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1  |  INTRODUC TION

Genomic selection (Meuwissen et al., 2001), in spite of using more 
precise Mendelian sampling terms compared to pedigree-based se-
lection, and drastically increasing genetic response doing so, might 
accelerate the loss of genetic diversity and the useful variation per 

unit of time (Goddard, 2009; Hayes et al., 2009; Rutkoski et al., 
2015). The loss of genetic diversity depends on a compromise be-
tween the co-selection of less relative individuals, which decreases 
the inbreeding rate per generation (Daetwyler et al., 2007), and the 
reduction of generation intervals, which gradually reduces the se-
lective response (Grattapaglia, 2017). Yet, over the past decades, a 
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Abstract
In breeding, optimal contribution selection (OCS) is one of the most effective strate-
gies to balance short- and long-term genetic responses, by maximizing genetic gain 
and minimizing global coancestry. Considering genetic diversity in the selection 
dynamic—through coancestry—is undoubtedly the reason for the success of OCS, as 
it avoids preliminary loss of favorable alleles. Originally formulated with the pedi-
gree relationship matrix, global coancestry can nowadays be assessed with one of the 
possible formulations of the realized genomic relationship matrix. Most formulations 
were optimized for genomic evaluation, but few for the management of coancestry. 
We introduce here an alternative formulation specifically developed for genomic OCS 
(GOCS), intended to better control heterozygous loci, and thus better account for 
Mendelian sampling. We simulated a multigeneration breeding program with mate 
allocation and under GOCS for twenty generations, solved with quadratic program-
ming. With the case study of Populus nigra, we have shown that, although the dynamic 
was mainly determined by the trade-off between genetic gain and genetic diversity, 
better formulations of the genomic relationship matrix, especially those fostering in-
dividuals carrying multiple heterozygous loci, can lead to better short-term genetic 
gain and a higher selection plateau.
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growing number of authors have emphasized the importance of bal-
ancing loss of diversity and short-term genetic gain to sustain a long-
term genetic response (Brisbane & Gibson, 1995; Jannink, 2010; 
Woolliams et al., 2002). This is especially true for perennial trees, 
for which minimal husbandry is provided while they can face harsh 
environments over a long period.

Optimal contribution selection (or OCS) was introduced by 
Meuwissen (1997) as a complement to the widely used best lin-
ear unbiased predictor (BLUP). BLUP conveniently integrates 
family information for increased accuracy, but also leads to rapid 
co-selection of relatives. On the other hand, OCS maximizes ge-
netic gain while maintaining the inbreeding rate to a predefined 
level, thus accounting for the impact of genetic relationships on 
the population dynamics. OCS was originally formulated with 
the pedigree-based relationship matrix (A), but nowadays it can 
be easily adapted to the realized genomic relationship matrix (G). 
Its simplicity has made it today one of the most successful strat-
egies to address the problem of selection-induced loss of diversity 
(Meuwissen et al., 2020). Furthermore, its flexibility has facilitated 
countless extensions. As a nonexhaustive illustration of its poten-
tial, De Beukelaer et al. (2017) extended OCS for different mea-
sures, such as heterozygosity, or the criterion of Li et al. (2008); 
Gebregiwergis et al. (2020) incorporated an alternative formu-
lation of the genomic relationship matrix via QTL and markers; 
several studies proposed to combine OCS with mate selection, 
mainly to account for logistic constraints (e.g., the number of mat-
ing per individual), and to account for dominant effects (Akdemir 
& Sánchez, 2016; Toro & Varona, 2010; Varona & Misztal, 1999; 
Vitezica et al., 2013).

The realized genomic relationship matrix carries precise informa-
tion on the relationship between pairs of individuals, but most of its 
formulations focused on shared homozygosity, which we could call 
homozygote x homozygote relationships. However, managing het-
erozygosity has a significant impact on the long-term genetic gain 
(De Beukelaer et al., 2017). Following the approach of Gebregiwergis 
et al. (2020), we propose here an alternative formulation of the ge-
nomic relationship matrix that focuses on individual carrying an 
excess of heterozygous loci relative to the population, or, in other 
words, the effect of individual-wise heterozygosity (for the study 
of population-wise heterozygosity, see De Beukelaer et al., 2017). 
Previous formulations of the realized genomic relationship matrix 
focused on increasing accuracy (Fragomeni et al., 2017; Nejati-
Javaremi et al., 1997), or comparing genomic vs genealogical infor-
mation (De Cara et al., 2011; Gómez-Romano et al., 2016). On the 
contrary, our method is intended to be used only in the context of 
Genomic OCS (GOCS), corresponding to the second genomic ma-
trix in Gebregiwergis et al. (2020). Our study showed that devel-
oping different genomic relationship matrix for different usage can 
be beneficial, as our formulation increased long-term genetic gain 
when used in GOCS, but decreased accuracy when used in genomic 
evaluation.

