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Abstract
Osteoporosis is a systemic metabolic bone disease characterized by the descending bone mass and destruction of bone 
microstructure, which tends to result in the increased bone fragility and associated fractures, as well as high disability rate 
and mortality. The relation between gut microbiota and bone metabolism has gradually become a research hotspot, and it has 
been verified that gut microbiota is closely associated with reduction of bone mass and incidence of osteoporosis recently. 
As a novel “organ transplantation” technique, fecal microbiota transplantation (FMT) mainly refers to the transplantation of 
gut microbiota from healthy donors to recipients with gut microbiota imbalance, so that the gut microbiota in recipients can 
be reshaped and play a normal function, and further prevent or treat the diseases related to gut microbiota disorder. Herein, 
based on the gut–bone axis and proven regulatory effects of gut microbiota on osteoporosis, this review expounds relevant 
basic researches and clinical practice of FMT on osteoporosis, thus demonstrating the potentials of FMT as a therapeutic 
option for osteoporosis and further providing certain reference for the future researches.
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Introduction

Osteoporosis is a systemic metabolic bone disease character-
ized by the descending bone mass and destruction of bone 
microstructure, which tends to result in the increased bone 
fragility and fractures [1, 2]. Therein, the brittle fractures 
caused by osteoporosis mainly occur in stress concentration 
parts, including the vertebral bodies, hip and distal radius, 
which significantly enhances the disability rate and the 
mortality of the middle-aged and elderly individuals [3–5]. 
Moreover, in accordance with previous studies, more than 
150 million individuals worldwide suffer from osteoporosis 
every year, and one-third of women and one-fifth of men 
around the world might suffer from osteoporotic fractures 
at least once during their whole life [6, 7], which is a major 
challenge for the patients themselves, their families and 
social medical security system [8, 9].

Currently, the prevention and treatment of the osteopo-
rosis mainly depend on the interventions of various kinds 
of drugs and the adjustment of lifestyles of middle-aged 
and elderly people [10]. The drugs for osteoporosis mainly 
include bisphosphonates, selective estrogen receptor modu-
lators, hormone replacement agents, calcitonin, and so on, 
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which have already obtained the effective clinical efficacy 
and safety [11]. However, the potential complications and 
corresponding side effects of partial drugs are need to be 
concerned. For example, the bisphosphonates may result 
in the severe bone, joint or muscle discomfort in partial 
patients [12]. Long-term use of alendronate is associated 
with the occurrence of femoral intertrochanteric fracture and 
femoral shaft fracture [13]. As a kind of selective estrogen 
receptor modulator, raloxifene may enhance risk of venous 
thromboembolism and stroke [14]. In hormone replacement 
therapy, estrogen might increase the risk of endometrial 
hyperplasia and cancers in the elderly women, and enhances 
the incidence rates of gallstone disease and venous throm-
boembolism by two to three times [15]. Hence, the existing 
side effects of drugs limit its long-term use in the osteopo-
rosis, and it is urgent to explore alternative approaches with 
fewer side effects to help get out of this dilemma.

Regarding this, numerous studies in recent years have 
revealed that there is a close relationship between the gut 
microbiota and bone metabolism [16, 17]. As the largest 
microbial repository in human body, the dynamic balance 
of intestinal micro-ecosystem is closely associated with 
the health of body. Meanwhile, the changes in internal and 
external environment of body can also disrupt the balance 
between the gut microbiota and body, triggering kinds 
of inflammatory and metabolic diseases, such as obesity, 
inflammatory bowel disease, diabetes, rheumatoid arthritis, 
osteoporosis, and so on [18–22]. Moreover, in previous criti-
cal reviews, based on concept of “brain-gut-bone” axis, we 
have also summarized the modulatory effect and implication 
of the gut microbiota to osteoporosis [23], and regulative 
effect and repercussion of probiotics and prebiotics on osteo-
porosis [24]. Hence, in view of the close association between 
the gut microbiota and bone metabolism, it is suggested that 
gut microbiota may be regarded as a potential target for pre-
venting and treating the osteoporosis to a certain extent.

In addition, the current interventional strategies for gut 
microbiota in clinical and scientific research stages mainly 
include the antibiotic application, dietary adjustment, sup-
plementation of probiotics and prebiotics, fecal microbiota 
transplantation (FMT), and so on [25–28]. Therein, the 
FMT, as a novel “organ transplantation” technique, has 
gradually attracted the close attention of researchers. Spe-
cifically, the core meaning of FMT is to extract the beneficial 
microbiota from the feces of healthy people or animals after 
the screening, centrifugation, filtration and other steps, and 
transplant it into the gastrointestinal tract of corresponding 
recipients, so that the microbiota in the recipients can be 
reshaped and play a normal function, and further prevent 
or treat the diseases related to gut microbiota disorder [29]. 
Meanwhile, FMT can also reshape the intestinal micro-
ecology of recipients, improve the inflammatory, immune 
and metabolic status of the recipient's intestine, and provide 

a new treatment concept and approach for various intestinal 
and non-intestinal diseases [30]. In a single FMT, the time 
for the receptors’ microbiota to maintain the normalization 
is generally 3–6 months [31]. Since each human body has 
its own internal environment, the healthy microbiota system 
can be successfully colonized soon after FMT. However, due 
to the effects of its own internal environment and external 
interventions, partial bacterial components might slowly 
disappear after 3 to 6 months, and need to be transplanted 
again [32, 33].

