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Abstract

Background: The Cancer Genome Atlas (TCGA) has generated comprehensive molecular profiles. We aim to identify a
set of genes whose expression patterns can distinguish diverse tumor types. Those features may serve as biomarkers
for tumor diagnosis and drug development.

Methods: Using RNA-seq expression data, we undertook a pan-cancer classification of 9,096 TCGA tumor samples
representing 31 tumor types. We randomly assigned 75% of samples into training and 25% into testing, proportionally
allocating samples from each tumor type.

Results: We could correctly classify more than 90% of the test set samples. Accuracies were high for all but three of
the 31 tumor types, in particular, for READ (rectum adenocarcinoma) which was largely indistinguishable from COAD
(colon adenocarcinoma). We also carried out pan-cancer classification, separately for males and females, on 23 sex
non-specific tumor types (those unrelated to reproductive organs). Results from these gender-specific analyses largely
recapitulated results when gender was ignored. Remarkably, more than 80% of the 100 most discriminative genes
selected from each gender separately overlapped. Genes that were differentially expressed between genders included
BNC1, FAT2, FOXA1, and HOXAT1. FOXA1 has been shown to play a role for sexual dimorphism in liver cancer. The
differentially discriminative genes we identified might be important for the gender differences in tumor incidence
and survival.

Conclusions: We were able to identify many sets of 20 genes that could correctly classify more than 90% of the
samples from 31 different tumor types using TCGA RNA-seq data. This accuracy is remarkable given the number of the
tumor types and the total number of samples involved. We achieved similar results when we analyzed 23 non-sex-
specific tumor types separately for males and females. We regard the frequency with which a gene appeared in those
sets as measuring its importance for tumor classification. One third of the 50 most frequently appearing genes were
pseudogenes; the degree of enrichment may be indicative of their importance in tumor classification. Lastly, we
identified a few genes that might play a role in sexual dimorphism in certain cancers.
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Background

The Cancer Genome Atlas (TCGA) has generated com-
prehensive molecular profiles including somatic mutation,
copy number variation, gene expression, DNA methyla-
tion, microRNA expression, and protein expression for
more than 30 different human tumor types [1]. Those
large datasets provided a great opportunity to examine the
global landscape of aberrations at DNA, RNA and protein
levels. Pan-cancer analyses have provided comprehensive
landscapes of somatic mutations [2-5], somatic copy
number alterations [6], mutations in chromatin regulatory
factor genes [4], viral expression and host gene fusion [7]
in those tumors. Integrated analysis of 12 tumor types
using data from gene expression, microRNA expression,
protein expression, copy number variation, and DNA
methylation revealed genomic features that many tumor
types had common as well as features unique particular
tumor types [8].

Tumor classifications based on gene expression data
have revealed distinct tumor subtypes and uncovered ex-
pression patterns that were associated with clinical out-
comes [9-14]. Landmark studies like those demonstrated
that gene expression data can provide valuable informa-
tion about tumor characteristics which allow targeted op-
tions for treatment and for patient care and management.
TCGA RNA-seq gene expression data provides a great op-
portunity to discover features that can distinguish differ-
ent tumor types. Those features may serve as biomarkers
for tumor diagnosis and/or potential targets for drug
development.

Sex differences in cancer susceptibility are one of the
most consistent, but least understood, findings in cancer
epidemiology [15, 16]. Males are more prone to develop
cancer and have worse overall survival than females with
the same tumors [17, 18]. For instance, female patients
with melanoma tend to exhibit longer survival than male
patients [19]. Males have a threefold greater risk for de-
veloping bladder cancer than females [20]. Hepatocellu-
lar carcinoma, the most common liver cancer, occurs
mainly in men. Sex differences in immune response [21]
and hormones [22] may play a role. Although additional
factors such as sex chromosomes and life style may also
contribute, the mechanisms that influence sex differ-
ences in cancer susceptibility remain largely unknown.
Thanks to TCGA, large scale analyses of differences be-
tween male and female patients become possible and
start to emerge [22-25]. For a recent review on sexual
dimorphism in cancer, see [26]. Knowing when features
that distinguish tumor types differ between genders
might enhance the utility of such features as biomarkers.

We undertook a comprehensive pan-cancer classifica-
tion of 9096 tumor samples from 31 tumor types from
TCGA using RNA-seq gene expression data. We aimed
to identify a set of genes whose expression levels can
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classify all 31 TCGA pan-cancer tumor types. We also
carried out the same pan-cancer classification on the
gene expression data from 602 “normal” tissue samples
taken adjacent to tumors for 17 tumor types. We com-
pared the top-ranked discriminative genes from both
tumor and “normal” samples and concluded that most
discriminative genes that we identified reflected tumor-
type differences rather than simply tissue-of-origin dif-
ferences. Moreover, we sought to identify, separately in
men and in women, analogous sets of genes that can dis-
tinguish the 23 sex non-specific tumor types. We hope
to gain insight into sexual dimorphism in some tumors
from those analyses.

Data

We downloaded all (March, 2015) UNC RNASeqV2
level 3 expression data from the TCGA data portal
(https://tcga-data.nci.nih.gov) for 9096 patients repre-
senting 31 tumor types (Table 1) and for 602 “normal” sam-
ples taken adjacent to tumors representing 17 tumor types
(Additional file 1: Table S1). We log2-transformed the
TCGA normalized read counts (rsem.genes.normalized) for
the RNA-seq data (Because read depths <1 Reads Per
Kilobase per Million are mostly noise, we filtered
them by assigning all values less than 1 the value 1
before transformation.).

For the sex non-specific tumor classification, we elimi-
nated all tumor types that are sex-specific, namely,
BRCA, CESC, OV, PRAD, TGCT, UCEC and UCS. For
the remaining tumor types, we separated samples into
two groups based on the patients’ gender. We then elim-
inated three additional tumor types (CHOL, DLBC and
KICH) due to small gender-specific sample sizes. At the
time of analyses, data for two new tumor types (ESCA
and STAD) became available and were included in the
analysis. This brought the total number of sex non-
specific tumor types to 23 with 2638 females and 4081
males RNA-seq samples. The numbers of samples for
each tumor type from each gender are listed in Table 1.