In the present study, we will focus on heterozygote x homo-
zygote relationships, and the objective is to exploit the impact of 

Mendelian sampling in the framework of genetic contribution 
(Avendaño et al., 2004; Cole & VanRaden, 2011). To do so, we de-
vised a way to integrate heterozygote x homozygote relationship 
in the genomic relationship matrix, either to promote it or penalize 
it. We have developed a deterministic algorithm capable of solving 
both classical OCS and our alternative formulation, with quadratic 
programming. We have applied our method to the case study a pop-
ulation of Populus nigra L. (Salicaceae), to show by simulations that 
managing heterozygous loci in a multigeneration breeding program 
can achieve higher performances than with a classical OCS, and 
reach a higher Pareto curve. Among all the possible ways of con-
structing the genomic relationship matrix, the best strategy was to 
foster the heterozygote × homozygote relationship between pairs, 
which appeared to be the best compromise between genetic fixation 
and diversity.

2  |  MATERIAL S AND METHODS

2.1  |  Optimal contribution selection and convex 
optimization

Genetic contributions, first introduced by James and McBride 
(1958), are the cornerstone of OCS. The two opposing items in the 
optimization of OCS, gain and diversity, can be formulated accord-
ing to the same decision variable, genetic contribution. The ge-
netic contribution can be defined as the proportion of genes from 
a given ancestor that are present in a given cohort of descend-
ants. More generally, the genetic contribution of an individual is 
its proportional contribution to the gene pool of the descendant 
population (Woolliams & Mäntysaari, 1995). In our case, when 
considering nonoverlapping generations, the genetic contribution 
of a given parent would simply be its proportional contribution to 
the offspring of the next generation. We denote c the vector of N 
genetic contributions, with N being the size of the parental popula-
tion. Defined as such, ∑ ci = 1.

With the knowledge of Y the vector of parental breeding val-
ues and A the numerator relationship matrix between parents (or G 
the realized genomic relationship matrix), and assuming no epistasis, 
it is possible to formulate the expected future performance or in-
breeding coefficient of the population as cTY (cY for simplicity) or as 
½ cTAc, respectively (or cTGc when using the genomic relationship 
matrix; cAc and cGc for simplicity). Deriving optimal selection deci-
sions simultaneously accounting for future performance and future 
inbreeding is then possible through OCS, using genetic contributions 
as a decision variable. One of the possible formulations of such a 
problem is to solve min. λ cGc  −  cY, with λ a weighting parameter 
(see Woolliams et al., 2002 and references therein). It is important 
to note that the weighted average of cAc (or cGc) represents the ex-
pected inbreeding assuming panmixia or, more precisely, uniting in 
a full diallelic way all parents while respecting each parental c. This 
corresponds to the best expectation for inbreeding when the mating 
regime is unknown or not under the control of the breeder, which 
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is often the case when, for example, mating is allowed to follow an 
open pollination regime as in a seed orchard.

As classical selection over cycles tends to accelerate the change 
of frequencies when they are intermediate, that is, when the vari-
ances are at the highest levels, the risks of loss of favorable alleles 
by hitchhiking the alternative detrimentals would also increase 
(Sánchez et al., 2006). OCS would reduce this risk by maintaining 
frequencies at intermediate levels (when using an identity-by-state 
matrix G, see Nejati-Javaremi et al., 1997), leading to a potentially 
slower fixation of favorable alleles, but overall benefits over the 
long-term genetic gain.

Originally, Meuwissen et al. (2001) formulated OCS as the max-
imization of genetic gain (cY) subject to a constrained inbreeding 
coefficient (cAc). Likewise, it is also possible to minimize the inbreed-
ing rate while constraining the genetic gain (Akdemir & Sánchez, 
2016). Choosing the adequate constraint is critical for populations 
never confronted to OCS. The methodology was primarily devised 
with long-term domesticated populations in mind, where records of 
change in inbreeding and genetic gain are typically known over sev-
eral cycles, facilitating the choice of the constraints. In the absence 
of historical references, for novel species, a gradient of constraints 
would need to be evaluated a priori. In this sense, a holistic approach 
allowing visualization of the optimized function over a wide range of 
scenarios would be preferable as a start.

