
REVIEW
published: 16 July 2019

doi: 10.3389/fimmu.2019.01582

Frontiers in Immunology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1582

Edited by:

Zhigang Tian,

University of Science and Technology

of China, China

Reviewed by:

Haoyu Sun,

University of Science and Technology

of China, China

Rui Sun,

University of Science and Technology

of China, China

Jingtao Chen,

The First Hospital of Jilin

University, China

*Correspondence:

Cai Zhang

caizhangsd@sdu.edu.cn

Specialty section:

This article was submitted to

NK and Innate Lymphoid Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 26 March 2019

Accepted: 25 June 2019

Published: 16 July 2019

Citation:

Wang Y and Zhang C (2019) The

Roles of Liver-Resident Lymphocytes

in Liver Diseases.

Front. Immunol. 10:1582.

doi: 10.3389/fimmu.2019.01582

The Roles of Liver-Resident
Lymphocytes in Liver Diseases
Yanan Wang and Cai Zhang*

Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan,

China

Tissue-resident lymphocytes usually reside in barrier sites and are involved in innate

and adaptive immunity. In recent years, many studies have shown that multiple

types of lymphocytes are resident in the liver, including memory CD8+ T (TRM) cells;

“unconventional” T cells, such as invariant natural killer T (iNKT) cells, mucosal associated

invariant T (MAIT) cells, and γδT cells; innate lymphoid cells (ILCs) such as natural

killer (NK) cells and other ILCs. Although diverse types of tissue-resident lymphocytes

share similar phenotypes, functional properties, and transcriptional regulation, the unique

microenvironment of the liver can reshape their phenotypic and functional characteristics.

Liver-resident lymphocytes serve as sentinels and perform immunosurveillance in

response to infection and non-infectious insults, and are involved in the maintenance of

liver homeostasis. Under the pathological conditions, distinct liver-resident lymphocytes

exert protective or pathological effects in the process of various liver diseases. In this

review, we highlight the unique properties of liver-resident lymphocytes, and discuss their

functional characteristics in different liver diseases.
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INTRODUCTION

Lymphocytes are classically viewed as circulating immune cells that continuously traffick in blood,
lymph nodes, and other secondary lymphoid tissues. Naïve T cells patrol the organs and are
stimulated by antigen-presenting cells (APCs) that migrate from the site of infection to lymph
nodes in infectious conditions. Then, T cells undergo clonal expansion and differentiation into
effector cells that can migrate to the sites of inflammation. After the first infection, circulating
memory T cells are established and are ready to mount a superior response to secondary infection
(1, 2). However, recent studies have demonstrated the existence of tissue-resident lymphocytes
(non-circulating lymphocytes) that usually reside in barrier sites (such as skin, lung, small intestine,
and liver), but do not circulate into the periphery, and are involved in innate and adaptive immune
responses (3–5). These specialized tissue-resident lymphocytes include memory CD8+ T (TRM)
cells, unconventional T cells [e.g., natural killer T cells (NKTs), mucosal associated invariant
T (MAIT) cells, γδT cells, CD8αα+ intraepithelial lymphocytes (IELs)], and innate lymphoid
cells (ILCs).

Notably, many studies have revealed that the liver not only has metabolic activities, nutrient
storage, and detoxification functions, but also is a complex immunological organ (6, 7). The
liver has a unique characteristic morphologic organization, cell composition, and functions.
Kupffer cells, the liver-resident macrophages, and DCs, comprise a significant number of the
non-hepatocytes and act as a hepatic immune sentinel to remove or alert the immune system about
the presence of harmful pathogens (8, 9). In terms of its lymphocyte composition, the lymphocytes

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01582
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01582&domain=pdf&date_stamp=2019-07-16
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:caizhangsd@sdu.edu.cn
https://doi.org/10.3389/fimmu.2019.01582
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01582/full
http://loop.frontiersin.org/people/710129/overview
http://loop.frontiersin.org/people/397299/overview


Wang and Zhang Liver-Resident Lymphocytes in Liver Diseases

in the liver are highly distinct from those in blood and
lymphoid organs. Intrahepatic lymphocytes comprise enriched
innate immune cells, such as NKT cells, ILCs, and γδT cells.
NK and NKT cells constitute about 50% of total intrahepatic
lymphocytes. When activated, NK and NKT cells play major
roles in resistance to viral infection and regulation of innate
and adaptive immune responses. Liver harbors all ILC subtypes
including NK cells, ILC1, ILC2, and ILC3 (10). Different hepatic
ILC subsets play important roles in protection against pathogen
invasion, maintenance of tissue homeostasis, and repair of
damaged tissue (10). Liver γδT cells account for 3–5% of the
total liver lymphocytes and 15–25% of the total number of liver
T cells, which is higher than that in peripheral blood (11).
Therefore, the liver is regarded as an organ of predominant innate
immunity (12, 13).

