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ABSTRACT Carnobacteria have been implicated in food spoilage, but also in protection
against pathogenic bacteria. We report the isolation and complete genome sequences of
three bacteriophages (phages cd2, cd3, and cd4) that specifically target Carnobacterium
divergens. The genome sizes are approximately 57 kbp and have limited homology to
known enterococcal and streptococcal phages.

C arnobacterium maltaromaticum and Carnobacterium divergens are lactic acid bac-
teria (LAB) commonly found in foods, particularly dairy, meat, fish, and shrimp (1,

2). Previously, it was thought that high bacterial loads of these organisms resulted in
food spoilage (2, 3); however, recent reports suggest that the volatile organic com-
pounds produced by carnobacteria have a negligible impact on food quality (4).
Moreover, since carnobacteria produce antimicrobial peptides (bacteriocins) and or-
ganic acids, they can act as protective cultures by inhibiting the growth of food spoil-
age or pathogenic bacteria such as Listeria monocytogenes (5, 6). Within the food indus-
try, bacteriophages pose a major threat to LAB that function as starter cultures for
fermentation processes or protective cultures; as such, phages targeting LAB have
been extensively studied (7–9). However, phages infecting carnobacteria are underre-
presented in this field of study, and very few bacteriophages targeting Carnobacterium
spp. have been reported (10, 11). Here, we report the complete genome sequences of
three lytic bacteriophages (cd2, cd3, and cd4) that target various C. divergens strains.

Bacteriophages cd2 and cd3 were isolated from minced beef, and cd4 was isolated from
ham, all purchased at a grocery store in Edmonton, Alberta, Canada (Table 1). In each case, a
1-g sample of meat was added to 10ml of brain heart infusion broth (Bacto) and incubated
overnight at 25°C. Following centrifugation (9,000� g, 5min, 4°C), the supernatant was filter-
sterilized (0.2-mm filter) and used to prepare crude phage suspensions (11), using C. divergens
LV13 (12) as the host strain. Purified suspensions of each bacteriophage were prepared using
three consecutive rounds of single-plaque isolation using C. divergens LV13 as the host strain.
Additionally, C. divergens B1 (6) was used to propagate and isolate phages cd2 and cd3.

Phage DNAwas isolated using a proteinase K and SDS treatment, followed by phenol-chlo-
roform extraction and ethanol precipitation (13). Libraries were constructed using a Nextera
XT DNA library prep kit and sequenced using an Illumina MiSeq PE250 platform. Sequencing
reads were trimmed using Trimmomatic v0.39 (14), where reads with an average quality score
of a 4-base sliding window of ,30 and length of ,100 were subsequently removed.
Genomes were assembled using SPAdes v3.14.0 (15) with kmers set at 21, 33, 55, 77, 99, and
127bp. Contigs with a length of,500 bp or coverage of,10 were removed using a Python
script (16). The genomes were predicted to be circularly permuted using PhageTerm v1.0.11
(17). Genomes were annotated with PHANOTATE v1.5.0 (18) using the default settings.

Table 1 lists the characteristics of the phage genomes. Using OAT v0.9 (19), the phages
were found to have average orthologous nucleotide identities of 98.3 to 99.8% with each
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other. A BLASTN (20) search of the genomes against the nucleotide database in NCBI did
not find closely related bacteriophages, as the top 10 matched nucleotide sequences dis-
played limited coverage (,5%) and identity (,75%). Analysis with ViPTree (21) suggests
that the three phage strains belong to the Siphoviridae family and have limited homology to
several enterococcal bacteriophages, including VD13 (22), vB_EfaS_IME198, IME-EF1 (23),
SAP6 (24), BC-611 (25), and Streptococcus phage SP-QS1.

Data availability. Sequencing data for bacteriophages cd2, cd3, and cd4 are available in
GenBank under BioProject number PRJNA738531. The accession numbers for the sequencing
reads and genomes are listed in Table 1.
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SRA Genome
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