Following the approach of Akdemir et al. (2019), we considered 
OCS as a multiobjective optimization, where gain and diversity are 
improved simultaneously, that is, maximizing gain and minimizing 
coancestry, by pondering weights that set the balance between the 
two items. The solutions of a multiobjective optimization, namely 
Pareto optima (Figure S1), delineate a two-dimensional curve. 
Optimizing in two dimensions (genetic gain and coancestry) is math-
ematically equivalent to the scalarized version of the problem: min-
imize λ cGc − cY for any λ > 0. The scalarized problem has a unique 
global solution since the objective function is strictly convex (G 
is positive definite, as shown below). In other words, the curve of 
Pareto optima is the parametric curve, as a function of λ, of solutions 
minimizing λ cGc − cY. It is therefore the set of (c*Gc*, c*Y), where c* 
is the optimal contribution vector for a given λ. Without loss of gen-
erality, we consider the scalarized problem parameterized by α such 
that the problem becomes:

where α ⋲ [0;1] can be interpreted as the trade-off value between 
coancestry and genetic gain (or the weight of coancestry compared to 
that of genetic gain).

Each OCS solution given a constraint (as in Meuwissen et al., 
2001) is a particular Pareto optimum, or, in other words, is the solu-
tion of the scalarized problem for a particular α (if the constraint is not 
ill-formulated, i.e., not out of range). Both formulations—with α or with 
an inbreeding constraint—are strictly equivalent, and choosing a value 
for α is as arbitrary and difficult as choosing a value for a constraint 

without any a priori. Here, we will develop the framework with α, and 
different selection scenarios will be expressed in terms of α.

As in Meuwissen, 1997, we have added some operational con-
straints to the multiobjective problem: the contributions must be 
larger than 0 to have a biological meaning but smaller than 0.5 to avoid 
selfing (0 ≤ c ≤ 0.5), and the sum of all contributions must be equal to 
1 (1Tc = 1). The constrained scalarized problem for a particular value 
of α is a constrained quadratic programming and can therefore be 
solved deterministically with an interior point method, adequate to 
solve constrained convex optimization (Boyd et al., 2004).

2.2  |  Different genomic matrices

Let X be the matrix describing the genotypes of the population, with 
L rows (number of markers) and N columns (number of individuals). 
The two homozygous states are encoded as −1 and 1, and the het-
erozygous state as 0 (as in VanRaden, 2008). We will consider the 
realized genomic relationship matrix formulated as G = XTX (N × N 
matrix). Note that the elements of X are not corrected by minor al-
lele frequencies, nor is the resulting G scaled by the expected het-
erozygosity, as is usually done in genomic evaluation. Therefore, the 
diagonal elements of G provide information on the number of ho-
mozygous loci per individual, while the off-diagonal elements reflect 
the number of homozygous states shared by individuals across loci. 
Thus, for off-diagonals, the same homozygous state at a given locus 
adds one unit to the count, while one unit is subtracted for opposite 
homozygous states (not accounting for heterozygote by heterozy-
gote, as pointed out by Gao & Martin, 2009), producing overall large 
values for pairs with resembling parents and small values for pairs 
with genetically distinct parents.

Using the G matrix defined above, OCS will penalize individuals 
with some particular relationship with the rest. For instance, an in-
dividual carrying multiple homozygous loci that are common in the 
population is less prone to be selected, as opposed to those carrying 
rare homozygous loci or heterozygous loci. In other words, per con-
struction, individuals are scored depending on their homozygosity 
compared with other individuals’ homozygosity. We propose here 
to also score individuals on their heterozygosity compared with 
other individuals’ homozygosity; in other words, to account for the 
relative excess of heterozygous loci within an individual. The ob-
jective is to distinguish different Mendelian samplings occurring in 
identical homozygote  ×  homozygote, which value in the G matrix 
is 1 (1 × 1 or −1 × −1 with the notation introduced above); opposite 
homozygote  ×  homozygote, which value is −1 (−1  ×  1); heterozy-
gote × homozygote, which value is 0 (0 × 1 or 0 × −1); and hetero-
zygote × heterozygote, which value is also 0 (0 × 0). To distinguish 
heterozygote × homozygote (He × Ho), and heterozygote × hetero-
zygote (He × He), we propose to change the value of He × Ho to 
β, which ranges from −1 to 1. A positive value of β means that few 
offspring will be generated from individuals with a large number of 
loci in He × Ho relationship with others. Hereafter, we denote G* the 

(1)min . �cTGc − (1 − �) cTY
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matrix constructed with β, where G* = G + β Q, Q being the matrix 
accounting for He × Ho loci, as G already account for homozygote 
loci (details in Supporting Information).

In addition, we can derive that (details in Supporting Information):

where He is the vector (of size L) of the proportion of heterozygous 
individuals contributing to the next generation for each locus, and 
Ho the equivalent for homozygous individuals. We can see from 
Equation (2) that controlling β allows us to change the frequency 
of the carriers of favorable genotypic states, which in turn would 
favor the occurrence of certain crosses increasing the segrega-
tion of diversity, for instance by increasing the chance of double 
heterozygous pairs over homozygous × heterozygous pairs. Such 
extra segregation could intuitively allow for a more sustainable 
genetic progress over the long term, without the risk of genetic 
hitchhiking.

