added. After overnight culture BM-DC were separated by

magnetic cell sorting (MACS): Cells were stained with biotinylated

anti-gp38-antibody (clone 8.1.1) followed by streptavidin-coupled

magnetic beads (Miltenyi). Cells were separated using MS-

columns (Miltenyi) according to the manufactures instructions.

Per 96-well 2500 TRC-conditioned-DC were co-cultured with

0.016106 CFSE labeled OT-I cells mixed with 0.486106

unspecific WT T cells for 3 days.

T cell activation and cytokine stimulation of stromal cells
in chamber slides

3000 stromal cells were seeded per well in 8-well chamber slides

(Falcon) and cultured overnight. T cell activation: 0.256106 WT

T cells and 0.1256106 anti-CD3/28 beads were added or 5000

CFSE-labeled OT-I T cells mixed with 0.2456106 WT T cells

together with 5000 LPS-activated and SIINFEKL-pulsed BM-DC.

Cytokine stimulation: IFNc IL-1b, TNFa, LTa3 (all 10 ng/ml,

from Peprotech), 500 U/ml IFNa (PBL, Interferon source) or the

agonistic antibody against LTbR (4H8 WH2; provided by

C.Ware) were added to stromal cells for 7 h or 24 h.

In vitro cytotoxicity assay
Target cells (T): WT splenocytes were labeled with 0.16 mM or

0.5 mM eFluor670 (eBioscience). The eFluro670high population was

pulsed with 1 mM SIINFEKL for 1 h at 37uC. Per 96-well 5000

eFluor670high and 5000 eFluor670low cells were added. Effector cells

(E) were harvested from the T cell activation assay on day 4 or from

spleen or pLN from VSV-infected mice. Cells were mixed in

different E/T ratios and after overnight culture analyzed by flow

cytometry. Alternatively, they were isolated from homogenized

spleen or pLN from VSV-infected mice. Effector cells were added to

target cells in different ratios and incubated overnight. The ratio of

target cells was analyzed by flow cytometry, as were the input

numbers of OT-1 effector T cells allowing the calculation of the

effective E/T ratio. Percentage specific lysis = {12(specific survi-

val)sample/(specific survival)control}*100 with specific survival = e-

Fluor670high/eFluorlow, (control: target cells only).

Nitrite detection
NO2

2 in cell culture supernatants was measured using the

Griess assay. 0.1% N-1-naphtylethylenediamine dihydrochloride

(Sigma) was mixed with p-aminobenzensulfonamide (Sigma) in

5%phosphoric acid; 100 ml of this mixture were incubated with

100 ml cell culture supernatant. After 10 min incubation at RT

absorbance was measured at 550 nm and background absorbance

at 690 nm was subtracted as well as the absorbance of complete

RPMI. In each measurement a NO2
2 -standard series (100-

0.1 mM NaNO2; Sigma) was included.

Immunofluorescence microscopy
Staining and microscopy of cryosections were performed as

previously described [9]. Cells cultured in chamber slides: chambers

were removed according to the manufactures description, staining

and microscopy was performed as done for cryosections (for

antibodies used see table S2). Images were acquired with a Zeiss

Axioplan microscope at RT and treated with ImageJ (http://

rsbweb.nih.gov/ij/) and Photoshop software (Adobe).

Transcript analysis
RNA isolation reverse transcription and quantitative real-time

PCR was performed as described [9]. For additional primers used

see table S3. Efficiency-corrected expression of Inos, Cox2, Ccl19

and Ccl21 was normalized by dividing with the geometric mean of

expression of two housekeeping genes.

Statistical analysis
F-test was performed to determine usage of equal or unequal

variance in the t-test, with P,0.05 considered as unequal variance.

Statistical significance was determined with students t-test.

Supporting Information

Figure S1 Surface phenotype of TRC lines and ex vivo
isolated TRC. Flow cytometric analysis of the surface phenotype

of TRC lines (A) or TRC isolated ex vivo from pLN (B) used in the

T cell activation assay shown in Figure 1. (A) The first row shows

dot plots of CD31 versus CD45 expression and the percentage of

CD452 CD312 cells. (6 standard deviation). Following rows show

histograms with the indicated surface markers on cells pregated on

CD452 CD312 cells. pLN2 and pLN1 are two different TRC

lines derived from pLN-pools derived from distinct mice. pLN2

cells also express CD54 (ICAM-1), CD140b (PDGF-Rb) and

CD105 (Endoglin) (not shown). (B) CD452 CD312 cells were

analyzed in dot plots for CD31 versus gp38 expression (first row).

