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Quantitative survey of multiple CpGs from 5
genes identifies CpG methylation panel
discriminating between high- and low-grade
cervical intraepithelial neoplasia
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Abstract

Background: Studies of methylation biomarkers for cervical cancer often involved only few randomly selected
CpGs per candidate gene analyzed by methylation-specific PCR-based methods, with often inconsistent results from
different laboratories. We evaluated the role of different CpGs from multiple genes as methylation biomarkers for
high-grade cervical intraepithelial neoplasia (CIN).

Results: We applied a mass spectrometry-based platform to survey the quantitative methylation levels of 34 CpG
units from SOX1, PAX1, NKX6-1, LMX1A, and ONECUT1 genes in 100 cervical formalin-fixed paraffin-embedded (FFPE)
tissues. We then used nonparametric statistics and Random Forest algorithm to rank significant CpG methylations
and support vector machine with 10-fold cross validation and 200 times bootstrap resampling to build a predictive
model separating CIN II/III from CIN I/normal subjects. We found only select CpG units showed significant differences
in methylation between CIN II/III and CIN I/normal groups, while mean methylation levels per gene were similar
between the two groups for each gene except PAX1. An optimal classification model involving five CpG units
from SOX1, PAX1, NKX6-1, and LMX1A achieved 81.2% specificity, 80.4% sensitivity, and 80.8% accuracy.

Conclusions: Our study suggested that during CIN development, the methylation of CpGs within CpG islands is
not uniform, with varying degrees of significance as biomarkers. Our study emphasizes the importance of not
only methylated marker genes but also specific CpGs for identifying high-grade CINs. The 5-CpG classification
model provides a promising biomarker panel for the early detection of cervical cancer.
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Background
Cervical cancer is one of the leading causes of cancer-
related mortality in women worldwide. Cervical intrae-
pithelial neoplasia (CIN) is a premalignant transformation
and abnormal growth (dysplasia) of squamous cells of the
cervix. Early screening together with timely treatment of
precancerous lesions can substantially improve clinical
outcome, thus offering a unique opportunity to cervical
cancer management. The widely used screening strat-
egy, cytology-based Pap smear, has been associated
with a significant reduction of cancer incidence rate
and mortality [1].
Besides finding cervical carcinomas, cervical cancer

screening aims to identify high-grade intraepithelial le-
sions (corresponding to histological grades CIN II and
CIN III) which require surgical procedures to prevent
further progression. Low-grade intraepithelial lesions
(corresponding to histological grade CIN I), on the
other hand, should not be over-treated for such proce-
dures as they have high potential to spontaneously re-
gress to normal [2]. However, the sensitivity of Pap
smears for the detection of CIN II or higher grades is
generally low [3,4]. On the other hand, the highly sen-
sitive diagnostic high-risk human papillomavirus (HPV)
DNA testing tends to give false positives [5-9]. A third
strategy is direct colposcopy [10], which requires inter-
pretational expertise, is not amenable to high throughput
processing, and has low positive predictive values for low-
grade squamous intraepithelial lesions [4,11]. Finally, even
for histopathology specimen of cervical biopsies, objective
CIN diagnosis can be sometimes challenging. The repro-
ducibility of cervical histopathologic interpretations was
moderate and equivalent to the reproducibility of mono-
layer cytologic interpretations [12]. Thus, an objective,
high-throughput approach with high sensitivity and speci-
ficity is urgently needed for early diagnosis of cervical
cancer.
Numerous investigations have reported that gene-specific