To date, FMT has been gradually verified to be effective 
for a variety of intestinal diseases, such as irritable bowel 
syndrome (IBD), Clostridium difficile infection, colon can-
cer, and so on [23, 34, 35]. FMT has exhibited a cure rate of 
more than 90% in clinical trials for the treatment of recurrent 
Clostridium difficile infection and accompanied with less 
side effects. More importantly, FMT is regarded as poten-
tial life-saving “last chance” for the treatment of recurrent 
Clostridium difficile infection, which has been written into 
the diagnosis and treatment guidelines [23, 34]. The devel-
opment history and significant time nodes of FMT since 
the modern times are exhibited in Fig. 1 [36–44]. Moreo-
ver, FMT has been widely explored to many metabolic and 
immune diseases, such as the obesity, diabetes, fatty liver, 
arthritis, psoriasis and osteoporosis [45–49]. Herein, com-
bined with relevant studies and based on the relevant basic 
studies and clinical practice, this current review is aimed to 
discuss the potential mechanisms, application, therapeutic 
feasibility, and existing challenges of FMT on osteoporosis 
and propose the corresponding prospect, thus demonstrat-
ing the potentials of FMT as a therapeutic option for the 
osteoporosis and further provide certain reference for future 
researches.

The relationship between gut microbiota 
and osteoporosis

Gut microbiota is a collection of the microorganisms colo-
nized in the host intestine, including about 10 trillion bacte-
ria, and its total gene number is 150 times that of host cells. 
The gut microbiota is mainly composed of dominant bacte-
ria (obligate anaerobic bacteria) and the secondary bacteria 
(aerobic bacteria or facultative anaerobic bacteria), includ-
ing beneficial bacteria, harmful bacteria and neutral bacteria 
[50–52]. Currently, the relationship between gut microbiota 
and bone metabolism has gradually become a research hot-
spot, especially in recent years, it has been verified that gut 
microbiota is closely associated with the reduction of bone 
mass and incidence of osteoporosis [53–55]. Gut microbiota 
might alter the relative activity of the osteoclasts and osteo-
blasts by affecting its intestinal metabolites, host metabo-
lism, inflammatory and immune system, thus influencing 
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the bone metabolism. Moreover, in a previous review, based 
on concept of “brain–gut–bone” axis, we have summarized 
the effects of gut microbiota on osteoporosis through the 
brain–gut bidirectional regulation, immune regulation and 
endocrine regulation [23].

Regarding this, in terms of animal studies, Tu et al. [56] 
revealed that by mimicking postmenopausal osteoporosis, 
estrogen deficiency may cause the various host changes, 
such as the impaired intestinal mucosal barrier function, 
imbalance of gut microbiota composition and abundance, 
and enhanced immune response. During this process, the 
metabolites of intestinal pathogenic bacteria are able to 
enter into the body circulation through the damaged intes-
tinal mucosal barrier, further induce the immune response 
mediated by CD4 + T cells, generate various kinds of pro-
osteoclastogenic cytokines (such as interleukin-1β (IL-1β), 
IL-6, tumor necrosis factor-α (TNF-α)), and ultimately 
mediate the activation of osteoclasts and enhancement of 
bone resorption [57, 58]. Yan et al. [59] verified that the 
beneficial bacteria can ferment the dietary fiber in food to 
produce short-chain fatty acids (SCFAs), and SCFAs can 
decrease the local pH value of intestine and reduce the for-
mation of complexes between calcium ions and phospho-
rus in intestine, thus promoting the calcium absorption and 
regulating the bone metabolism. Sjögren et al. [60] indicated 
that the expression of TNF-α and IL-6 in the germ-free (GF) 
mice was reduced, the number of CD4 + T cells was less 
than that of normal mice, and the number of osteoclasts 
in the bones was reduced and the bone quality was better 

than that of the normal mice, suggesting that gut microbiota 
may be involved in the osteoclastogenesis by regulating the 
immune system and local inflammatory responses. Huo et al. 
[61] also suggested that the GF mice were able to exhibit 
the strong activity of hypothalamic pituitary adrenal (HPA) 
axis under mild stress, and the function of HPA axis could 
return to normal after supplementing an appropriate num-
ber of probiotics and prebiotics. Meanwhile, gut microbiota 
could also directly or indirectly regulate a variety of hor-
mones or chemicals (such as 5-hydroxytryptamine (5-HT), 
epinephrine (E), vasoactive intestinal polypeptide (VIP), 
γ-aminobutyrate (GABA), norepinephrine (NE), and so on), 
and these substances will influence distal organs and body 
functions after being released into blood, thus speculating 
that gut microbiota may regulate bone metabolism through 
neuroendocrine metabolic pathways [62, 63].