Methods

We used the GA/KNN method [27, 28] for pan-cancer
classification. GA/KNN employs a genetic algorithm
(GA) as the gene/feature selection engine and the k-
nearest neighbors (KNN) algorithm as the classification
tool. GA/KNN can identify gene signatures that not only
can separate different classes of samples but also may
uncover subtypes within a class. One valuable character-
istic of GA/KNN is that, for each training/testing parti-
tion, it identifies many near-optimal feature sets and
uses each feature set to predict the testing-set samples.
Because the algorithm classifies each sample multiple
times, one can calculate the proportion of times that
each sample was predicted to be each of the 31 classes
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Table 1 Tumor types and number of TCGA RNA-seq samples used in the analysis

Available Cancer Types

Number of Samples

Pan-cancer Males (%) Females (%)
Adrenocortical carcinoma ACC 79 31 (0.76) 48 (1.82)
Bladder urothelial carcinoma BLCA 408 272 (6.67) 99
Breast invasive carcinoma BRCA 1102 Sex-specific (omitted)
Cervical squamous cell carcinoma and endocervical adenocarcinoma CESC 306 Sex-specific (omitted)
Cholangiocarcinoma CHOL 36 Too few (omitted)
Colon adenocarcinoma COAD 287 156 (3.82) 129 (4.89)
Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48 Too few (omitted)
Esophageal carcinoma ESCA Not available 159 (3.90) 26 (0.99)
Glioblastoma multiforme GBM 169 109 (2.67) 59 (2.24)
Head and Neck squamous cell carcinoma HNSC 522 385 (943) 137 (5.19)
Kidney chromophobe KICH 66 Too few (omitted)
Kidney renal clear cell carcinoma KIRC 534 346 (8.48) 188 (7.13)
Kidney renal papillary cell carcinoma KIRP 291 214 (5.24) 77 (2.92)
Acute Myeloid Leukemia LAML 173 93 (2.28) 80 (3.03)
Brain lower grade glioma LGG 534 292 (7.16) 241 (9.14)
Liver hepatocellular carcinoma LIHC 374 253 (6.20) 121 (4.59)
Lung adenocarcinoma LUAD 517 240 (5.88) 277 (10.50)
Lung squamous cell carcinoma LUSC 502 371 (9.09) 131 (4.97)
Mesothelioma MESO 87 71 (1.74) 16 (0.61)
Ovarian serous cystadenocarcinoma oV 266 Sex-specific (omitted)
Pancreatic adenocarcinoma PAAD 179 99 (2.43) 80 (3.03)
Pheochromocytoma and Paraganglioma PCPG 184 82 (2.01) 102 (3.87)
Prostate adenocarcinoma PRAD 498 Sex-specific (omitted)
Rectum adenocarcinoma READ 95 52 (1.27) 42 (1.59)
Sarcoma SARC 263 119 (2.92) 144 (5.46)
Skin cutaneous melanoma SKCM 473 259 (6.35) 156 (5.91)
Stomach adenocarcinoma STAD Not available 268 (6.57) 147 (5.57)
Testicular germ cell tumors TGCT 156 Sex-specific (omitted)
Thyroid carcinoma THCA 513 102 (2.50) 246 (9.33)
Thymoma THYM 120 63 (1.54) 57 (2.16)
Uterine corpus endometrial carcinoma UCEC 177 Sex-specific (omitted)
Uterine carcinosarcoma ucs 57 Too few (omitted)
Uveal melanoma UvM 80 45 (1.10) 35 (1.33)
Total 9096 4081 2638

plus a category of unclassifiable due to ties (proportions
sum to 1). Furthermore, one can also assess the relative
importance of each gene for sample classification by
counting how often that gene appears in those near-
optimal feature sets.

In a genetic algorithm, the “chromosome” encodes the
candidate solution - the gene signature in this case. A
collection of “chromosomes” is referred to as a “popula-
tion”. In this analysis, the chromosome length was set to
20 (a 20-gene set). The population size was set to 300

chromosomes. The maximal number of “generations”
was set to be 300. For KNN classification, k was set to 5
with a majority “voting” rule. We selected these parame-
ters based on an earlier comprehensive analysis of the
effect of the choice of parameters on both gene selection
and classification accuracy [27].

We randomly divided the data into a training (75% of
the samples, e.g., ~6800 samples for pan-cancer classifi-
cation) and a testing set (25% of the samples, ~2300
samples) with samples drawn proportionally from each
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tumor type without replacement. The genetic algorithm
stopped either when the best “chromosome” in the
current “population” classified at least 90% of the train-
ing samples correctly or when the search reached a pre-
defined maximal number of “generations” (see below).
We refer to the resulting gene set as a near-optimal clas-
sifier. The near-optimal classifier was subsequently used
to predict the class membership of the samples in the
testing set. The predicted and actual class memberships
were then compared to calculate the testing-set predic-
tion accuracy. Because the number of features (genes) is
much larger than the number of samples (commonly re-
ferred to as small # large p), multiple equally discrimina-
tive feature sets may exist. We repeated the above GA/
KNN procedure 1000 times with the training and testing
partitioning unchanged, resulting in 1000 near-optimal
classifiers (not necessarily distinct) and 1000 testing pre-
diction accuracies.

The prediction accuracy may vary depending on which
samples are assigned to the training set. Given the large
size of the pan-cancer gene expression dataset and the
high computational demand of the algorithm, we only
repeated the above procedure twice, each with an inde-
pendent training/testing partition to avoid idiosyncrasies
from use of a single random assignment. For the sex
non-specific pan-cancer classification, we were able to
repeat the above procedures five times each for males
and for females because of the sample size reduction.
For each gender, we combined results from all five inde-
pendent training/testing partitions. Specifically, if a sam-
ple appeared in more than one test set, we averaged the
results (see below).