hypermethylation occurring in pre-invasive and invasive
phase of cervical cancer may be promising biomarkers
for early diagnosis [13-21]. A review of the results of
51 published cervical cancer methylation studies in-
volving 68 different genes concluded, however, that no
single methylation marker from these studies was suit-
able as a cervical cancer biomarker [13]. Most identi-
fied biomarkers, with a few exception [22,23], lacked
sufficient independent validations. Currently, therefore,
it is as important to validate existing candidates as to
identify additional ones. Another concern regarded in-
consistent results in methylation studies. Most of these
studies used methylation-specific PCR (MSP) or quantita-
tive methylation-specific PCR (QMSP) methods [24], ana-
lyzing in each gene one or two CpGs which were selected
randomly as those feasible for primer/probe design,
assuming hypermethylation is uniform across CpG
promoter and the analyzed CpGs are representative.
The measured methylation frequencies varied widely
for the same gene even between studies that used com-
mon specimen or similar assays [13]. A recent study by
Lai et al. [18], on a Chinese cohort of squamous cell
carcinoma (SCC), identified six novel genes (SOX1,
PAX1, NKX6-1, LMX1A, ONECUT1 and WT1) as more
frequently methylated in SCC tissues than in normal con-
trols. Some of the markers were verified by the same
laboratory using QMSP (MethyLight) [25,26]. How-
ever, two of these methylation markers had different
performance between the two studies [18,25]. More-
over, another study by an independent laboratory using
QMSP on liquid-based cytology samples from a UK
cohort found that only one of these genes, SOX1, was
able to discriminate between high-grade squamous
intraepithelial lesions and controls [15]. Surprisingly,
although such disturbing discrepancies cast consider-
able doubts on the validity of identified biomarker can-
didates, little study was undertaken to examine their
potential causes.
We suspected that different CpGs assayed by different

groups for the same genes may be a major factor con-
tributing to the result variances, and decided to system-
atically evaluate different CpGs from multiple genes as
methylation biomarkers. For early detection of cervical
cancer, it is clinically more useful to find epigenetic corre-
lates discriminating between histologically distinct CINs
than between SCC and normal cervices, yet few studies
have focused exclusively on CIN development. We set to
evaluate the utility of methylation biomarkers in distin-
guishing high-grade from low-grade CIN lesions. Our
aims were therefore twofold: (1) to evaluate the relative
importance of different CpGs as methylation biomarkers
and thus decide whether randomly selecting CpGs to
assay, as practiced in most methylation biomarker studies,
is justified and (2) to find an optimal panel of candidate
hypermethylated CpGs with high sensitivity and specificity
for precancerous CIN II or CIN III.
To these ends, we evaluated 34 CpG units from five

candidate genes, using definitively diagnosed FFPE tissue
specimens from an independent cohort of 100 Chinese
precancerous cervical patients and normal controls, who
shared a common genetic background with the subjects
of the original gene-discovery study [18]. We used a
matrix-assisted laser desorption ionization time-of-flight
mass spectrometry (MALDI-TOF MS)-based DNA methy-
lation quantification technology (EpiTYPER, Sequenom)
[27], which is fundamentally different from the commonly
used MSP or QMSP methods. Our method yields direct
quantification of the percentage of DNA methylated in a
CpG unit, with results highly concordant with bisulfite se-
quencing [28]. This technology has already been applied to
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evaluate methylation patterns of leukemia [29] and non-
small cell lung cancer [30].
To rank CpG units with discriminating power, we used

traditional nonparametric statistics as well as Random
Forest, a method particularly well suited for analyzing
mass spectrometry data in studies of biomarker identifi-
cation for cancer classification [31]. We then used sup-
port vector machine (SVM) [32-35] with cross-validation
and bootstrap resampling, which randomly partitioned
the tested samples into training and validation sets, to
construct an inferred model and assessed the predicative
power of the model. Our results showed that choosing
the right CpG unit to assay is critical, and a panel of
multiple specific CpG methylation constructed by com-
puterized algorithm allowed us to separate high-grade
CIN from low-grade or healthy subjects with high accur-
acy, providing a candidate biomarker panel for early de-
tection of cervical cancer development.