For the objective function to be strictly convex, G* must be pos-
itive definite. Therefore, we performed a spectral projection of G* 
on the set of positive definite matrices, ensuring that the projected 
matrix is the closest positive definite matrix to G* (according to the 
spectral norm; Boyd et al., 2004). We will from here onward denote 
the projection of G* as G* itself to ease the reading.

2.3  |  Genomic data

The population used in the study included 1009 individuals from the 
French breeding population of P. nigra (Pégard et al., 2020). All of 
them were genotyped with a 12k Infinium array (Faivre-Rampant 
et al., 2016) resulting in 5253 usable SNP markers after quality and 
frequency filtering (minor allele frequency higher than 0.05). The re-
sulting genotypes were phased, imputed and a consensus recombi-
nation map derived (Pégard et al., 2019) by using FImpute software 
(Sargolzaei et al., 2014). The allelic effects were estimated from a 
genomic multitrait evaluation using breedR (Muñoz & Sánchez, 
2020). In this study, we considered the trunk circumference as a 
focal trait, with a heritability of h2 = 0.5134 (Pégard et al., 2020). All 
the individuals were phenotyped.

Poplar is a dioecious species. Sex, however, cannot be deter-
mined before seven years of age, nor can it be predicted from the 
genomic profile yet. For this study, and to overcome the missing 
sex of unsexed candidates, we assumed a monoecious population. 
However, our method could be easily extended to dioecious popula-
tions by adding one simple constraint: dTc = 0.5, where d is a design 
vector indicating the female/male individuals.

The population Populus nigra was genetically structured 
(Figure S2), with a high linkage disequilibrium. In order to check for 
possible effects of the linkage, in addition to the original dataset, 
we shuffled the alleles at each locus so that the allele frequencies 
remained unchanged, while linkage disequilibrium could be partly 
removed. Hereafter, we will refer to it as “shuffled dataset”, as 

opposed to the original dataset that we will refer to as “unshuffled 
dataset”.

2.4  |  Simulation pipeline

We considered different simulation scenarios, assuming different 
values of α and β. We simulated multigeneration breeding schemes 
of a constant population size N at each generation, and the param-
eters (α and β) remained constant across generations within a given 
scenario. No introgression of external genetic material was consid-
ered here. As mentioned above, we estimated the allelic effects from 
the genotype data with a real phenotype (trunk circumference). The 
resulting allelic effects were considered “true” and constant across 
generations and used to obtain the true breeding value (TBV) of the 
newly simulated candidates. Phenotypes and genotypes of all simu-
lated individuals were considered to be known at each generation.

When simulating multigeneration breeding programs, the ques-
tion arises as to how genomic estimated breeding values (GEBVs) 
should be assessed at each new virtual generation. With a herita-
bility of h2  =  0.5134, environmental deviation was simulated as a 
normally distributed perturbation of mean 0 and variance (1 − h2)�2

g
 , 

where �2
g
 was the TBV variance. At each generation, as was done in 

Jannink (2010) and De Beukelaer et al. (2017), GEBV was assessed 
with a ridge regression model (Searle, 2009), using the matrix G (not 
G*). Genomic evaluation included all previous generations, so the 
reference population incrementally increased over time.

OCS was then applied at each generation on the simulated 
GEBVs, and the resulting contributions were converted into a mating 
plan that fits the OCS solution. We can notice that once the genetic 
contributions are fixed, the mating plan will not change the average 
breeding value, nor the average coancestry in the selected candi-
dates. The mating, however, can change the progeny homozygosity—
the diagonal elements of the matrix G at generation t  +  1 (Pryce 
et al., 2012; Sonesson et al., 2012). Expected progeny homozygosity 
is equal to parents’ genomic relatedness (up to a constant). To opti-
mize the complementation of parents in mating, we computed the 
mating plan by minimizing the average progeny homozygosity per 
mating, that is, the trace of the matrix G at generation t + 1, with 
a linear programming (see Supporting Information). Mate allocation 
was done with the transformed matrix G*. In order to assess the ef-
fect of mate allocation, random mating was also simulated. Finally, 
with the mating plan, we simulated the next generation with an ad 
hoc program (written in C++17). All scenarios started with the same 
initial population: the initial average breeding value was equal to 27.7 
± 25.9 and the population coancestry was equal to 0.214 ± 0.086.