In terms of the clinical researches, Fuhrman et al. [64] 
conducted a study on 60 randomly selected healthy post-
menopausal women, and results indicated that the fecal 
microbial diversity and relative abundance of Clostridium 
and Bacillus were positively correlated with urinary estrogen 
metabolites, and the diversity of gut microbiota increased 
with proportion of hydroxylated estrogen metabolites in the 
urine. Several studies have indicated that prebiotics, such 
as inulin, Fructooligosaccharides and Galactooligosac-
charides, can contribute to the increase of the number of 
probiotics (Bifidobacteria, Lactobacillus and Clostridium 
butyricum), promote the secretion of SCFAs, reduce the 
intestinal PH value, improve the solubility of calcium in 

Fig. 1  The development history and significant time nodes of FMT since modern times
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intestinal cavity, increase the calcium absorption by body, 
and ultimately enhance the contents and density of bone 
minerals in individuals [65, 66]. Moreover, Abrams et al. 
[67] revealed in a population-based study that supplement-
ing Fructooligosaccharides for a duration of 9 days to 1 year 
could enhance the intestinal calcium absorption, and the 
continued supplementation of it for more than 1 year might 
enable to prevent bone loss. Similarly, van den Heuvel et al. 
[68] revealed in a previous study that supplementation of 
Transgalactooligosaccharides could increase the intesti-
nal calcium absorption in postmenopausal women, so as to 
further enhance the bone mass. In a double-blind, placebo-
controlled, randomized, and multi-center study, Jones et al. 
[69] revealed that supplementing Lactobacillus reuteri was 
associated with enhancement of the contents of serum 25 
hydroxyvitamin D in the body, thereby increasing the syn-
thesis of vitamin D and further preventing osteoporosis.

Collectively, more and more studies have gradually 
verified that gut microbiota can regulate the metabolism, 
immunity and inflammation of the body. However, with the 
enhancement of age, alteration of lifestyle, and alteration 
of physiological and immune characteristics, the intestinal 
mucosal barrier damage induced by aging and estrogen 
deficiency may lead to a surge of inflammatory reaction in 
the intestine and circulation, which could further contrib-
ute to the ecological imbalance of gut microbiota. On the 
contrary, the imbalance of gut microbiota may also increase 
the intestinal permeability, thereby enhancing the leakage 
of gut microbiota and its metabolites, and such positive 
feedback process might enhance with aging. Meanwhile, it 
can also act as a significant regulator of bone metabolism, 
affect the generation of osteoclasts, and play a critical role 
in regulation of bone. The emerging studies on the regula-
tion of bone metabolism by probiotics and prebiotics have 
also suggested that the increase of beneficial bacteria can 
promote the enhancement of bone mass and reverse the bone 
loss, which can be regarded as a target for the prevention 
and treatment of osteoporosis. However, the researches on 
the relationship between gut microbiota and osteoporosis 
are still in the initial stage, and more studies are needed to 
further clarify its deep-level mechanisms in future.

The potential regulation of FMT on bone 
metabolism

On the one hand, bone remodeling is a dynamic and bal-
anced process, which is mainly composed of the osteoblast-
mediated bone formation and the osteoclast-mediated bone 
resorption [70]. On the other hand, the underlying mecha-
nisms of FMT mainly lie in reconstruction of normal intes-
tinal micro-ecology, which participates in the regulation 
of bone metabolism by correcting gut microbiota disorder, 

reversing intestinal metabolites (SCFAs, indole derivatives, 
vitamins, cholic acids, polyamines) imbalance, repairing the 
intestinal mucosal barrier, regulating the immune response, 
and improving the intestinal permeability. Meanwhile, dif-
ferent from the application of probiotics, prebiotics and 
other single microbial targets, FMT maintains the integrity 
of whole gut microbiota and metabolites during the over-
all process, which could retain the original function of gut 
microbiota to the greatest extent, significantly improve gut 
microbiota-related disorder, and restore the homeostasis of 
intestinal microenvironment more quickly and efficiently. 
Moreover, given that the diseases-induced physiologi-
cal disorders may alter the composition and abundance of 
gut microbiota, and conversely, gut microbiota disorder 
can also trigger or exacerbate diseases. Hence, the experi-
ment of transferring host phenotype by the means of FMT 
is essential in researches of disease pathogenesis. Herein, 
the potential regulatory mechanisms involving the FMT on 
bone metabolism are represented as follows, and the Fig. 2 
exhibits the potential mechanism diagrams.