Results
Survey of CpG methylation of five genes by
MALDI-TOF-based EpiTYPER assay
A total of 100 FFPE cervical samples with histopatho-
logical classifications of normal (N = 16), CIN I (N = 31),
and CIN II or CIN III (N = 53 including 4 CIN II and 49
CIN III) were obtained retrospectively from a cohort of
ethnic Han Chinese women. The CIN samples were all
tested HPV positive (data not shown), and consensus
histological diagnoses were provided independently by
two pathologists, with confirmation by p16 and Ki-67
Figure 1 CINs with p16 and Ki-67 immunostaining. Immunohistochem
histologically CIN I (A, D), CIN II (B, E), and CIN III (C, F) tissues. Magnificati
immunohistochemistry staining (Figure 1). There was no
significant age difference between different groups (Table 1).
To analyze the methylation status of PAX1, NKX6-1,

SOX1, LMX1A, and ONECUT1, a CpG island (CGI) for
each gene was chosen for amplification (Figure 2 and
Table S1 in Additional file 1). Each CGI contained five
to eight CpG units that can be analyzed by EpiTYPER in
this study (Table 2).
Upon DNA extraction, bisulfite treatment, and PCR

amplification, 72–94% of the samples, depending on the
target gene of interest, generated sufficient amplicons
that were amenable to subsequent EpiTYPER analysis
(Table 1), suggesting that the assay design and sample
processing protocol were suitable for the archival FFPE
samples. The EpiTYPER is capable of simultaneously de-
termining all applicable CpG units within a CGI ampli-
con in one well. Quantitative methylation assessment of
a total of 34 CpG units (Table 2) in 100 individuals was
completed in two 384-well plates in a single day.
When we examined CGIs of candidate genes, we ob-

served unexpectedly that the mean methylation levels of
the CGIs of four of the five genes were not statistically
different between CIN II/III and CIN I/normal groups
(Figure 3A), indicating that during CIN development,
the overall methylation status of the examined CGIs of
NKX6-1, SOX1, LMX1A, and ONECUT1 did not change.
However, when we examined individual CpG units, sta-
tistically significant difference in methylation between
the CIN II/III and CIN I/normal groups emerged for
eight CpG units (Figure 3B). PAX1 had the highest
ical examination of p16 (A–C) and Ki-67 (D–F) protein expressions in
ons × 40.



Table 1 Sample characteristics and number of samples
whose CpG islands for each gene were successfully
amplified for EpiTYPER analysis

Stages (N) Mean
Age ± SD

LMX1A SOX1 ONECUT1 NKX6.1 PAX1

Normal (16) 48.3 ± 10.4 16 15 16 15 16

CIN I (31) 43.6 ± 11.2 23 24 31 30 22

CIN II + III(53) 41.0 ± 7.8 39 45 47 35 34

Total (100) 78 84 94 80 72

PAX1: paired box 1; SOX1: SRY (sex determining region Y)-box 1; LMX1A: LIM
homeobox transcription factor 1, alpha; NKX6-1: NK6 homeobox 1; ONECUT1:
one cut homeobox 1; CIN: cervical intraepithelial neoplasia; SD:
standard deviation.
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methylation level among the five genes, with the methy-
lation level of four CpG units being significantly differ-
ent between the two groups (P < 0.05). Although the
overall methylation level of LMX1A was low, one CpG
unit (L_CpG 28.29.30) was differentially methylated be-
tween the two groups (Figure 3B). NKX6-1 and SOX1
exhibited a moderate methylation level and, respectively,
contained one (N_CpG 9.10) and two (S_ CpG 17.18
and S_ CpG 34.35) significant CpG units. ONECUT1 con-
tained no significantly methylated CpG units (Figure 3B).
These data suggested that during CIN development, the
methylation within CGIs was not uniform.