Every simulated replicate proceeded for 20 (nonoverlapping) 
generations and was devised without mutation. The simulation fol-
lowed a grid of parameters: α ranged from 0.1 to 0.9 (with steps of 
0.1), and β was equal to −0.5, 0, or 0.5. Each parametric setting was 
simulated 100 times. In order to compare the results from different 
β, we also computed for each simulation the “true” coancestry, which 
is the coancestry the population would have had if β was equal to 0 

(2)cTG∗c = cTGc + �cTQc = cTGc + �HeTHo
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(in line with the methods of Gebregiwergis et al., 2020). The whole 
pipeline was coded in R – 3.6.3 (R Core Team, 2020) and is available 
on github (https://github.com/mtire​t/ocs.git).

2.5  |  Statistical analyses

Finally, in order to determine the relative importance of the factors 
α, β and mate allocation on genetic gain and true coancestry (through 
an analysis of variance) at a given generation, we considered the fol-
lowing statistical model:

where Y is the output variable (either genetic gain or true coancestry), 
α and β the simulation parameters treated as fixed effects, α2 as the 
fixed effect of the squared parameter of α, m as the fixed effect of 
mate allocation (equal to 0 or 1), and e the residual fitted to a normal 
distribution. We considered here a polynomial regression (quadratic 
term α2) as there were symmetrical boundary effects of α upon Y: 
adding the quadratic term resulted in a gain of up to 70% in terms of 
adjusted coefficient of determination (r2). Quadratic α increases with a 
slower rate than linear α; hence, the quadratic term can be interpreted 
as an effect that is constant for low values of α, but highly variable 
among high values of α. We will hereafter refer to this model as model 
(1). In some cases however, we focused on a given value of α, where we 
considered the following model:

with equal notations and assumptions as model (1). We will hereafter 
refer to this model as model (2). These two models were analyzed using 
R - 3.6.3 (functions lm and anova from the base R package stats). We 
performed a type I analysis of variance, and the statistical significance 
of each factor was assessed with a Fisher's F test.

3  |  RESULTS

3.1  |  Overall evolution of genetic gain and 
coancestry met common expectations

When considering the unshuffled dataset, only studying the effect 
of α (representing the weight of coancestry compared to that of 
genetic gain), and considering β (representing the value of He × Ho 
relationships) equal to 0—corresponding then to the classical for-
mulation of OCS—as expected, the average value of genetic gain 
increased for the whole period of selection, especially for low α 
(Figure 1, Table 1). True coancestry increased over time, but less 
so with higher α—as expected, when focusing on coancestry, ge-
netic diversity increased over time. For the largest value of α (0.9), 
a consistent decrease was obtained for the whole period of selec-
tion. In other words, when α is high enough, though genetic gain is 
lower, producing genetic gain has no perceptible cost in terms of 
coancestry. De Cara et al. (2011) has already shown similar results, 

Y ∼ � + � + �2 + m + e,

Y ∼ � + m + e,

F I G U R E  1  Evolution over time of genetic gain (left panel) and true coancestry (right panel), for different values of α (red for α = 0.1 till 
blue for α = 0.9), with β = 0, with the unshuffled dataset and h2 = 0.5134 (trunk circumference)
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but is only possible when using genomic information (as opposed to 
pedigree information).

There is, however, no expectation regarding the genetic gain 
and coancestry variances, since OCS formulates its objective func-
tion and constraints in terms of expected values, not of variances. 
Compared to the initial standard deviation of genetic gain (25.9), 
simulations showed a consistent decrease over time (Table 1). 
Surprisingly, the decrease in standard deviation was even more pro-
nounced for high α, but the coefficient of variation was lower. The 
same pattern was observed for true coancestry, where the standard 
deviation decreased in a more pronounced way for high α, but with a 
lower coefficient of variation. The lower coefficient of variation for 
both genetic gain and coancestry for high α suggests that the risk 
associated with a targeted genetic gain was better controlled when 
restricting coancestry, likely due to lower drift.

Different long-term horizons of genetic gain were reached de-
pending on the value of α (Figure 1). In the relatively short term, 
less than 6 generations, the achieved genetic gain decreased with in-
creasing α. Eventually, in the longer term, the optimum α for genetic 
gain shifted from lower values to intermediate (at generation 20) 
and then to higher values of α (when reaching the selection plateau; 
Figure S3). The lower the value of α, the sooner the bend marking 
the start of the plateau. Such a plateau has already been described 
in the literature (De Beukelaer et al., 2017; Jannink, 2010), indicating 
a trade-off between the short- and long-term horizons when setting 
the importance of gain versus diversity (α).

On the opposite, the optimum α for coancestry (i.e., α = 1) did 
not change across generations, that is, the same ranking of α accord-
ing to coancestries occurred for all generations. The most relevant 
feature, however, is that the change in coancestry between extreme 
values of α was larger than those observed for gain. In the long 
term (at generation 20), coancestry was multiplied by 10.23 when α 
shifted from 0.9 to 0.1, whereas for the same shift of α, genetic gain 
was only multiplied by 1.28. Such a difference in scale of response 
between gain and coancestry is clear even at the first generation of 
application of OCS. This trend can also be observed in the Pareto 
curve, where a substantial reduction in coancestry can have a mini-
mum cost in gain whenever α is set between zero and intermediate 
values (α < 0.5; Figure S1).