Recent studies have shown that many liver lymphocytes show
tissue-resident feature. These cells include TRM cells, ILCs (e.g.,
NK cells and other ILC subsets), γδT cells, and NKT cells (14–
17). The newly identified liver-resident NK cells are regarded
as hepatic ILC1s, based on their phenotypes (expressing high
levels of CD49a and TRAIL, but lacking CD49b) (15, 18, 19).
These CD49a+DX5− liver-resident NK cells selectively reside in
the liver sinusoids, and constitute about 50% of total liver NK
cells (15, 20). These liver-resident lymphocytes serve as sentinels
and frontline defenders in response to infection and non-
infectious insults, and function in immunosurveillance, immune
regulation, and maintenance of liver homeostasis. Exploring
the phenotypes and functional characteristics of liver-resident
lymphocytes would increase our understanding of hepatic
immunity and lead to new or better treatments for liver diseases.
In this review, we focus on the phenotypic and functional
characteristics of liver-resident lymphocytes, their relationship
with liver-related diseases, and potential therapeutic strategies.

HALLMARKS OF TISSUE-RESIDENT
LYMPHOCYTES

Although tissue resident lymphocytes are diverse and locate
in different tissues, they share many important characteristics
in terms of their distribution, phenotypes, transcriptional
regulation, and function. Tissue resident lymphocytes are
abundant at barrier tissues (such as skin, lung, small intestine,
and liver) where they recognize a wide variety of harmful
signals, such as microbial products, infection, inflammation
or tissue injury, and maintenance of tissue integrity. Upon
sensing harmful or stress signaling, they produce antimicrobial
and tissue-protective factors rapidly and they usually share
a “memory-like” phenotype and function to provide long-
lasting and robust protection against subsequent infection (21).
Notably, long-term maintenance and rapid expansion of tissue-
resident lymphocytes mainly depends on their local self-renewal
ability (4, 22).

Tissue-resident lymphocytes share similar cell-surface
phenotypes in accordance with their functional features and
resident mechanisms. Many tissue-resident lymphocyte subsets
express CD44, CD103, and CD49a, which mediate the adhesion

and retention of these cells (23, 24). They usually lack the
lymphoid homing markers, such as CCR7 and CD62L, and
downregulate the expression of tissue egressing receptors,
such as sphingosine-1-phosphate receptor 1 (S1PR1) and
other members of S1P receptor family including S1PR4 and
S1PR5 (25, 26). The S1P receptor mediates lymphocytes egress
from tissue in a S1P gradient-dependent manner, while CD69
suppresses and internalizes the S1P receptor, thus inhibiting
lymphocyte egress from lymphoid organs and promoting their
retention (27, 28). In addition, chemokine receptors play an
important role in the recruitment and homing of lymphocytes
to specific organs. For example, CCR4 and CCR10 are highly
expressed on skin-homing memory T cells (29). The migration
or retention of lymphocytes in intestinal sites depend on the
integrin α4β7 and CCR9 (30, 31). CXCR3, CXCR6, and CCR5
are involved in T-cell trafficking to the liver, as well as the
maintenance of liver-resident cells (32–34).

Recent transcriptional analyses have demonstrated that tissue-
resident cells display a unique pattern of transcription factor
expression. BLIMP1 (B lymphocyte-induced maturation protein;
encoded by Prdm1) and HOBIT (Homolog of BLIMP1 in T
cells; encoded by Znf683) are involved in establishing diverse
tissue-resident lymphocyte populations such as TRM, NKT, and
NK cells (35–37). HOBIT and BLIMP1 downregulate Ccr7,
S1pr1, and klf2 (which encodes the Krüppel-Like Factor 2, a
transcription factor targeting gene S1pr1), which are required
for lymphocyte egress from tissues (25, 35). They also repress
Tcf7, which encodes TCF1, a transcription factor required for
the development of conventional circulating memory cells (26,
38). The T-box transcription factors, T-bet and EOMES are
usually downregulated in TRM cells in the skin, gut, lung,
and brain, whereas, some level of T-bet expression is essential
for IL-15-mediated TRM survival (39–41). In addition, innate
tissue-resident lymphocytes including iNKT cells and MAIT
cells which have memory-like properties, have similar expression
patterns of the transcription factor promyelocytic leukemia zinc
finger (PLZF), which has been shown to be essential for the
development and function of innate T cells (42–44).