Validation by bisulfite sequencing
To validate the EpiTYPER methylation results using inde-
pendent methods, we did bisulfite sequencing for three
genes on eight samples (Figure 4). As expected, the se-
quencing results were in accordance with quantitative
Figure 2 The positions of CpGs analyzed by EpiTYPER. Drawings are sc
the arrow at the end. Boxes indicate exons or UTRs; vertical lines indicate in
regions analyzed by EpiTYPER.
EpiTYPER results. Moreover, sequencing confirmed that
the DNA methylation was not uniform, as some specific
CpGs tended to exhibit more frequent methylation than
other CpGs (Figure 4).
Significance ranking of CpG units by Random Forest
To evaluate the contribution of 34 CpG units to the separ-
ation of CIN II/III subjects from CIN I/normal ones, we
employed the Random Forest algorithm (see “Methods”)
in addition to the standard nonparametric statistical
method; Figure 5 shows the mean decrease in accuracy
(MDA) values of the 34 CpG units, with higher MDA
indicating increasing importance of a CpG unit as pre-
dictor [36]. We tested the performance of classifiers
constructed by the assembly of different features itera-
tively. When the selected features were PAX1_CpG12,
SOX1_CpG34.35, LMX1A_ CpG28.29.30, NKX6-1_CpG9.10,
and PAX1_CpG6.7.8, the classifiers achieved the optimal per-
formance. Table 3 presents the Mann-Whitney U test result
of these five CpG units.
Classification model built by SVM
To build optimal classification model, the methylation
levels of the above five CpG units were entered into a SVM
with radial basis function (RBF) kernel (see “Methods”).
When C and γ were 410 and 14, the classifiers showed the
optimal and robust performance. With 200 times bootstrap
resampling and 10-fold cross validation, the classification
model showed high predictive power with sensitivity, speci-
ficity, and accuracy of 0.804 ± 0.028, 0.812 ± 0.008, and
0.808 ± 0.014 (mean ± SD), respectively (Table 4).
hematic and not to scale. The orientation of each gene is indicated by
dividual CpGs in the CGI regions, and the horizontal bars indicate the



Table 2 The number of CpG units for each gene

Genes Total CpG units CpG units analyzed

LMX1A 16 8

SOX1 18 7

ONECUT1 10 8

NKX6.1 8 6

PAX1 7 5

Total 59 34

A CpG unit harbors one or more CpGs in a unique enzymatic cleavage
fragment analyzed by EpiTYPER. Only CpG units residing in cleaved mass
fragments that were within MS analytical window (m/z 4000–10000)
were analyzed.
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Discussion
CpG hypermethylation of key genes involved in cervical
cancer development may be promising biomarkers for
early diagnosis [13-18,23]. However, progress in the field
of cervical methylation biomarker discovery has been
hampered by inconsistent results that defy validations
[13]. Most of the previous studies used nonquantitative
MSPs [18,37] that are highly sensitive but with the draw-
back of being unable to distinguish tumors with substan-
tial methylation from those with biologically insignificant
methylation levels [28]. Recently developed quantitative
MSP (QMSP) such as MethyLight provides a better alter-
native and is becoming increasingly used in methylation
studies [24,38,39]. However, QMSP will only detect
methylation of few CpGs (equivalent of one CpG unit
in our assay, usually 2 ~ 3 CpGs each) [24]. It is diffi-
cult to design assays in CpG-rich areas without having
the probe overlapping flanking CpGs, and with the
probe having sufficient annealing temperature to achieve
robust annealing and specificity in the highly AT-rich se-
quence after bisulfite conversion. This makes QMSP lim-
ited in applications and perhaps explains the sometimes
variable results obtained for the same gene using different
primer/probe designs [15,18,25]. In contrast, primers used
in EpiTYPER assay did not involve CpGs (Table S1 in
Additional file 1), resulting in more consistent results. The
EpiTYPER assay showed much better correlation with the
gold-standard sequencing results than the MSP-based assays
[28]. The technique could analyze almost all CpGs covered
within one amplicon for a gene, instead of 2 ~ 3 CpGs ran-
domly chosen by QMSP. We used this novel quantitative
platform to survey 5 ~ 8 CpG units (containing 13 ~ 35
CpGs) within a CGI of each gene for five genes. We found
that randomly selecting CpGs to assay gene methylation can
be problematic, as CpG methylation is not uniform during
CIN development (Figure 3B). Of all genes except PAX1, the
overall methylation status, defined as the averaged level of all
CpGs within the CGI, was similar between CIN II/III and
CIN I/normal(Figure 3A). This is in contrast to the con-
clusion based on a much limited number of CpGs using
MSP [18,25]. Only select CpG units may be used as
markers distinguishing CIN II/III from CIN I/normal
samples (Figure 3B). Consistent with our observation,
other reports has demonstrated that aberrant DNA
methylation of only specific CpGs within the CGI are
responsible for the downregulation of gene expression
[40-44], and more recently, a substantial number of
studies reported a specific, single CpG can function as
strong prognostic or predictive indicators in various
cancers [28,45-47].
Our findings highlight the importance of studying the