To assess whether the top-ranked discriminative genes
that we identified from the tumor samples were specific
to the tumors themselves or to the tissue type where the
tumors originated, we carried out the same “pan-cancer”
classification on the gene expression data from 602 “nor-
mal” RNA-seq samples representing 17 tissue types
(Additional file 1: Table S1). In addition, we used these
“normal” samples to compare performance between GA/
KNN and a gradient boosting-based classifier named
XGBoost [29]. Specifically, we randomly generated 10
different training/testing partitions with 75% of samples
as training and 25% as testing; samples were draw pro-
portionally to their class size.

For our GA/KNN analysis of the “normal” samples, we
used the same parameter settings as for the tumor sam-
ples. To decide on parameter settings for XGBoost, we
first carried out a grid search for the optimal hyperpara-
meters over ranges that we believed were close to opti-
mal from our previous experience with XGBoost on
gene expression data. We used 10-fold cross-validation
(repeated 10 times) on all RNA-seq samples and chose as
optimal the hyperparameters that gave the best averaged
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cross-validation results (Additional file 2: Table S2). For
our XGBoost analyses, we set the number of trees (boosts)
to 200, with early stopping criteria when the minimum
training error did not improve in 20 rounds. The average
number of boosts needed was ~19 (minimum = 7 and
maximum = 46). Since XGBoost is a stochastic classifier,
we ran XGBoost with the optimal hyperparameters for
1000 times for each of the 10 training/testing partitions.
We rank all genes based on the average of times a gene is
selected to build the forest from all repeated runs. For
each of the 10 testing datasets, we computed the classifi-
cation accuracy.

All results presented in the remainder of the manu-
script are based on samples from testing sets that were
not involved in the training process.

Results

Pan-Cancer classification of all tumors ignoring gender

A sample may be unclassifiable by KNN due to the fail-
ure of any single tumor type to be in the majority among
its nearest neighbors. Thus, given a test sample, it could
be classified into one of the 31 tumor types or this un-
classifiable category. When the GA/KNN algorithm is
applied in many independent runs (here 2000), the propor-
tion of times each sample is predicted to be each of the 32
classes can be obtained (Additional file 3: Table S3). Those
32 proportions sum to 1. One among them is the propor-
tion of GA/KNN runs that a sample was predicted to be
its own type, i.e., correctly classified (bolded in Additional
file 3: Table S3). For simplicity, we referred to this propor-
tion as proportion-times-correctly-classified (denoted )
throughout the manuscript. Summary statistics for 1 for
each tumor type are shown in Table 2.

The median value of 1. across samples from a given
tumor type was in the range of 90-100% for most tumor
types. Tumor types such as DLBC, BRCA, LAML, LGG,
PCPG, OV, THCA, and UVM had among the highest me-
dian 1. values, suggesting that those tumor types could
be easily distinguished from all others. For example,
BRCA samples were overwhelmingly correctly predicted
to be BRCA (Fig. 1). In contrast, the median . values for
CHOL, READ and UCS were rather low (0.400, 0.136,
and 0.255), indicating that those tumors were often classi-
fied to types other than themselves (Fig. 1). A close exam-
ination showed that the reasons for the low proportions
among the four tumor types were not the same. For
CHOL, the 1, were the largest among the 32 proportions
for 11 of the 15 test samples, suggesting that those sam-
ples were still likely to be assigned to CHOL. Among the
four misclassified samples, one (TGCA-W5-AA39) was
consistently mis-assigned to LIHC (liver) and one
(TCGA-3X-AAV9) to PAAD (pancreatic). No clear pat-
terns were seen for the remaining two. For READ, all sam-
ples were most often mis-assigned to COAD. About half
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Table 2 Summary statistics for 1. values when classifying 31 tumor types and ignoring sex of the samples across 1000 GA/KNN

runs for each of two training/testing partitions (2000 runs total)

Type Minimum 1st Quartile Median Mean 3rd Quartile Maximum Modal Prediction Accuracy
ACC 023 0.76 0.88 0.83 092 097 097
BLCA 0.01 0.51 0.81 0.71 0.96 1.00 091
CHOL 0.00 0.01 040 0.37 0.50 0.66 0.73
COAD 0.18 0.77 0.85 0.83 091 0.98 0.99
DLBC 0.65 0.82 0.89 087 0.94 0.98 1.00
GBM 046 0.86 0.96 091 0.98 1.00 0.99
HNSC 0.04 091 0.98 093 1.00 1.00 0.99
KICH 0.00 0.88 092 0.86 0.96 0.99 0.96
KIRC 0.00 0.98 1.00 093 1.00 1.00 0.96
KIRP 0.00 0.79 097 0.85 1.00 1.00 092
LAML 0.89 1.00 1.00 0.99 1.00 1.00 1.00
LGG 0.56 0.99 1.00 097 1.00 1.00 1.00
LHIC 0.04 097 0.99 0.94 1.00 1.00 0.98
LUAD 0.00 0.88 0.96 0.88 0.99 1.00 0.96
LUSC 0.03 0.67 092 0.78 097 1.00 0.88
MESO 0.00 0.72 0.87 0.76 093 1.00 0.90
PAAD 0.03 0.84 0.96 0.85 0.99 1.00 0.95
PCPG 0.71 0.98 1.00 0.98 1.00 1.00 1.00
READ 0.03 0.09 0.14 0.15 0.19 028 0.00
SARC 0.03 0.78 091 0.83 0.96 1.00 0.96
SKCM 0.00 093 097 0.90 0.99 1.00 0.97
THCA 037 1.00 1.00 0.99 1.00 1.00 1.00
THYM 0.08 0.90 0.99 0.89 1.00 1.00 0.94
ucs 0.01 0.06 0.26 027 041 0.62 0.62
UM 052 0.95 0.99 0.95 1.00 1.000 1.00
BRCA 0.01 0.98 0.99 097 1.00 1.00 0.99
CESC 0.00 052 0.76 0.68 0.87 0.98 0.94
ov 036 0.95 0.98 0.95 0.99 1.00 1.00
PRAD 0.53 1.00 1.00 0.99 1.00 1.00 1.00
TGCT 0.25 097 1.00 0.94 1.00 1.00 1.00
UCEC 0.04 052 0.71 0.68 0.86 1.00 0.96

The rightmost column labeled “Modal Prediction Accuracy” is not based on 1. but instead on a prediction using the tumor type to which each sample was

assigned most often

of the UCS samples were mis-assigned, most often to “un-
classifiable” or to UCEC. Samples from three kidney
tumor types (KICH, KIRC, and KIRP) were largely cor-
rectly classified; those misclassified were assigned to
the other kidney tumor types, rather than to tumors
in different organs. This mis-assignment within organ
was also true for the two lung tumor types (LUAD
and LUSC). In essence, the main cause for misclassifi-
cation among the tumor types appeared to be similar-
ity in their tissue of origin.