PHENOTYPIC AND FUNCTIONAL
CHARACTERISTICS OF LIVER-RESIDENT
LYMPHOCYTES

Liver-resident lymphocytes share many common phenotypic
and transcriptional characteristics with other tissue-resident
lymphocytes, which are different from circulating lymphocytes.
Conventional circulating lymphocytes usually express lymph
node homing molecules CCR7 and CD62L and tissue egressing
S1P receptors, and are regulated by transcriptional factors KLF2
and TCF1.Whereas, liver-resident lymphocytes express adhesion
and retention molecules including CD103, CD69, CD49a, CD44,
and chemokine receptors CXCR3 and CXCR6. BLIMP1 and
HOBIT regulate the transcriptional programing of liver-resident
lymphocytes. Functionally, circulating lymphocyte subsets play
immune surveillance roles by patrolling blood, lymph nodes,
and other secondary lymphoid organs, whereas the liver-resident
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TABLE 1 | Phenotypic and functional characteristics of murine liver-resident NK cells and other tissue-resident NK cells.

Surface markers Transcription factors Effector molecules

Liver NK1.1+CD49a+DX5−CD69+ CD103−CXCR6+CD127+/− T-bet+Eomeslo IFN-γ+TNF-α+Granzyme+

GM-CSF+TRAIL+

Uterus NK1.1+CD49a+DX5+/−CD69+ CD127− T-bet+Eomes+/− IFN-γ+TNF-α+Granzyme+

Salivary gland NK1.1+CD49a+DX5+/−CD69+CD103−CD127+/− T-bet+Eomes+ IFN-γ+/−TRAIL+/−

Adipose NK1.1+CD49a+DX5−CD69+CD103−CD127+/− T-bet+Eomes− IFN-γ+TRAIL−

Kidney NK1.1+CD49a+DX5−CD69+ ND TRAIL+/−

Lung NK1.1+CD49a+DX5− ND IFN-γ+ Granzyme+

Skin NK1.1+CD49a+DX5−CD69+ Eomes− ND

ND, not determined.

TABLE 2 | Phenotypic and functional characteristics of human liver-resident NK cells and other tissue-resident NK cells.

Surface markers Transcription factors Effector molecules

Liver CD49a+ CD56brightCD49a+CD69+ CD103+

CXCR6−
T-bethiEomeslo/− IFN-γ+TNF-α+GM-CSF+

CD107a+Perforin+Granzyme+

Eomeshi CD56brightCD49a− CD69+

CD103− CXCR6+
T-betloEomeshi IFN-γ+TNF-α+GM-CSF+

CD107a+PerforinloGranzymelo

CD49e− CD56bright CD69+ CXCR6+ T-bet+Eomeshi IFN-γ+ TNF-α+ CD107a+

Uterus CD56brightCD49a+CD103+/−

CD69+/−

Eomes+ IFN-γ+TNF-α+GM-CSF+ Perforin+

Granzyme+

Tonsil CD56brightCD49a+CD69+ CD103+

CXCR6+ integrinβ7+
T-bet+Eomes+ IFN-γ+CD107a+Perforin+ Granzyme+

Lung CD56brightCD49a+CD69+ CD103+

CXCR3+
ND IFN-γ+CD107a+ Granzyme+

Lymphoid tissue CD56brightCD49a− CD69+

CD103− CXCR6+
Eomes+ IFN-γloCD107a+Perforin+ Granzymelo

ND, not determined.

lymphocytes reside in the liver sinusoidal blood, and focus on the
hepatic homeostatic maintenance and immune defenses.