The involvement of intestinal metabolites

Accumulating research evidence indicates that a vari-
ety of intestinal metabolites, including SCFAs, vitamins, 
5-HT, cholic acids, polyamines and indole derivatives, are 
involved in the regulation of bone metabolism. Therein, 
SCFAs are mainly produced by the bacterial fermentation 
of amino acids or indigestible carbohydrates in the colon, 
and its specific components include acetic acid, propionic 
acid, butyric acid, and so on, which is one of the most vital 
metabolites of intestinal beneficial bacteria in the process 
of FMT [71–73]. Furthermore, after performing FMT, the 
SCFAs may influence the process of bone metabolism via 
various mechanisms, including inhibiting inflammatory 
response, improving intestinal calcium absorption, promot-
ing osteoblast differentiation via regulatory T cells (Tregs), 
directly inhibiting osteoclast differentiation, and so on [20, 
74–76]. Yan et al. [59] also highlighted in a previous study 
that SCFAs indirectly participate in the protection of bone 
mass by affecting the level of serum insulin-like growth fac-
tor-1 (IGF-1). Hence, it is recognized that the implemen-
tation of FMT may enhance the contents of SCFAs, so as 
to further participate in the regulation of bone metabolism 
through various different mechanisms, maintain the balance 
between bone formation and bone resorption, and effectively 
obtain the purposes of protecting bone mass and preventing 
osteoporosis.

Next, in addition to the SCFAs, other intestinal metabo-
lites produced after FMT may also be involved in the regula-
tion of bone metabolism. For example, 5-HT is able to be 
produced by the culture of Corynebacterium, Streptococ-
cus, and Escherichia coli [77–79]. As a neurotransmitter 
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produced by intestinal chromaffin cells, more than 90% of 
5-HT is synthesized by the intestine, and it can be targeted 
by osteoblasts and participates in regulation of osteoblast 
proliferation via the signal pathways, such as Htr1b, Htr2a, 
Htr2b, and so on [80]. The vitamins (including vitamin C, 
vitamin D, vitamin K) are also significant for maintaining 
the balance between bone formation and bone resorption 
[81, 82]. As a common intestinal mucosal growth factor, 
polyamine is also accompanied with the process of FMT and 
verified to be conducive to protecting bone mass [83]. Thus, 
it is recognized that the FMT might regard the intestinal 
metabolites as one of the bridges to play a role in balancing 
bone formation and bone resorption, so as to further protect 
the bone mass and prevent osteoporosis.

The involvement of intestinal mucosal barrier

Intestinal mucosal barrier is a physical barrier and the first 
line of defense against intestinal pathogens. It can not only 
selectively absorb the water and nutrients, but also restrict 
the invasion of exogenous harmful antigens into the host 
[84]. Meanwhile, the intestinal mucosal barrier is also an 
interface between the host and gut microbiota, which is 
a significant link in the occurrence and development of 

osteoporosis mediated by gut microbiota [85, 86]. With 
regard to this, Schepper et  al. [87] suggested that the 
intervention of antibiotics on normal mice may cause gut 
microbiota disorder, damaged intestinal mucosal barrier 
and enhancement of intestinal permeability, which further 
caused the bone loss and induced osteoporosis. Chen et al. 
[88] also indicated that the supplementation of lactulose 
could reverse ovariectomy (OVX)-induced bone loss in mice 
by improving intestinal mucosal barrier function, reducing 
inflammatory response, and optimizing composition and 
abundance of gut microbiota and SCFAs. Li et al. [89] also 
revealed that puerarin modulated the gut microbiota disorder 
to elicit the anti-osteoporosis effects in OVX-induced rats 
through improving bone microenvironment through repair-
ing the intestinal mucosal integrity and regulating the SCFAs 
levels. Li et al. [90] demonstrated that tuna bone powder 
could ameliorate the glucocorticoid-induced osteoporosis in 
mice by blocking pro-inflammatory cytokines, coregulating 
signaling pathways, repairing intestinal mucosal barrier and 
modulating gut microbiota. Wang et al. [91] indicated that 
the supplementation of Prevotella histicola could prevent 
OVX-induced bone loss in mice through improving intesti-
nal mucosal barrier function, reducing intestinal inflamma-
tory response, and optimizing composition and abundance 

Fig. 2  The potential mechanism diagrams of regulatory mechanisms 
involving FMT on bone metabolism. Based on the gut–bone axis, 
the underlying mechanisms of FMT mainly lie in reconstruction of 
normal intestinal micro-ecology, which could participate in the regu-
lation of bone metabolism by repairing intestinal mucosal barrier, 

regulating immune response, improving intestinal permeability, cor-
recting gut microbiota disorder, and reversing intestinal metabolites 
imbalance. FMT fecal microbiota transplantation, OB osteoblast, OC 
osteoclast
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of gut microbiota. More importantly, Ma et al. [46] also 
reported that using young healthy rats as donors and provid-
ing the feces as materials to conduct the FMT might allevi-
ate the senile osteoporosis in the aged rats through enhanc-
ing the composition and abundance of gut microbiota and 
improving intestinal mucosal barrier function. Wang et al. 
[92] suggested that the dysbiosis of gut microbiota by trans-
ferring the feces from senile osteoporotic rats to young rats 
can induce osteoporosis, and the changed gut microbiota 
and impaired intestinal mucosal barrier contributed to the 
pathogenesis of osteoporosis. Zhang et al. [93] also showed 
that FMT plays an active role in remodeling the gut micro-
biota and improving the bone loss in OVX-induced mice 
with osteoporosis. Specifically, by correcting imbalance of 
gut microbiota, improving the level of SCFAs, optimizing 
intestinal permeability and inhibiting release of pro-inflam-
matory cytokines, FMT inhibited the excessive generation 
of osteoclasts and obtained the balance between bone forma-
tion and bone absorption, thus ameliorating the bone loss in 
OVX-induced mice with osteoporosis. Notably, these studies 
provide the direct and strong evidence that FMT is able to 
improve the bone mass and prevent the osteoporosis.