The above analysis was explicitly based on the
values. As an alternative way to assess accuracy, we can

proceed as follows. For each test-set sample, we can de-
termine its predicted tumor type for each of the 2000
GA/KNN runs and use that information to determine
the modal prediction, the tumor type to which the sam-
ple was assigned most often. If the modal prediction
matched the actual tumor type, we regarded the predic-
tion as correct. The proportion of correct predictions
across all the samples of a given tumor type measures
what we call the modal prediction accuracy for that
tumor type. These modal prediction accuracies (right-
most column in Table 2) are often higher than the corre-
sponding median value of m.. Averaging across all
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Fig. 1 Proportion of test-set samples predicted to be each of the 31
tumor types. Y-axis lists the 31 actual tumor types; x-axis lists the 32
possible classification categories (31 tumor types plus “unclassified”
[UC]). Each bar represents one of the 32 proportions that samples
from the actual tumor type were predicted to be. The 32 plotted
proportions represent means from the corresponding proportions
for all samples of the actual tumor type

tumor types, the overall modal prediction accuracy
was 95.6% (weighted by number of samples in each
tumor type).

Top-ranked genes

From each of the two independent training/testing parti-
tions, we obtained 1000 sets (a set consists of 20 genes)
of near-optimal classifiers (2000 sets altogether); and we
calculated the frequency with which each gene appeared
in those sets (Fig. 2). We regard the frequencies as indi-
cative of the importance of the corresponding genes for

2 TCF21
(=}
TBX5
o
35
2 o
(]
= |
o
o
wd
(=}
o
O_ .
° % 5000 10000 15000 20000
Gene index
Fig. 2 Stem plot of gene selection frequency based on 2000 near
optimal gene selection classifiers from 1000 GA/KNN runs for each of
two training/testing partitions
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sample classification. Remarkably, there are 40 genes in
the intersection of top 50s from both partitions and 60
genes in the union of top 50s, indicating that our results
were largely reproducible. Those genes from one parti-
tion that did not appear in the top 50 from the other
partition were all among the top 100 in the other parti-
tion, variation likely attributable to the stochastic nature
of the algorithm. We combined the counts from the two
independent runs. Gene ontology analysis of the top 200
genes in the combined list suggested that those genes
are highly enriched in genes implicated in the biological
process of development (Table 3).

The 20 most frequently selected genes were TCF21,
TBXS5, EMX20S, EMX2, PA2G4P4, HNF1B, ATP5EP2,
NACA2, PTTG3B FTHIP3, SFTPA1, HSPBIP1, GATAS3,
NAPSA, ANXA2P3, IGPB1P1, HOXA9, STFA3, RPL19P12,
and SFTPA2. A heatmap representation of the relative ex-
pression levels of the top 50 genes across all 9096 tumor
samples is shown in Fig. 3.

TCF21, the most frequently selected gene, encodes a
transcription factor of the basic helix-loop-helix family.
The TCF21 product is mesoderm specific and expressed
in embryonic epicardium, mesenchyme-derived tissues
of lung, gut, gonad, and both mesenchymal and glom-
erular epithelial cells in the kidney. It is required for nor-
mal heart development [30-32]. TBX5, a member of the
T-box genes, encodes a transcription factor that is in-
volved in the regulation of developmental processes.

Five surfactant genes (SFTA3, SFTPA1/A2, and SFTPB/
C) were among the top 50. All five genes were highly
expressed in LUAD and LUSC and low in all other tumors
except that SFTPB and STFA3 were also highly expressed
in THCA. Very few other genes showed such tumor
specificity.

About one third of the top 50 genes encode transcription
factors (TFs) and another one third encode proteins in-
volved in cell adhesion, ion and small molecular transport,

Table 3 Enriched gene ontology (GO) terms for the top 200
genes from the pan-cancer classification of all 9096 samples
ignoring the gender

Gene ontology (GO) terms P-value
Anatomical structure development 3.2e-10
Anatomical structure morphogenesis 3.7e-10
Developmental process 5.0e-10
System development 1.1e-9
Tissue development 14e-9
Organ development 2.7e-9
Multicellular organismal development 3.7e-9
Epithelium development 2.5e-7
Tube development 1.2e-6
Regulation of transcription, DNA-dependent 1.5e-6
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protein synthesis and folding, and lung function. Surpris-
ingly, the final third contains 14 pseudogenes and two anti-
sense non-coding genes (EMX20S and GATA3-AS]I).

Pseudogenes

Pseudogenes were significantly enriched among the top
50 genes (14 pseudogenes) (P = 1.2 x 107", hypergeo-
metric test) as well as among the top 100 genes (27
pseudogenes) (P = 1.5 x 10717).

The top-ranked pseudogene was PA2G4P4 (prolifera-
tion-associated 2G4 pseudogene 4). Its functional coun-
terpart is PA2G4 (proliferation-associated 2G4). PA2G4
is an RNA-binding protein present in pre-ribosomal ri-
bonucleoprotein complexes and is involved in growth
regulation. PA2G4P4 was highly expressed in nearly all
tumor samples with the overall highest expression in
HNSC, OV, and SARC. Expression levels of PA2G4P4
were positively correlated with those of PA2G4 in all
tumor types except KIRC, PRAD, and THCA (Additional
file 4: Figure S1) — remarkable given that PA2G4 is on
chromosome 12 and PA2G4P4 is on chromosome 3. The
expression of PA2G4P4 was also correlated with that of
NACA2 in about one third of the tumor types (data not
shown). NACA2, the nascent polypeptide associated com-
plex alpha subunit 2 gene, is, like PA2G4, involved in
growth regulation and RNA processing.