detailed methylation pattern within a CGI, as they reveal
the temporal complexity of DNA methylation during cer-
vical cancer development, and emphasize the importance
of not only methylated marker genes but also specific
CpGs for identifying high-grade CINs. Therefore, choos-
ing the right CpG unit to assay is critical, and previous in-
consistencies among different labs regarding methylation
status of the same genes may be due to CpG choices.
We also note that significant CpG units for CIN devel-

opment can reside beyond the promoter, in exonic or in-
tronic regions as well (Figure 2), just as CpG methylation
outside of promoter region can be responsible for tumor
suppressor inactivation in breast cancer [48]. Although we
did not evaluate all CpGs of these marker genes, our
original findings could provide diagnostically useful
methylation biomarkers for high-grade CIN. Moreover,
MALDI-TOF-based technology gave consistent results
to assay these CpG markers in a multiplexed, high-
throughput fashion suitable for clinical applications.
Diagnostic classifiers built on multigene methylation

panels have shown better performance in predicting a
wide variety of tumors [49]. However, such studies com-
monly associated with the overfitting problem [50,51]. To
overcome this, we used SVM to construct the classifier
model [52-54] and coupled with a procedure of 10-fold
cross validation (in which our samples were partitioned
into randomly assigned training and testing sets for the
model to be validated 10 times) and 200 times bootstrap
resampling (in which the partitioning and cross-validation
was randomized and repeated 200 times). Such proce-
dures help reduce overfitting and provide a reliable esti-
mate of the performance of the model [55]. Compared
with classification methods used in previous studies
[18,25], SVM is a statistical learning method with greater
accuracy in diagnostic ability [32,33,54,56] and with more
consistent performance at our sample size [57].
Hypermethylated genes selected to predict invasive cer-

vical cancer achieved a sensitivity about 90% according to
previous study. However, the high-grade CIN lesions were
predicted with much lower sensitivity (~70%) [20,58]. Our
panel of CpG units obtained a high sensitivity and specifi-
city of ~80%, achieving a valuable balance between sensi-
tivity and specificity in identifying high-risk samples. The
high specificity of our classifier would be particularly



Figure 3 The methylation patterns of the five genes. (A) Dot plot of the methylation levels for each gene. Each dot represents a sample, with
methylation level averaged over all CpG units analyzed for the gene. (B) Bar graph of the methylation levels of individual CpG units. Open and
filled columns denote CIN I/normal and CIN II/III group, respectively. Each bar represents mean methylation of all samples in the group. Error bars
indicate SEM; *P < 0.05 for Mann-Whitney U test.
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suitable for developing countries like China, where cer-
vical cancer prevalence remained relatively high.
Identification of a set of reliable CIN biomarkers serves

as a foundation for potential future applications such as
quality assurance of histopathology classifications and
noninvasive cervical cancer screening if these markers are
validated in exfoliated cell samples from cervical scrapings
or Pap smears. Our panel of CpG units and the EpiTYPER
platform can potentially be a part of an objective, high-
throughput strategy for early cervical cancer detection.