The involvement of immune regulation

A variety of immune factors and immune cells in the intes-
tine can participate in the regulation of bone metabolism by 
maintaining the balance between the osteoblasts and osteo-
clasts [94]. Meanwhile, the gut microbiota also affects the 
production of cytokines and differentiation of lymphocytes 
in the lamina propria of intestinal mucosa, especially the 
differentiation of CD4 + T cells to T helper cells 17 (Th17 
cells) and Treg cells [95]. In a previous study, Atarashi 
et al. [96] showed that the transplantation of Clostridium 
IV and XIVa isolated from the normal mice into GF mice 
could enhance the number of systemic and lamina propria 
Treg cells in vivo. Moreover, SCFAs were also involved in 
inducing the differentiation of Treg cells, and Treg cells can 
further influence osteoclastogenesis by secreting the IL-4, 
IL-10 and transforming growth factor-β (TGF-β). Moreover, 
the estrogen could also activate the Treg cells and enhance 
the production of TGF-β, or indirectly inhibit the forma-
tion of osteoclasts and prevent postmenopausal osteoporosis 
by inhibiting the differentiation of Th17 cells and decreas-
ing production of TNF-α and receptor activator of nuclear 
factor-κ B ligand (RANKL) through the estrogen receptor 
[97]. In addition, Goto et al. [98] revealed that the trans-
plantation of segmental filamentous bacteria (SFB) into 
GF mice increased the number of Th17 cells, resulting in 
enhanced levels of IL-1β, IL-17 and TNF-α, inducing the 
expression of RANKL, and thereby promoting the formation 
of osteoclasts and inducing the bone resorption. As a kind of 
intestinal colonization bacterium, SFB could also induce the 

serum amyloid A protein (SAA) in the terminal ileum, which 
can further promote the differentiation of Th17 cells [99].

The involvement of endocrine regulation

As a virtual endocrine organ, the gut microbiota can directly 
produce or regulate a variety of hormonal chemicals, which 
are released into blood to regulate the functions of distant 
organs and systems [100]. A variety of hormones produced 
by gut microbiota are also the neurotransmitters of the cen-
tral nervous system (CNS). For example, the GABA pro-
duced by Lactobacillus is one of the most significant inhibi-
tory transmitters in the brain, while the monoamines (such 
as NE and dopamine) produced by the Bacillus phlei are 
excitatory transmitters, which play an indirect role in com-
plex endocrine network, especially on HPA axis, resulting 
in close relationship between the secretion of estrogen, glu-
cocorticoid and gut microbiota [101, 102]. In a FMT experi-
ment, Schepper et al. [103] transplanted the gut microbiota 
of the glucocorticoid-induced osteoporosis mice to the mice 
treated with antibiotics for one week, and then observed that 
the bone mass of recipient mice decreased, indicating that 
effects of glucocorticoid on bone mass can be transferred via 
FMT. Thus, the potential therapeutic feasibility and effects 
of FMT on osteoporosis and its corresponding mechanisms 
have broad research prospects and application space. In 
future, more and more in-depth explorations are still needed 
in terms of the basic researches and clinical trials.

The current operative approaches 
and security of FMT

The normal gut microbiota tends to be in a harmonious and 
stable state. However, when the number of certain bacteria 
increases, decreases or lacks, the body will exhibit corre-
sponding pathological state [104]. FMT is usually applied 
to relieve or treat the gut microbiota imbalance-related dis-
eases, mainly by centrifuging and purifying feces collected 
from the healthy patients to obtain the functional bacteria, 
and then transferred to recipient's intestinal tract via upper 
gastrointestinal pathway, middle gastrointestinal pathway 
and lower gastrointestinal pathway, thus reconstructing the 
stable intestinal micro-ecological environment, relieving 
the relevant symptoms and treating the diseases [105–107]. 
With regard to this, whether FMT can obtain the expected 
efficacy depends on several aspects, mainly including the 
extraction method and obtained components of fecal bacte-
ria, the filtration steps and preservation methods of bacterial 
liquids, the dose, frequency and location of fecal bacteria 
infusion, the operative approaches, and so on [108, 109]. 
Therein, the aspect of operative approaches of FMT plays 
a significant role in the efficacy of FMT [110]. Herein, the 
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current operative approaches and the security of FMT are 
shown as follow, and Fig. 3 exhibits the corresponding illus-
tration. Moreover, the main mode of operation, advantages 
and drawbacks of each operative approach are also sum-
marized in Table 1.