The following rows show the indicted surface markers on CD452

CD312 CD352 gp38+ cells (lower quadrant on the right in the

gp38 versus CD31 dot plot; displayed as black line). Grey

shadowed curves show the ‘no primary antibody’ control. (A,B)

representative for $3 independent experiments.

(TIF)

Figure S2 Surface phenotype of non-lymphoid cell lines
and ex vivo isolated stromal cells. Flow cytometric analysis

of the surface phenotype of (A) non-lymphoid cell lines or (B) ex vivo

stromal cells isolated from dermis, epidermis and kidney, and used

in the T cell activation assay shown in Figure 3. (A) The first row

shows dot plots of CD31 versus CD45 expression on the cell lines,

the following rows show histograms with the indicted surface

markers on CD452 CD312 cells. (B) CD452 CD352 cells were

analyzed in dot plots for CD31 versus gp38 expression (first row).

The following rows show histograms with the indicated surface

markers on CD452 CD352 CD312 gp38+ cells as black line, and

gp382 CD312 cells as dotted line (includes epithelial cells. Grey

shadowed curves show the ‘no primary antibody‘ control. (A,B)

representative for 2–3 independent experiments.

(TIF)

Figure S3 Suppression of T cell proliferation by TRC is
not mediated by IDO, PD-L1, TGFb, IL-10 or arginase-1.
Flow cytometric analysis of the T cell activation assay (as described

in Fig. 1) in the presence of pharmacological inhibitors of IDO

(10 mM 1-MT), arginase-1 (200 mM BEC) or blocking antibodies

against PD-L1 (10 mg/ml), TGFb (30 mg/ml) or IL-10 (20 mg/ml).

One out of several tested inhibitor concentrations is shown along

with the percentage of inhibition (as in Fig. 1). The dotted line

shows the average inhibition by pLN2 TRC without inhibitor/

blocking antibodies. n$3, representative for 2–3 experiments.

(TIF)
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Figure S4 IFNc induces iNOS expression and NO
production in ex vivo TRC, while stimulation of pLN2
with different cytokines does not induce Cox2, Ccl21 or
Ccl19 transcription. (A) Immunohistological analysis of iNOS

protein expression in ex vivo TRC. TRC-enriched cells from pLN

of WT mice were cultured for 2 days either alone (top row), in the

presence of WT T cells without (second row) or with anti-CD3/28

beds (third row) or in presence of 10 ng/ml recombinant IFNc
(last two rows). For the first four rows the first column shows iNOS

expression (red) and DAPI+ nuclei (blue), while for the last row,

the first column show the ‘no primary antibody control’ (red), the

second column shows gp38+ CD312 TRC and gp38+ CD31+

lymphatic cells. Arrows show examples of gp38+ CD312 TRC

expressing iNOS. Scale bar: 50 mm. (B) Analysis of NO22

concentration in the supernatants from the co-cultures shown in

(A). (C) Quantitative RT-PCR analysis of Cox2, CCl21 and CCl19

mRNA levels in pLN2 stimulated with various cytokines or

agonistic antibody to LTbR (aLTbR) for 7 h or 24 h. The relative

expression levels are shown. Different symbols indicate different

experiments. (A–C) n = 3–4, (A–C) respresentative for 1–2

experiments. * p,0.05,**p,0.0,***p,0.001, p values are relative

to unstimulated pLN2.

(TIF)

Figure S5 Inos expression and CD8+ T cell effector
functions in VSV-OVA infected WT or Inos2/2 mice. WT

or Inos2/2 mice were retro-orbitally grafted with 100’000

splenocytes from OT-I transgenic mice one day prior to

subcutaneous infection with VSV-OVA. (A) Regional pLN from

infected mice were harvested 1, 2 or 4 days after infection and

analyzed for Inos mRNA by by quantitative real time-PCR on

crude fractions of LN. Normalized Inos mRNA levels are shown.