Figure 4 Bisulfite sequencing (BS) of CpGs assayed by EpiTYPER. Three genes were bisulfite-sequenced in eight cervical samples of various
stages. In each panel, sample ID is shown at the top, and EpiTYPER results are shown below the gene name as the average level for all measured
CpGs. BS results are summarized as filled circles representing methylated CpGs and open circles representing unmethylated CpGs. Each line is an
independently sequenced clone. Each column is a CpG of the gene.
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Conclusions
Our findings highlight the significance of studying the de-
tailed methylation pattern within a CGI and emphasize
the importance of not only methylated marker genes but
also specific CpGs for identifying high-grade CINs. We
demonstrated the value of the MALDI-TOF technology in
methylation biomarker identification and obtained a five-
CpG panel with a promising potential as a biomarker for
the early detection of cervical cancer.

Methods
Samples
Formalin-fixed paraffin-embedded (FFPE) cervical biopsy
samples were obtained from outpatients visiting the Beijing
Aerospace Central Hospital from 2007 to 2012. All
Figure 5 Feature importance for prediction of CIN II/III according to R
histological specimens were tested for HPV DNA (Hy-
brid Capture-2 kit; Qiagen, Gaithersburg, MD) and for
p16 and Ki-67 immunostaining (Beijing Zhong Shan
Golden Bridge Biological Technology Co., Ltd.) [59].
The specimens were reviewed independently by two expert
pathologists from the Departments of Pathology at Aero-
space Central Hospital and Beijing Tiantan Hospital, and
only concordant, clearly unambiguous specimens were
chosen for the study. Exclusion criteria included uncertain
histopathological classification, pregnancy, chronic or acute
systemic viral infections, presence of other cancers, skin or
genital warts, and an immunocompromised state. Informed
consents were obtained from all patients and controls. The
study followed the ethical guidelines of the Institutional
Review Board of the Aerospace Central Hospital.
andom Forest algorithm. MDA: mean decrease in accuracy.



Table 3 Summary of nonparametric statistics for the
selected CpG units in building classifier

CpG unit Methylation level (mean ± s.e) P value

Normal/CIN I CIN II/III

P_CpG_6.7.8 0.193 ± 0.0308 0.290 ± 0.0344 0.0383

P_CpG_12 0.064 ± 0.0123 0.191 ± 0.0293 0.0097

L_CpG_28.29.30 0.059 ± 0.0076 0.074 ± 0.0067 0.0271

N_CpG_9.10 0.150 ± 0.0182 0.244 ± 0.0304 0.0003

S_CpG_34.35 0.098 ± 0.01615 0.183 ± 0.0257 0.029
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DNA preparation and bisulfite treatment
Genomic DNA was extracted from archival FFPE blocks
using an established protocol [60]. DNA was quantified
using the NanoDrop 2000 Spectrophotometer (Thermo
Fisher Scientific Inc, CA.). Only DNA samples exhibiting
an A260/A280 ratio between 1.8 and 2.0 were consid-
ered for further testing.
EZ DNA Methylation Kit (Zymo Research Corporation,

CA) was used to modify extracted genomic DNA ac-
cording to the manufacturer’s protocol with Sequenom
recommendations.