Upper gastrointestinal pathway

Among the routes of the upper gastrointestinal pathway, 
the oral administration and nasogastric tubes are widely 
used, which are easy to be performed and have relatively 
low overall risk. However, during this process, the asphyxia 
may be caused by bacterial fluid reflux or suction, and if 
the body itself has obstruction, the transplanted bacterial 
fluid may not reach the intestinal tract accurately. Therein, 
the oral approaches mainly refer to encapsulated fecal bac-
teria materials, which is prepared by mixing the extracted 
fecal bacteria with a cryoprotectant (mainly glycerol), fol-
lowed by multiple packaging to protect the FMT materials 
from gastrointestinal environment [111, 112]. Meanwhile, 
the operators could further select the material of capsule 
shell according to the expected release position. Currently, 
the commercially available capsule shells are often targeted 
at the release of stomach or colon, and are formulated to 
ensure the survival rate and the colonization of bacteria 
along with the gastrointestinal tract [113]. Collectively, the 
FMT through the upper gastrointestinal pathway has the 

advantages of no need for expensive instruments, less dam-
age to patients after repeated use, and is well tolerated by 
patients. This pathway is suitable for the patients who are 
not able to tolerate the use of naso-intestinal tube and gas-
troscopic transplantation, and the patients who require the 
oral customized bacteria. Moreover, during the process of 
making capsules, fungi, parasites, viruses and partial inflam-
matory mediators that may exist in asymptomatic donors can 
also be removed to reduce potential probability of diseases 
transmission [114, 115].

Middle gastrointestinal pathway

Middle gastrointestinal pathway mainly refers to the opera-
tions of naso-intestinal transplantation and trans-endoscopic 
enteral tubing (TET), and TET is able to realize the whole 
intestinal administration [116]. Therein, the naso-intestinal 
tubes are stretched and straightened through the guide wire, 
which can pass through the pylorus automatically under 
the condition of normal gastrointestinal motility and fur-
ther reduce the bacterial translocation when used for FMT. 
With regard to this, in a randomized controlled trial, van 
Nood et al. [117] reported that the FMT through the naso-
intestinal tubes was superior to the use of vancomycin alone 
in the treatment of Clostridium difficile infection, while the 
patients in FMT group also experienced the adverse events, 
such as diarrhea, cramp and constipation. Moreover, TET 

Fig. 3  The preparation process and current main operative approaches of FMT
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specifically refers to the endoscopic-assisted implantation 
of a fixed tube and the fixation in the deep part of intestinal 
tract, while the external end communicates with the outside 
along the intestinal tract. TET mainly includes the types of 
colonic pathway-mediated TET and mid-gastrointestinal 
pathway-mediated TET. Colonic pathway-mediated TET 
requires the application of colonoscopy, and it is expen-
sive to use this route for repeated FMT. In contrast, mid-
gastrointestinal pathway-mediated TET is more convenient 
and easier to maintain [118]. Since mid-gastrointestinal 
pathway-mediated TET does not require further confirma-
tion of intestinal position by X-rays or other medical instru-
ments after endoscopic surgery, for the patients who are 
not able to undergo bowel preparation for colonoscopy, or 
who require both the repeated FMT and enteral nutrition, 
the mid-gastrointestinal pathway-mediated TET is also the 
primary option [119].

Lower gastrointestinal pathway

Lower gastrointestinal pathway mainly refers to operations 
of enema, colonoscopy, and colonic pathway-mediated TET. 
Therein, the enema is a less invasive and relatively sim-
ple operation. Enema is well tolerated by patients and does 
not require the expensive instruments, which effectively 
decreases the risk of operation. However, this approach 
requires the retention of infused fecal suspension for a rela-
tively long time, the patient remains supine to reduce the 
fecal excretion, while the repeated enemas are easy to be 
accepted by patients [120]. In addition, the proposition that 
whether the bacteria of FMT can be retained in intestinal 
segment by enema is still unclear, and this approach is also 
accompanied with the risk of not reaching the colon and 
splenic flexure, which requires multiple perfusions to obtain 
the curative effect and longer operation time to make up for 
the defect of the low gut microbiota retention rate. Mean-
while, due to the retention of bacterial fluid, this approach 
may not be suitable for the patients with anal sphincter relax-
ation or urinary incontinence [121]. Moreover, in terms of 
the colonoscopy and colonic pathway-mediated TET, it is 
equipped with a variety of advantages, mainly including: 
(1) It is able to completely display the situation of colon 
and biopsy suspicious tissues, which is conducive for the 
diseases identification and staging; (2) It allows operators 
to directly assess the intestinal inflammation and infuse a 
sufficient amount of donor fecal bacteria at appropriate sites; 
(3) Gut microbiota can be accurately transplanted into the 
influenced intestinal segment, and bacteria can further be 
retained in targeted intestinal segment; (4) Sufficient amount 
of donor fecal bacteria could be accurately infused, which 
can improve the treatment efficiency to a certain extent. 
However, these operations are also accompanied by partial 
adverse events, including aggravating intestinal reactions, 

causing intestinal perforation, and patients with severe con-
ditions may not able to tolerate colonoscopy transplantation 
or relevant anesthesia procedures [122, 123].