Interestingly, none of the functional counterparts of
the 14 pseudogenes was among the top 100 most fre-
quently selected genes, indicating that the expression of
the pseudogenes might better discriminate tumor types
than expression of their functional counterparts.

Putative tumor subtypes

Tumors are heterogeneous [33]. For example, breast can-
cer is known to have several distinct subtypes [12—14, 34].
To see if the top-ranked genes for pan-cancer classifica-
tion can further uncover tumor subtypes, for each tumor
type we carried out k-means clustering using expression
data for the 50 top-ranked pan-cancer genes that had
non-zero interquartile ranges for the particular tumor
type. Consequently, each tumor type had a slightly differ-
ent 50-gene set. In this exploratory analysis, we set the
k =2 or k = 3, that is, we allowed two or three subgroups
for each tumor type. We selected an optimal k using the
silhouette method [35]. All tumor types can be divided
into 3 sub-groups based on the minimum averaged silhou-
ette scores, except SARC and THYM. In addition, we have
excluded tumor types GBM, LAML, and OV that have in-
complete survival data. Based on the survival analyses,
the tumors which have putative subgroups that are
correlated with survival after the Bonferroni correction
(ie, P < 0.001) (Additional file 5: Methods) included
ACC, BLCA, BRCA, KIRC, KIRP, LGG, and PAAD.

The heatmaps of ACC, BLCA, BRCA, KIRC, KIRP,
LGG, and PAAD from k-mean clustering analysis are
shown in Additional file 6: Figure S2 and the subgroups
associations to survival outcomes are highlighted in
Additional file 7: Figure S3. BRCA tumors have distinct
subtypes, and the subtypes are associated with survival
outcomes [13]. Using the top-ranked genes, we largely re-
capitulated the ER+ and basal-like subtypes (Additional
file 6: Figure S2c) although the association between
patients’ survival and our subtypes is only marginally
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significant after multiple testing adjustment (P = 0.008,
Additional file 7: Figure S3c). It is worth pointing out that
the subset of genes used in subtype discovery was identi-
fied from pan-cancer classification only.

Classification of samples of “normal” tissue taken
adjacent to tumors

Using GA/KNN, we correctly classified on average 87.6%
test set “normal” samples. The heatmap representation of
the relative expression levels of the top 50 genes across all
602 “normal” samples are shown in Additional file 8:
Figure S4. Among the 100 top-ranked discriminative
genes for “normal” samples using GA/KNN, only 18 were
in common with the top 100 discriminative genes from
tumor samples (C11orf9, EMX2, EMX20S, ESRI, FOXFI,
FTHL3, GAL3ST1, HAND2, HOXAll, HOXAIIAS,
HOXA9, IRX5, NACA2, NBLA00301, PA2G4P4, SFTPD,
TBXS, and TCF21). Restricting to the top 50 discrimina-
tive genes, the corresponding overlap was eight. This
result suggests that most genes that we identified as
distinguishing among the 31 tumor types are differences
among the tumor types themselves and not simply
reflecting differences among the tissues where the tumors
originated.

Comparisons of classification accuracy for GA/KNN
and XGBoost for 10 testing sets are shown in Additional
file 9: Figure S5. The averaged accuracies are comparable
between the two methods (87.6% for GA/KNN vs 90.2%
for XGBoost). The heatmap representation of the rela-
tive expression levels of the top 50 genes selected by
XGBoost across all 602 “normal” samples is shown in
Additional file 10: Figure S6. Among the 100 top-ranked
discriminative genes from GA/KNN on “normal” samples
and corresponding top 100 -from XGBoost, only 16 were
in common (Cl150rf21, C190rf20, CALML3, DSG3, FOXFI,
FOXL2, FTHL3, KIFI12, KRT6A, NACA2, PCSKIN,
SCARNAY, SFTPD, TCF23, TSSK6, and ZMYND17).

Pan-Cancer classification of sex non-specific tumors

For the 23 sex non-specific tumor types, we had 4081
samples from males and 2638 from females. The sample
imbalance favoring males persisted in most individual
tumor types except for ACC, LUAD, PCPG, SARC, and
THCA (Table 1). For each gender, we carried out 1000
independent GA/KNN runs for each of five independent
training/testing partitions.

The quartiles for the m.. values for males and females
over the 5000 total runs are listed in Table 4 (Additional
file 11: Figure S7). Overall, the results recapitulated
those from our pan-cancer analysis of 31 tumor types
that ignored gender. Those tumor types with high predic-
tion accuracy remained high and those with low accuracy
stayed low regardless whether gender was considered or
ignored. All READ samples were predicted to be COAD
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for both genders. The prediction accuracies for BLCA,
ESCA, and MESO were relatively low compared to other
tumor types regardless of gender.

To see the subtle differences between males and fe-
males, here we considered the top 100 genes from each
gender. The union for the top 100 genes from males and
from females contained 125 genes and the intersection
contained 75 genes (Additional file 12: Table S4). Two
heatmap representations of the relative expression levels
of the top genes across all male and female tumor sam-
ples are shown in Additional file 13: Figure S8. Many
genes had similar ranks in both genders; 21 differed by
more than 100 in rank (Table 5). Rank sum tests showed
that all 21 genes were differentially expressed in samples
between males and females in at least one tumor type
(data not shown). In the following paragraphs, we focus
on genes that were largely differentially expressed be-
tween females and males in tumor samples and whose
possible role in sexual dimorphism received support in
existing literature.