3.2  |  The effect of α as the most explanatory factor 
after a long run

Statistical analyses of model (1) showed strong adjusted coeffi-
cients of determination for both genetic gain (unshuffled: r2 = 0.91; 
shuffled: r2 = 0.92) and coancestry (unshuffled: r2 = 0.98; shuffled: 
r2 = 0.99), suggesting a strong explanatory power of the parameters 
α, β, and mate allocation. Overall, for both unshuffled and shuf-
fled datasets, α was the most explanatory factor, with more than 
84.6% of genetic gain variance explained, and more than 97.6% of 
coancestry variance explained (Table 2). When the dataset is not 
shuffled, genetic gain was mainly explained by the linear term of α, TA
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whereas when it is shuffled, genetic gain was mainly explained by 
the quadratic term. This result suggests that when linkage disequi-
librium is not fully broken (unshuffled), every bit of increase in α has 
a perceptible effect on genetic gain, whereas for a broken linkage 
disequilibrium (shuffled), low α does not have any effect on genetic 
gain, only high values do. Coancestry, on the opposite, is always fully 
explained by the linear term, suggesting that although the effect of α 
is not always perceptible for genetic gain, it always is for coancestry. 
Mate allocation did only explain 0.0877% of the genetic gain vari-
ance in the unshuffled dataset and was not significant in the shuf-
fled dataset, suggesting that mating (defined as the minimization 

of progeny homozygosity) had only a small effect on genetic gain. 
Likewise, mate allocation only explained 0.00485% of the variance 
of coancestry in the unshuffled dataset, and only 0.00842% in the 
shuffled dataset.

Favoring individuals with He  ×  Ho relationship with other in-
dividuals (negative β) increased both genetic gain and coancestry 
(Table 1). β explained a slightly more important proportion of genetic 
gain variance for unshuffled dataset (6.49%) than for shuffled data-
set (3.98%), suggesting that high linkage disequilibrium can benefit 
from a management of heterozygous loci. For coancestry, β only ex-
plained 0.434% (unshuffled) and 0.0470% (shuffled) of the variance. 

TA B L E  2  Statistical analysis (model (1)) of the simulations for trunk circumference (h2 = 0.5134), for the unshuffled (S = 0) and the 
shuffled (S = 1) datasets, for the genetic gain and true coancestry, at generation 20

Effect

Genetic gain True coancestry

S = 0 (r2 = 0.91) S = 1 (r2 = 0.92) S = 0 (r2 = 0.98) S = 1 (r2 = 0.99)

Estimate % Variance Estimate % Variance Estimate % Variance Estimate
% 
Variance

α 267*** 58.7 276*** 15.5 −1.26*** 97.5 −1.25*** 98.9

α² −415*** 25.9 −310*** 72.7 0.151*** 0.100 0.236*** 0.302

β −34.0*** 6.49 −11.9*** 3.98 −0.0514*** 0.434 −0.0153*** 0.0470

M 3.35*** 0.0877 0.679n.s. 0.0195 −0.00443n.s. 0.00485 −0.00527*** 0.00842

Note: Estimate are from model (1), and p-values from the analysis of variance. Significance levels are ***p < .001; **p < .01; *p < .05; n.s.p > .05. ‘% 
Variance’: percentage of variance explained. r2: adjusted coefficient of determination of model (1).

F I G U R E  2  The Pareto optimum curve of true coancestry versus genetic gain, at generation 20, for different values of α (red for α = 0.1 
till blue for α = 0.9) and β (circle for β = −0.5; triangle for β = 0; square for β = 0.5), with h2 = 0.5134 (trunk circumference). Left panels with 
mate allocation and right panels without mate allocation (random mating); top panels with the unshuffled dataset and bottom panels with 
the shuffled dataset
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In the unshuffled dataset, when analyzing the effect of β on genetic 
gain with a fixed value of α (model (2)), β was not significant for α = 
0.1 (Fisher's F test, p = 0.177), but significant for α = 0.9 (Fisher's F 
test, p < .001); the same pattern was observed in the shuffled data-
set. The fact that β cannot have an impact for low α was expected by 
construction, but its significance for high α pinpoints that managing 
heterozygous loci can be beneficial in terms of genetic gain when 
there is sufficient diversity. On the opposite, β had a significant ef-
fect on coancestry (Fisher's F test, all p < 0.01), for low and high val-
ues of α, in the unshuffled and shuffled dataset. Overall, genetic gain 
and coancestry were mostly determined by α, even if the parameter 
was defined at the OCS level, and so, being blind to mate alloca-
tion. This result highlights the strikingly consistency of predictions 
with the genetic contribution framework. Similar results have been 
shown in previous studies (see Clark et al., 2013).