The clinical application prospect 
and existing challenges of FMT 
on osteoporosis

To date, more and more patients around the world have ben-
efited from FMT, and the medical community of numerous 
countries is also actively working to promote the wider clini-
cal application of FMT [124]. Based on the proven regula-
tory effects of gut microbiota on the osteoporosis, the gut 
microbiota disorder might enhance the risk of occurrence 
and progression of osteoporosis, and further normalizing the 
composition and abundance of gut microbiota could recon-
struct the gut–bone axis and maintain the balance between 
bone formation and bone resorption, so as to prevent and 
treat the osteoporosis. Hence, FMT is regarded as a novel 
approach of reconstructing the gut microbiota and a novel 
target for the prevention and treatment of osteoporosis at the 
present and future stages.

In addition, although FMT has become increasingly 
mature as a treatment method for the common gastrointesti-
nal and metabolic diseases, there are still certain problems 
to be solved in the clinical prevention and treatment of 
osteoporosis. For one thing, the discomfort associated with 
current FMT approaches through traditional methods, such 
as nasogastric tube and naso-intestinal tube, may reduce 
the compliance of patients, as well as concomitant adverse 
events. In addition to this, the administration frequency of 
FMT is also inconclusive, mainly including single admin-
istration, and intermittent or continuous administration. 
The repeated FMT can improve the success rate of treat-
ment to a certain extent, and the success of FMT may also 
depend on amount of suspension of transplanted [125, 126]. 
For another thing, the choice of FMT approaches might be 
influenced by the clinical experience of specific operators. 
Currently, the most suitable FMT approach has not been 
verified in clinical practice [127]. With regard to this, Par-
amsothy et al. [128] collected and sorted out the knowledge 
and experience of 52 gastroenterologists on the FMT in past. 
Therein, 37% of them regarded that the most appropriate 
FMT approach was colonoscopy-assisted FMT, 17% thought 
it was naso-intestinal route, 13% thought it was enema, and 
8% thought it was oral capsules. Hence, it is concluded 
that each FMT approach has its advantages and drawbacks, 
and the specific FMT approach should be comprehensively 
selected in accordance with the type of diseases, position 
to obtain the effects, professional judgment of operators, 
and psychological acceptance of the patients. Addition-
ally, the utilization of human-derived gut microbiota and 
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complications associated with severe infection are indeed 
a safety issue worthy of attention. Especially in the era of 
multi-infectious disease pandemics represented by the cor-
onavirus disease 2019 (COVID-19), this issue is particu-
larly noteworthy [129–131]. Several studies have showed 
that during the process of COVID-19 infection, the expres-
sion of intestinal angiotensin-converting enzyme 2 (ACE2) 
is down-regulated, resulting in the decreased secretion of 
antimicrobial peptides (AMPs) and improved survival of 
pathogens [132, 133]. With the global spread of COVID-
19 pandemic, it is urgent to take preventive measures to 
screen FMT donors for COVID-19 to prevent the potential 
risk of COVID-19 transmission. Indeed, COVID-19 might 
be transmitted from asymptomatic donors to recipients via 
FMT, especially those who are negative for COVID-19 
through respiratory samples but positive for stool samples 
[134, 135]. To address this vital issue, FMT donor screening 
should be rigorous and follow the guidelines from different 
jurisdictions around the world.

Nevertheless, although the current application of FMT 
in prevention and treatment of osteoporosis is still imma-
ture, to further realize the wide application of FMT, the 
specific solutions include: (1) Deepen the basic researches 
of FMT in the fields of osteoporosis and bone metabolism, 
thus providing a solid theoretical basis for its further clini-
cal trials. Meanwhile, during the process of further clini-
cal trials, gradually expand the research samples of FMT 
in prevention and treatment of osteoporosis, and deeply 
understand the relevant mechanisms on the gut–bone axis; 
(2) Further researches require appropriate phenotypic analy-
sis of patients with osteoporosis and rational application of 
techniques, including functional imaging and deep micro-
bial pyrosequencing. Using high-throughput sequencing 
techniques, comprehensively analyze the composition and 
abundance of gut microbiota in the patients with osteoporo-
sis, and deeply analyze the microbiota structure and func-
tional metabolism characteristics in specific environment, 
so as to provide a theoretical basis for FMT to improve 
osteoporosis and then conduct individualized targeted FMT 
therapy [136]. Hence, it is recognized that the application 
of precision medicine to conduct the personalized FMT for 
different individuals is a novel research direction on this 
field in future; (3) On the basis of current FMT-related 
researches, further explore the technique of synthetic micro-
biota transplantation (SMT) [137, 138]. The SMT mainly 
refers to the extraction of bacteria from the feces of healthy 
individuals, cultures it in vitro, and then uses conventional 
FMT approaches, such as oral administration and naso-
intestinal tube, to treat patients with osteoporosis; (4) On 
the basis of FMT, Zhang et al. [139] proposed the concept 
of washing microbiota transplantation (WMT) for the first 
time through intelligent separation system and strict quality 
control system. WMT belongs to the category of FMT, while 