FOXA1I had rank 82 in females and 417 in males, sug-
gesting that FOXAI expression level might be more im-
portant for distinguishing sex non-specific tumors in
females than in males. FOXAI had significantly higher
expression in LIHC in females than in males
(P = 9.9 x 107°, rank sum test, two-sided). Li et al. [22]
elegantly showed that FOXA1/A2 transcription factors
regulate estrogen signaling differently in liver and mam-
mary gland, that this female hormone is protective for
liver cancer in mice and that this protection requires
FOXA1/A2. Upon exposure to hepatocarcinogens, the
tumor load in mutant FOXA1/A2 female mice was dra-
matically increased whereas the tumor load in mutant
FOXAI1/A2 male mice was dramatically decreased [22].
Besides LIHC, FOXA1I had significantly higher expres-
sion in HNSC (P = 2.4 x 1073, rank sum test, two-sided)
and KIRP (P = 6.5 x 107%, rank sum test, two-sided) in
females than in males (Fig. 4). Whether FOXAI might
also play a role for sexual dimorphism in HNSC and
KIRP remains unclear.

On the other hand, BNCI ranked high in males (45th)
and low in females (932nd). BNC1 (basonuclin 1) is a zinc
finger protein that is thought to play a regulatory role in
epithelial proliferation. BNC1 modulates TGF-p1-induced
epithelial dedifferentiation of mammary epithelial cells
[36]. BNCI had significantly higher expression in females
than in males (Additional file 14: Figure S9) in HNSC
(P = 87 x 1073 rank sum test, two-sided), LIHC
(P = 54 x 107°, rank sum test, two-sided), and THCA
(P = 24 x 107 rank sum test, two-sided). Interestingly,
BNCI is also a putative ER receptor 1 (ESR1) target
as ESR1 was bound in the proximal promoter of
BNCI1 in T-47D cell line (ENCODE data on UCSC
genome browser), raising the possibility that BNC1
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Table 4 Quartiles for m.. values when classifying 23 non-sex-specific tumor types separately using male and female samples across
1000 GA/KNN runs for each of five training/testing partitions (5000 runs total)

Type Minimum 1st Quartile 3rd Quartile Maximum Modal Prediction Accuracy
F M F M F M F M F M
ACC 0.01 0.01 0.83 061 0.95 0.84 1.00 095 097 093
BLCA 0.01 0.04 046 0.66 091 0.96 1.00 1.00 0.89 0.93
COAD 022 0.12 0.83 0.83 0.93 091 1.00 0.96 1.00 0.99
GBM 035 0.59 091 0.96 0.99 1.00 1.00 1.00 1.00 1.00
HNSC 0.54 0.06 0.93 0.96 1.00 1.00 1.00 1.00 1.00 1.00
KIRC 0.00 0.00 0.98 0.98 1.00 1.00 1.00 1.00 0.95 0.98
KIRP 0.00 0.00 051 093 0.92 1.00 1.00 1.00 0.89 0.92
LAML 0.93 0.83 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
LGG 0.72 0.16 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
LIHC 0.01 0.01 093 0.98 1.00 1.00 1.00 1.00 0.99 0.99
LUAD 0.06 0.05 0.90 0.80 0.99 0.96 1.00 1.00 0.96 097
LUSC 0.00 0.03 049 0.85 0.94 0.99 1.00 1.00 0.86 0.94
MESO 0.03 0.00 0.50 0.78 0.79 0.95 0.89 1.00 092 0.95
PAAD 0.00 0.08 0.84 0.83 0.99 0.99 1.00 1.00 0.95| 093
PCPG 0.14 0.80 0.98 0.97 1.00 1.00 1.00 1.00 0.98 1.00
READ 0.01 0.03 0.08 0.09 0.15 0.17 033 023 0.00 0.00
SARC 0.17 0.06 0.88 083 0.98 0.95 1.00 1.00 1.00 0.99
SKCM 0.15 0.01 0.89 0.90 0.98 0.98 1.00 1.00 0.98 0.97
THCA 081 0.71 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
THYM 0.09 0.08 0.85 0.89 1.00 0.99 1.00 1.00 0.98 092
uvm 0.76 0.28 0.95 0.92 0.99 0.99 1.00 1.00 1.00 0.97
ESCA 0.00 0.05 0.02 035 061 0.97 0.80 1.00 038 0.64
STAD 0.07 0.08 0.84 0.80 0.98 0.96 1.00 1.00 0.98 097

The rightmost column labeled “overall” is not based on m.. but instead on a prediction using the tumor type to which each sample was assigned most often

might also play a role in sexual dimorphism in liver
cancer similar to FOXAL.

Among the 21 genes, FAT2 had larger differential expres-
sion between males and females in KIRP (P = 7.5 x 107/,
rank sum test, two-sided) than in any other sex non-
specific tumor. FAT2 encodes a tumor suppressor essential
for controlling cell proliferation during Drosophila devel-
opment [37]. FAT2 is a member of the cadherin superfam-
ily and most likely functions as a cell adhesion molecule
[38]. FAT2 was frequently mutated in clear cell renal cell
carcinoma [39, 40]. It is not clear whether FAT2 plays a
role in sexual dimorphism in KIRP.

To see if the differences that we observed in both pre-
diction accuracy and gene ranks between males and fe-
males were due to the imbalance of sample proportions
among the tumor types, we generated eight male data-
sets that matched approximately both the total number
of samples and tumor proportions as those in females by
taking random samples from males without replacement.
We repeated the same pan-cancer classification proced-
ure on each of the eight “matched” male datasets as

above. The mean and median 1 . values from the full
female dataset, the full male dataset and the eight
“matched” male datasets are shown in Additional file 15:
Table S5. Female-male differences in mean or median
.. values observed from original dataset were strongly
reduced (Additional file 15: Table S5) when the sample
proportions were balanced between the genders. The
difference in gene ranks remained (Table 5), however.
Basically, genes, such as BNCI that ranked high from
the full male dataset remained high from the matched
male datasets, and those ranked low remained low,
although a shrinking of rank differences is also ap-
parent (Table 5).