(B, C) Draining pLN and spleen were harvested on day 4 and 6

after infection, homogenized and analyzed for intracellular IFNc
protein expression in OT-I T cells using flow cytometry (B) or for

killing activity (C). (B) Histograms show the percentage of OT-I T

cells (6 standard deviation) expressing IFNc. Bar graphs show the

median fluorescence intensity of the IFNc staining within OT-I T

cells. (C) Cells from day 6 were used in an in vitro killing assay. The

specific lysis of target cells is shown for the respective effector to

target ratios. (A–C) n = 3 (A,B) representative for 2 experiments,

(C) 1 experiment (similiar data were obtained for day 8 LN and

spleen, not shown).

(TIF)

Figure S6 Bone marrow chimeras lacking Inos in the
non-hematopoietic system show a trapping defect in
immunized lymph nodes. To assess the relative contribution

of hematopoietic versus non-hematopoietic cells as iNOS source,

BM chimeras were generated having Inos-deficiency in either the

hematopoietic system (Inos2/2 BM into WT hosts) or non-

hematopoietic system (WT in Inos2/2 and were compared with

control chimeras (WT into WT). 2 months after reconstitution,

BM-chimeras were infected with VSV-OVA (as described in

Figure 7) and 4 days after infection pLN were collected, single cell

suspensions counted and stained before analysis using flow

cytometry. As comparison non-immunized BM-chimeras are

shown. Inos2/2 into Inos2/2 chimeras have not been made.

Surprisingly, none of the chimeras showed an increased OT-I

expansion. Rather, Inos -deficiency in either the hematopoietic or

the non-hematopoietic system led to a strong decreased OT-I

expansion. Surprisingly, lymphocyte trapping did not occur in the

case of Inos -deficiency in the non-hematopoietic compartment, in

contrast to the other two groups and the non-chimeric Inos2/2

mice (Figure 7). Therefore, the expansion of OT-I T cells cannot

be interpreted for that group of mice. The lack of OT-I expansion

in the group of mice having Inos deleted in the hematopoietic

system indicates also a positive role of Inos in T cell proliferation,

presumably in a low but not high concentration, as previously

suggested [46]. In all BM chimeras the chimerism was .85% as

assessed by measuring ratio’s of CD45.2 (WT) versus CD45.1

(Inos2/2 or WT) expression on total LN cells using flow cytometry.

2–4 mice were in each group.

(TIF)

Figure S7 Model showing how inflammatory cytokines
may induce iNOS expression in TRC and create a
negative feedback loop limiting antigen-specific T cell
expansion. During the early phase of immune response antigen-

specific CD8+ T cells interact with antigen-bearing DC within the

context of the TRC network within the T zone of the draining LN.

Upon prolonged cognate interaction T cells start to produce IFNc
and possibly other cytokines that induce strong but transient iNOS

expression in neighboring TRC as well as DC. The local production

of NO creates a negative feedback loop in which NO and possibly

other inhibitory factors limit the expansion of neighboring antigen-

specific T cells. This effect is due in part to direct inhibition of T cell

proliferation or survival, in part to a decrease in the stimulatory

capacity of DC. NO is known to lead to nitrosylation of cysteine-

and tyrosine-containing proteins thereby altering their function,

including in T cells where reduced T cell proliferation was reported

in presence of NO [35]. High NO concentrations may also reduce

T cell survival. An alternative model is that in vivo innate immune

cells, such as NK cells, become activated early during the response

and release IFNc that induces iNOS in TRC and DC. Together,

these processes may prevent overshooting antigen-specific T cell

expansion while affecting much less T cell differentiation. This

selective negative regulation of T cell numbers by TRC and DC

may allow gradual organ and stromal cell growth thereby achieving

a compromise between preservation of functional organ structure

and fast effector T cell differentiation. It is reminiscent of the role of

TRC in controlling naı̈ve T cell numbers [9,13]. The early and

transient induction of iNOS may have also an impact on later

aspects of the immune response, such as the contraction phase and

memory T cell generation, as they are thought to be controlled by

the conditions encountered during the T cell priming phase [1,44].

(TIF)

Table S1 Staining reagents used for flow cytometry.
(DOCX)

Table S2 Staining reagents used for immunofluores-
cence microscopy.
(DOCX)

Table S3 Primer sequences for quantitative PCR anal-
ysis.
(DOCX)
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