3.3  |  Favoring He × Ho relationship as the most 
sustainable strategy

The effect of β after twenty generations on genetic gain and true 
coancestry were different according to α (Figure 2). In the unshuf-
fled dataset, for the lowest values of α (<0.2, i.e., promoting the 
maximization of genetic gain over the minimization of coancestry), 
both genetic gain and coancestry were strongly influenced by α, but 
only negligibly by β. At this horizon, the population is detached from 
the Pareto curve. However, for larger α (>0.2, i.e., promoting the 
minimization of coancestry over the maximization of gain), favoring 
He × Ho relationship (β < 0) resulted in best performances, that is, 
a higher genetic gain for a given value of true coancestry. In other 
words, favoring He × Ho relationship allows the population to be 
on a higher Pareto curve (Figure 2). In addition, although mate al-
location was almost negligible compared with α, it slightly shifted 
the Pareto curve upwards. On the opposite, in the shuffled dataset, 
β = 0 and β = −0.5 are on the same Pareto curve, suggesting again 
that the management of heterozygous loci would mainly be benefi-
cial for population with a high linkage disequilibrium.

Considering an alternative way of assessing the potential of a 
breeding program by measuring the GEBV of the population from fa-
vorable alleles that are not fixed yet, namely the breeding potential, 
the best strategy for the unshuffled dataset was to promote He × 
Ho relationship, especially for high values of α (Figure 3). Except for 
α = 0.1, the breeding potential of β = −0.5 was significantly higher 
than other values of β (Student's t test, all p < .05). For shuffled data-
set however, the best strategy was to promote He × Ho relation-
ship only for high values of α, as the breeding potential of β = −0.5 
was significantly higher than other values of β only when α > 0.6 
(Student's t test, all p < .05). The breeding potential of β = −0.5 and 
of a given α can almost reach that of a lower value of α. Therefore, 
favoring He × Ho relationship would increase short-term genetic 
gain, while guaranteeing a high selection plateau—as its level is de-
termined by α, not β.

4  |  DISCUSSION

4.1  |  Long-term strategy in breeding programs

In a multigeneration breeding program, being able to select fa-
vorable alleles with little losses of favorable alleles on other loci 
would be the most desirable feature, that is, avoiding the Bulmer 
effect (Bulmer, 1971). Drift often occurs through unwanted genetic 
hitchhiking when favorable and unfavorable alleles are trapped by 
limited sampling in continuous segments in linkage disequilibrium. 
There is therefore always a risk of loss as recombination might not 
be able to cope with the pace of selection and sampling generating 
the unfavorable linkage. One way to render recombination more 
efficient without slowing down the selection process would be to 
favor the pairing of candidates with a high potential for segregation 
in the offspring. It can be done more or less explicitly. One of the 
classical approaches, as shown in previous works (Allier et al., 2019; 
De Beukelaer et al., 2017; Jannink, 2010), consists in accounting for 
diversity through the trade-off parameter α, where diversity among 
candidates is modeled through relatedness or coancestry. This 
weighted approach, or the constrained formulation, can enhance 
the selection plateau, but often at the cost of slowing down the 
rate of progress. When such a perspective is applied to late matur-
ing perennials, the cost in time for slow progress becomes a heavy 
drawback.

Another alternative to accelerate breeding without the draw-
back of drift is to minimize the uncertainties concerning the 
consequences of selection decisions, so that decisions can be 
based on sound predictions of the impact of selection on future 
generations. A way of doing this is to account for the He × Ho 
relationship between candidates, which is generally not consid-
ered in classical OCS. We have shown that optimizing mating, 
and modifying the genomic relationship matrix to account for 
He × Ho relationship, that is, gain control over the Mendelian 
sampling, has always resulted in better performances, for both 
genetic gain and coancestry. The mating optimization was par-
ticularly important in the first generations, as already reported 
by Toro and Varona (2010).

When focusing on genetic gain (low α), better controlling 
Mendelian sampling had a small effect, meaning that the effect 
of drift cannot be counterbalanced. However, when considering 
higher α, controlling Mendelian sampling, especially by favoring He 
× Ho relationship (lower β) had a strong effect on the Pareto curve. 
Increasing genetic gain usually means: (i) a lower genetic (and genic) 
variance after selection, (ii) a higher level of fixation of favorable al-
leles, which constitutes the matter making up genetic gain, and (iii) a 
higher level of negative linkage disequilibrium covariance due to the 
Bulmer effect. The extra gain obtained from β < 0 could come from 
using more efficiently the genic variance, resulting in more depletion 
compared to that of higher β levels, and thus converting this avail-
able variation into favorable allele fixation, or likewise unfavorable 
allele elimination.



    |  2643TIRET et al.