Discussion

Gene expression data can be used to classify tumor types
and uncover tumor subtypes that may suggest targeted
treatment options. We carried out a pan-cancer classifi-
cation of ~9100 TCGA tumors from 31 tumor types
using RNA-seq gene expression data. We found that,
among the 31 tumor types, BRCA, GBM, HNSC, KIRC,
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Table 5 Gene ranks from full female dataset, full male dataset, and the eight “matched” male datasets
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Gene Rank from full Rank from full Difference Mean (SD) rank from 8 Difference
female dataset male dataset (F-M) matched male datasets (F-meanM)
Genes ranked higher using male BNC1 932 45 887 54 (16) 878
samples than female samples FATY 307 %0 302 143 (23) 249
KRT5 328 47 281 165 (57) 163
RNF43 299 94 205 81 (14) 218
STPR5 281 99 181 98 (38) 183
ANKS4B 245 9% 148 115 (20) 130
CSTA 218 93 125 129 (33) 89
ANXA8 161 48 113 121 (36) 40
KRT8 175 65 110 94 (22) 81
CLRN3 204 98 106 86 (15) 118
Genes ranked higher using female FOXA1 82 417 —335 237 (92) —155
samples than male samples AMYTA 100 370 -270 386 (162) -286
HPN 74 336 —262 256 (94) -182
LAD1 45 269 —224 129 (40) -84
PDZK1 83 293 =210 228 (79) -145
TMC5 55 241 -186 139 (50) -84
KIF12 89 249 —160 324 (135) —235
STK32A 79 226 -147 123 (28) —44
CFAP221 81 187 -106 94 (21) -13
TRIM29 86 188 -102 143 (25) =57
HOXA11 84 184 -100 291 (77) -207
LAML, LGG, LIHC, OV, PCPG, PRAD, SKCM, THCT,
THCA, THYM, and UVM were more easily distinguished
from all other tumor types. Tumors from similar tissue or-
igins (e.g., READ and STAD; UCS and UCEC) are usually
more difficult to distinguish from each other than those
from different lineages (e.g., READ vs LAML). In an ex-
FOXAL treme, nearly all READ samples were indistinguishable
from COAD samples. Surprisingly, the three kidney tu-
=r mors (KICH, KIRC, and KIRP) were distinguished from
| I each other and from all other tumor types using gene ex-
| | | | pression data alone.
R | | We were able to correctly classify more than 90% of the
jg‘ st | | tumor samples overall using many different 20-gene sets,
5 though some genes appeared repeatedly in the sets. Both
g of | sample prediction accuracies and gene rank (a measure of
H importance in classification) were largely reproducible.
Bl We showed that the top ranked genes from the pan-
| cancer analysis were able not only to distinguish differ-
. ! | ent types of tumor samples but also to uncover potential
1 subtypes within some tumor types. The top 50 genes
LB d Uil | ‘_ o from our analysis largely captured the ER positive lu-
8 2 g g 5 % g2 § § 2 % g é g § g § g g 'CI‘_: % : minal A or luminal B and ER negative basal-like sub-

tumors from males (blue) and females (pink)

Fig. 4 Boxplots of FOXAT expression data in the 23 sex non-specific

groups — subgroups that have distinct survival profiles.
For BLCA, KIRC, KIRP, LGG, and PAAD, patients in the
three putative subgroups had differential survival.
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Our primary analysis tool was GA/KNN, a supervised
classification method that carries out feature selection
and classification simultaneously [27, 28]. To compare
its performance with a more recent supervised method,
XGBoost (gradient boosting machines), we ran both
tools on ten training/testing partitions generated from
the 602 “normal” RNA-seq samples. Test set classifica-
tion accuracy (~90%) was comparable for both methods.
Despite similar classification performance, the top-ranked
discriminative genes derived from two methods showed
little overlap. Clearly multiple sets of genes may give simi-
lar classification performance, but which tool provides a
gene list with more biological relevance or utility beyond
classification remains an open question — and one that is
impossible to address by algorithmic methods alone.

Though unlikely by chance, one third of the top 50
genes were pseudogenes. Interestingly, none of their
functional counterparts ranked among the top 100
genes, suggesting that those pseudogenes may better
serve as features than their functional counterparts in
distinguishing among tumor types. Pseudogenes share
high sequence homology to their functional counterparts
but in most cases contain deletions/insertions and
frameshift mutations or harbor premature stop codons
that make them unable to produce functional proteins
[41, 42]. Only 10% of human genes have a pseudogene
counterpart, and some have just one pseudogene whereas
others have multiple pseudogenes [43]. Many pseudo-
genes have been implicated in tumor biology. Pseudogenes
can regulate the expression of their functional counter-
parts and play a role in tumor development [44—46]. For
example, PTENPI, a PTEN pseudogene, can regulate the
level of PTEN in cells and exert a growth-suppressive role
[46]. The positive correlation that we observed between
expression of pseudogene PA2G4P4 and that of PA2G4
suggests that this pseudogene may also regulate the ex-
pression of its functional counterpart. Recent reviews de-
scribe the role of pseudogenes in normal cellular function
and in diseases [42, 47]. A pan-cancer analysis of pseudo-
gene expression in ~2800 patient samples showed that a
significant number of pseudogenes are differentially
expressed and their expression can classify the major
histological subtypes of endometrial cancer [48]. Quantifi-
cation of pseudogene expression in 13 cancer and normal
tissue types found evidence of a wide-spread expres-
sion of pseudogenes in cancers and identified cancer/
tissue-specific pseudogene expression patterns [49]. Seven
(PA2G4P4, ATPSEP2, FTHIP3, ANXA2P3, ANXA2PI,
HNRNPA1P33, and HSP90B3P) of the 14 pseudogenes that
our analysis revealed as important for pan-cancer classifica-
tion were previously found to be differentially expressed in
various cancers.

Lastly, by comparing the top-ranked discriminative
genes from “normal” samples to those from tumor
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samples, we provide evidence that the top-ranked dis-
criminative genes from the tumor samples likely reflect
tumor-specific expression differences rather than simply
reflecting expression differences attributable to their
underlying tissues of origin.