the fecal bacteria have been washed more strictly, which 
could also further promote the development of FMT to a 
certain extent. Moreover, various previous clinical evidence 
and animal studies have verified that WMT has significant 
clinical therapeutic value for the patients with inflamma-
tory bowel diseases, and also significantly reduces the inci-
dence rate of adverse events without reducing the efficacy 
of FMT [140]. Currently, there is still no related research 
on application of WMT in the prevention and treatment 
of osteoporosis, while its future prospect is still worthy of 
our expectation and belief; (5) As another indelible aspect 
related to the efficacy of FMT, it is also essential to further 
optimize the extraction method of fecal bacteria, develop 
the filtration steps and preservation methods of bacterial liq-
uids, and explore more proper guidelines of doses, frequency 
and location of infusion; (6) Based on existing studies, it is 
necessary to further explore how the gut microbiota plays a 
critical role in human health and the related mechanisms by 
which FMT works. More high-quality researches still need 
to be promoted to screen out which patients are suitable for 
the FMT and whether there are definite age, gender, race, 
physical quality, genetic correlation, and other requirements 
for potential fecal bacteria donors [38]. Meanwhile, it is 
essential to identify the safe, effective and stable methods 
to implement FMT for different individuals, and design sci-
entific randomized controlled trials and long-term follow-up 
planning to obtain a reliable analysis of the efficacy and 
safety of FMT on osteoporosis in future.

Ultimately, during the process of FMT, the therapeutic 
stools are collected from the healthy donors, and the success 
or failure of the treatment is likely to be determined by the 
composition of the donors’ fecal microbiota. Thus, the screen-
ing and evaluation of donors are crucial. Regarding this, in 
combination with previous studies and relevant guidelines, the 
selection criteria for recruiting donors could be summarized as 
follows: (1) Individuals aged 12 to 30, and living and working 
in the same area as the recipients; (2) Preference is given to 
the healthy adolescents aged 18 to 25 with normal body mass 
index (BMI) and normal bowel habits; (3) Preference is given 
to those with more than two long-lived people (over 80 years 
old) in their family; (4) The donors should have a basic regu-
lar life schedule, proper exercise, a balanced and diversified 
diet, good mental health, and a regular bowel movement [141]. 
Moreover, the exclusion criteria mainly include: (1) Individu-
als who have used antibiotics in recent 3 months; (2) Indi-
viduals with a history of traumatic infections, allergies and 
immune disorders in the past years; (3) Individuals with the 
abnormal defecation habits; (4) Individuals with a suspected 
or definite pathogen infection; (5) Individuals with a history 
of cancer or living in special environments [142]. In addition, 
especially for the prevention and treatment of patients with 
osteoporosis via FMT, the selection of donors pays more atten-
tion to the screening of bone, family history of osteoporosis 
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and bone-related genetic history. Specifically, the donor's bone 
mineral density (BMD) should be within the normal range (T 
value >—1), have adequate dietary intake of calcium, vitamins 
and other bone-related nutrients, have adequate and regular 
sleep, regularly participate in various forms of exercise, have 
no history of hormone use, and so on.

Conclusion and perspectives

With the increasing understanding of microbe–host interac-
tions in recent years, the involvement of gut microbiota has 
become a novel, ingenious and non-negligible way to regu-
late the host health. On the basis of gut-bone axis and proven 
regulatory effects of gut microbiota on osteoporosis, more and 
more attention has been paid to the role of FMT in regulating 
bone metabolism and maintaining balance between bone for-
mation and bone absorption. Indeed, the application of FMT 
in the prevention and treatment of osteoporosis is a novel prop-
osition full of unknowns and challenges. It still needs to be 
recognized that although the osteoporosis can be divided into 
multiple subtypes, which subtypes of patients are eligible for 
the FMT treatment, and whether there are specific subtypes of 
patients who can obtain greater benefits in the process of FMT 
treatment, these questions are still worthy of further explora-
tion and consideration in future.

Currently, although FMT has been widely applied in treat-
ment of gastrointestinal diseases, the FMT as a potential treat-
ment method for the osteoporosis has rarely been reported, and 
further large-scale animal experiments and potential human 
prospective studies are still needed, as well as the randomized 
controlled trials for exploring efficacy and incidence of adverse 
events of FMT, and the changes in the structure and function 
of gut microbiota after the FMT treatment. Notably, FMT is 
expected to become an effective supplement or even an alter-
native to the traditional drugs for the prevention and treatment 
of osteoporosis, and has broad research and application pros-
pects. In the further researches, with in-depth exploration of 
donors screening, patients’ preparation, transplantation routes, 
fresh storage of fecal bacterial fluid, times of transplantation, 
combined medication and other issues, we can fully expect 
that the standard, efficient and safe FMT will bring novel hope 
for the prevention and treatment of patients with osteoporosis 
in future.
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