4.2  |  Alternative construction of genomic 
relationship matrix

Several studies proposed alternative formulations of the realized 
genomic relationship matrix (Fragomeni et al., 2017; Nejati-Javaremi 
et al., 1997; VanRaden, 2008) to improve accuracy in genomic evalu-
ation, mainly assessing the efficiency of genomic information com-
pared to genealogical information. Using alternative formulations 
might even lead to different long-term performance when used in 
the context of OCS (Gebregiwergis et al., 2020). However, a matrix 
that increases accuracy of genomic predictions does not necessarily 
measure inbreeding efficiently (Villanueva et al., 2021), so develop-
ing different formulations for different purposes seems preferable. 
Indeed, genomic information has been used differently in different 
contexts (as reviewed in Maltecca et al., 2020): minimum coancestry 
mating (Fernández et al., 2021), selection against unfavorable alleles 
(Upperman et al., 2019), or genomic selection with dominance ef-
fects (Sun et al., 2014). In line with this recommendation, we devel-
oped a method specific to GOCS that showed consistently better 
long-term performances, although genomic evaluation with our 
alternative formulation (G*) showed a consistently lower accuracy 
than with G (5%–10%, data not shown). In addition, when linkage 
disequilibrium was the highest (unshuffled dataset), our method per-
formed best in terms of the Pareto curve.

Fostering the He × Ho relationships with the realized genomic 
relationship matrix might have the consequence of maintaining 
dominance effects, since it maintains potential for segregation. In 

addition to previous studies that showed the importance of account-
ing for dominance effects in genomic evaluation (Sun et al., 2013; 
Toro & Varona, 2010), our results show that a strategy that main-
tains dominance effects is also important for breeding programs. 
Consequently, we can argue that GOCS might benefit from includ-
ing dominance effects in genomic evaluation, and optimize progeny 
homozygosity accordingly (Fernández et al., 2021). Whether domi-
nance effects and its variance are only important to account for as 
a correction term in genomic evaluation (e.g., to improve accuracy), 
or have deeper implications in the population dynamic remains an 
open question.

4.3  |  Variance in OCS

The main challenge of OCS lies in the management of stochasticity: 
the objective function, as stated above, is formulated with expected 
values, and not with variances, thus neglecting the variability caused 
by the uncertainties of random mating and Mendelian sampling. 
This leads to stochasticity around the predicted Pareto optima, in 
which analytical formula are only known for very few special cases 
(Garcia-Cortes et al., 2013). In our study, the undesired stochasticity 
was fixed by mate allocation, making segregation and environmental 
deviation the only sources of random variation. Mate allocation did, 
however, have a surprisingly low proportion of variance explained 
compared with what was reported previously (Hamrick & Godt, 
1996; Nybom, 2004). The main challenge remains to efficiently 

F I G U R E  3  Boxplots of GEBV of not fixed alleles, at generation 20, for different values of α and β, with the unshuffled (right panel) and the 
shuffled (left panel) dataset, h2 = 0.5134 (trunk circumference)
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convert the remaining additive variance (from segregation and en-
vironmental deviation) in future genetic gain (Santos et al., 2019), 
which can be done by integrating variance terms in the objective 
function.

Introducing variability in the parameter α and β could also be 
desirable in the case of multigeneration breeding, such as consid-
ering different values of α and β at each generation, depending on 
the current state of the population. For instance, considering a high 
value of α (high diversity) could be important at the very short term 
to prevent losses of favorable alleles in low frequency, but once 
the Bulmer effect is absorbed by recombination, it could be safe to 
switch to a more aggressive strategy such as with lower values of α. 
Preliminary works showed indeed that a geometrically decreasing 
α along the generations with a rate of 0.99 brings better long-term 
performances. Differential selection over generation is therefore a 
field worth investigating, and warrants further studies.

5  |  CONCLUSION

In this article, we have extended OCS by proposing an alternative 
formulation of the realized genomic relationship matrix that better 
accounts for the Mendelian sampling. In multigeneration breeding 
programs, it is important to account for diversity to reach a higher 
selection plateau, even though the speed at which it is reached can 
be slow. We have shown by and large that the population dynamic is 
overall dominated by the trade-off value α between genetic gain and 
genetic diversity. However, better accounting for Mendelian sam-
pling, even implicitly as proposed here by fostering individuals with 
multiple loci in He × Ho relationship with others, could minimize the 
speed problem, by “accelerating” the breeding while maintaining a 
high level of diversity and selective potential for future generations.
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