MALDI-TOF-MS-based DNA methylation analysis
MALDI-TOF-MS-based DNA methylation assay (EpiTY-
PER) was performed according to the manufacturer’s
specification [27] (Sequenom Inc. CA). Bisulfite-modified
genomic DNA was used as PCR template. Primers for
PCR (Table S1 in Additional file 1), which do not contain
CpGs and amplify both methylated and unmethylated
sequences equally, were designed using EpiDesigner
(http://www.epidesigner.com/) with the following con-
straints: (1) the amplicon was located in a CGI of the tar-
get gene, (2) the amplicon size is below 300 bp to increase
the amplification success rate of FFPE samples, and (3)
the amplicon covers as many CpGs as possible. The re-
verse primers included at the 5′ end a T7 promoter tag
[5′-cagtaatacgactcactataggg-3′]. Only samples successfully
amplified with a clear and specific PCR band at the ex-
pected size were included for further analysis. After PCR
amplification, T7 RNA polymerase (Sequenom Inc.)
was used to in vitro transcribe single-stranded RNA,
which was then cleaved base-specifically by RNase A
[27] (MassCLEAVE, Sequenom Inc.). The cleavage prod-
ucts, which contained either individual CpG or short
Table 4 Evaluation parameters of SVM classifier model
trained by the best parameter setting

Measures Mean SD

Sensitivity 0.804 0.028

Specificity 0.812 0.008

Accuracy 0.808 0.014

SD: standard deviation.
stretches of adjacent CpGs, were analyzed using a
MALDI-TOF mass spectrometer (Sequenom Inc). The
peak areas of the mass signals derived from methylated
and non-methylated template DNA were used to esti-
mate the relative methylation level (valued from 0 to 1
or 0 to 100%). Methylation level for each CpG unit
represents average of CpGs within the unit.
We used 100 and 0% methylated human DNA (EpiTect

Control DNA Set, QIAGEN Inc. CA) as positive and
negative controls, respectively, for the amplification and
methylation determination. No-template controls were
included for each amplicon to monitor PCR specificity.

Bisulfite sequencing
We cloned the EpiTYPER PCR products into pGEM-T
Easy vectors (Promega, WI). For each sample, Sanger se-
quencing was performed on 10 random individual clones
using the 3730 automatic sequencer (Applied Biosys-
tems, CA). Sequencing results were analyzed using the
QUMA online software suite (http://quma.cdb.riken.jp/).

Statistical analysis
For all statistical analysis in this study, the normal and
CIN I samples were grouped into one category, so that
all samples were classified as either CIN II/III or CIN I/
normal. The relative methylation of each CpG unit in
the dataset was analyzed as continuous variables. Non-
parametric statistical analysis was performed with the
two-tailed Mann-Whitney U test for unpaired compari-
sons (GraphPad Prism 5.01), with statistical significance
set at P value <0.05.
Additionally, the significance of CpG unit was assessed

using the MDA calculated by the feature selection algo-
rithm of Random Forest [36] (https://code.google.com/
p/randomforest-matlab). Two main parameters of Ran-
dom Forest, ntree (the number of trees in the forest)
and mtry (the number of variables randomly chosen at
each split in a tree), were set to 5000 and 6, respectively.
We used SVM with a RBF kernel for the classifiers.

The SVM parameters (penalty parameter C, kernel par-
ameter γ) were optimized using grid-search method [50].
Besides SVM, we used 10-fold cross-validation combined
with 200 times bootstrapping sampling in constructing
and evaluating the classification model. Thus, the original
samples were randomly partitioned into 10 equal-sized
subsets, 9 of which were used as training data and the
remaining set for validation testing. The process was re-
peated 10 times to ensure each subset was used exactly
once as the testing set. The random partition and cross-
validation repeat 200 times altogether. The classification
performances were assessed using the sensitivity, the
specificity, and the accuracy of the classification [61].
All computational experiments were carried out in the
MATLAB (Version 8.1) programming environment.

http://www.epidesigner.com/
http://quma.cdb.riken.jp/
https://code.google.com/p/randomforest-matlab
https://code.google.com/p/randomforest-matlab
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Additional file

Additional file 1: Table S1. Primers, respective target sizes, and
locations of the CGIs analyzed by EpiTYPER. L indicates left primer; R indicates
right primer.
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