Sexual dimorphism in cancer prevalence and survival
between males and females is well-documented but little
understood [15, 16]. To see if gene importance in
distinguishing the same tumor types differs between
males and females, we also carried out pan-cancer
classification on 23 TCGA sex non-specific tumor types
separately using samples from males and from females.
We found that similar prediction accuracies were ob-
tained in 31 pan-cancer and 23 sex non-specific tumor
types in both males and females. While most genes had
similar ranking for their contribution to tumor type
classification in both genders, 21 of the top 100 genes
differed in rank by more than 100 between the genders,
suggesting that those genes may differ in importance for
distinguishing tumor types between males and females.
FOXAL is a known contributor to sexual dimorphism in
liver cancer in mice [22]. Our analysis suggested that
FOXA1I expression is more important for distinguishing
sex non-specific tumors types in female tumor samples
than in male samples. FOXAI had significantly higher
expression in HNSC, KIRP, and LIHC from females than
from males. FOXAI is transcriptionally regulated by ESR1
in liver. It is unclear whether FOXAI is also regulated by
ESR1 in head and neck and kidney; if it were, FOXA1
would likely also have a role in sexual dimorphism in those
tumors. Our analysis also suggested that BNCI expression
is important for distinguishing sex non-specific tumors in
males but not in females. BNCI is also a putative ESR1
target as ESR1 was bound in the proximal promoter of
BNCI in T-47D cell line, raising the possibility that BNC1
may also have a role for sexual dimorphism in liver cancer.

Conclusion

In conclusion, using RNA-seq gene expression alone, we
were able to identify many sets of 20 genes that could
correctly classify more than 90% of the samples from 31
different tumor types in a validation set. This accuracy is
remarkable given the number of the tumor types and
the total number of samples involved. This result was
largely replicated when we analyzed 23 non-sex-specific
tumor types separately for males and females. Genes
appearing in the sets of 20 largely overlapped among sets.
We regard the frequency with which a gene appeared in
those sets as measuring its importance for tumor classifi-
cation. One third of the 50 most frequently appearing
genes were pseudogenes; the degree of enrichment may
be indicative of their importance in tumor classification.
Lastly, we identified a few genes that might play a role in
sexual dimorphism in certain cancers.
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Additional file 1: Table S1. “Normal” (normal-adjacent-to-tumor) tissue
types and number of TCGA RNA-seq samples used in the analysis.
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Additional file 2: Table S2. Hyper-parameters used for XGBoost.
(DOCX 196 kb)

Additional file 3: Table S3. Schematic of proportion of times samples
in the test set were assigned to each of the 31 tumor types and the
category of “unclassifiable” across 1000 GA/KNN runs for each of two
training/testing partitions (2000 runs total). Only four tumor types (ACC,
BLCA, BRCA, and UVM) are shown with sample names denoted
generically as Sy through Sn, where n is the number of samples available
for that tumor type. The column containing the proportion correctly
classified (1.o) is shown in boldface. (DOCX 21 kb)

Additional file 4: Figure S1. Scatterplots of expression levels of PA2G4
and PA2G4P4 across all tumor types. (DOCX 383 kb)

Additional file 5: Methods. (DOCX 568 kb)

Additional file 6: Figure S2. Heatmap representation of the expression
patterns of the top 50 genes across all (a) ACC, (b) BLCA, (c) BRCA, (d)
KIRC, (e) KIRP, (f) LGG, and (g) PAAD samples. See Fig. 3 legend for details.
The colors of the horizontal bar represent the subgroups identified by k-
means clustering analysis. (DOCX 60 kb)

Additional file 7: Figure S3. Post-procurement survival probability for
patients in the three subtypes of (a) ACC, (b) BLCA, () BRCA, (d) KIRC, (e)
KIRP, (f) LGG, and (g) PAAD tumors identified by k-means analysis based
on RNA-seq expression data of the top 50 genes. (DOCX 15 kb)

Additional file 8: Figure S4. Heatmap representation of the expression
patterns of the top 50 genes across all 602 “normal” samples taken
adjacent to tumors from 17 tumor types. Each row (gene) was centered
by the median expression value across all samples. A hierarchical
clustering analysis was carried out for both samples and genes using the
Euclidean distance as the similarity metric. (DOCX 16 kb)

Additional file 9: Figure S5. Classification accuracies between GA/KNN
and XGBoost for 10 testing sets. (DOCX 560 kb)

Additional file 10: Figure S6. Heatmap representation of the expression
patterns of the top 50 genes selected by XGBoost across all 602 “normal”
samples taken adjacent to tumors from 17 tumor types. Each row (gene)
was centered by the median expression value across all samples. A
hierarchical clustering analysis was carried out for both samples and genes
using the Euclidean distance as the similarity metric. (DOCX 15 kb)

Additional file 11: Figure S7. Proportion of test-set samples predicted
to be each of the 23 sex non-specific tumor types in male patients. Y-axis
lists the 23 actual tumor types; X-axis lists the 24 possible classification
categories (23 tumor types plus “unclassified” [UC]). Each bar represents
one of the 24 proportions that samples from the actual tumor type were
predicted to be. The 24 plotted proportions represent averages from the
corresponding proportions for all samples of the actual tumor type.
(DOCX 1745 kb)

Additional file 12: Table S4. Genes ranked among the top 100 from
either females and males. (DOCX 389 kb)

Additional file 13: Figure S8. Heatmap representations of the expression
patterns of the top genes across all male and female samples. Each row
(gene) was centered by the median expression value across all samples. A
hierarchical clustering analysis was carried out for both samples and genes
using the Euclidean distance as the similarity metric. (DOCX 15 kb)
Additional file 14: Figure S9. Boxplot BNCT expression data in the 23 sex
non-specific tumors from males (blue) and females (pink). (DOCX 126 kb)

Additional file 15: Table S5. Mean and median of for ri.c values for each
tumor type from full female dataset, full male dataset, and the corresponding
mean (sd) from the eight “matched” male datasets. (DOCX 283 kb)
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