Although tissue-resident lymphocyte subsets share similarities
in phenotype, function, and transcriptional regulation, different
tissue microenvironments may reshape the tissue-resident
lymphocytes, providing them with organ- or tissue-specific
phenotypes and functions. For example, the phenotypic and
functional characteristics of both mouse and human liver-
resident NK cells have unique phenotypic and functional
characteristics compared with other tissue-resident NK cells
(Tables 1, 2). Although most tissue-resident NK cells are
CD49a+DX5−, salivary gland-resident NK cells are CD49a and
DX5 double positive (45, 46). Different organ-derived tissue-
resident NK cells may have unique functions and play different
roles in autoimmune diseases (19). The unique features of the
hepatic lymphocytic composition and the unique immunological
properties of the liver indicate that it is essential to clarify the
unique properties of liver-resident lymphocytes and their roles
in liver-related diseases.

CD8+ Liver-Resident Memory T Cells
Tissue-resident memory T cells (TRM) are a non-recirculating
subset positioned in non-lymphoid tissues, such as skin, gut,
lung, salivary glands, and the genital tract, which provide rapid

and powerful responses to reinfection (47). Activated TRM cells
exert effector functions, including cytolytic activity and the
secretion of proinflammatory cytokines such as IFN-γ and TNF-
α. TRM cells not only act as first line of defense by directly
lysing target cells, but also confer protective functions through
the recruitment of circulating T cells or other immune cells via
chemokine production (48).

Studies have shown that an important subset of CD8+

TRM cells resides in liver where they patrol the vasculature
and provide protection against invading pathogens (49). A
population of interleukin (IL)-2hiCD8+ TRM cells expressing
tissue retention signals resides in healthy human liver, and is
expanded upon HBV infection (50). The high IL-2 production
of these cells is likely to be critical to maintaining the antigen-
specific proliferation and memory responses of hepatic CD8+

TRM cells (51). CD8+ TRM cells are present in the murine
liver under conditions of Malaria infection (34, 52). CD8+

TRM cells in human and murine livers share similar phenotypic
features. CD69 and CD103 are two key markers expressed
by TRM cells in various non-lymphoid tissues. The majority
of hepatic CD8+ TRM cells express CD69; however, some of
them lack expression of CD103 (35, 49, 52). Like other hepatic
resident lymphocytes, hepatic TRM cells express the liver homing
chemokine receptors CXCR3 and CXCR6. Notably, CXCR6 is
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required for the maintenance of liver resident memory CD8+

T cells specific for infectious pathogens (34). Hepatic TRM

cells also express low levels of CCR7, CD62L, KLF2, and
S1PR1, which are required for tissue exit (53, 54). Regarding
transcriptional regulation, liver TRM cells express HOBIT and
BLIMP1, which can silence genes involving lymphocyte egress
from tissues and repress the development of circulating memory
cells (35). Recently, researchers found that the transcriptional
repressor Capicua (CIC)–ETS translocation variant 5 (ETV5)
axis is a key molecular module that regulates the expression
of Hobit and controls liver CD8+ TRM cell development to
maintain normal liver function (55). Interestingly, using intra-
vital imaging, researchers found that CD8+ TRM cells patrol and
reside in the hepatic sinusoids, which is dependent upon LFA-
1–ICAM-1 interactions. Antigen-specific CD8+ T cells failed to
form substantial liver resident memory populations following
Plasmodium or lymphocytic choriomeningitis virus (LCMV)
immunization in Itgal−/− mice in which LFA-1 is deficient (56).

Liver-Resident ILCs
ILCs are a family of innate immune lymphocytes lacking antigen-
specific receptors, which mirror the phenotypes and functions
of T cells. They are involved in the development of lymphoid
tissue, tissue repair, and the maintenance of tissue integrity (57).
Traditionally, ILCs are divided into three subsets: Group 1 ILCs
(comprising conventional NK cells and ILC1s); Group 2 ILCs
(ILC2s); and Group 3 ILCs [comprising ILC3s and lymphoid
tissue inducer (LTi) cells] according to their cytokines expression,
developmental pathways and functions (58). Recently, Vivier
et al. proposed classifing ILCs into five subsets—NK cells, ILC1s,
ILC2s, ILC3s, and LTi cells—based on their development and
function especially the developmental trajectories (59). It is
notable that NK cells are formerly classified as Group 1 ILCs,
and now they are regarded as an independent subset of ILCs.
ILCs usually localize at mucosal barriers. Long-term parabiosis
experiments have identified that ILC subsets are resident in both
lymphoid and non-lymphoid organs of adult mice. They are
maintained by self-renewal during homeostasis and the acute
infection environment (4). NK cells produce IFN-γ, perforin,
and granzymes, and lyse tumor and virally infected cells. ILC1s
are generally non-cytotoxic or weakly cytotoxic, and act as
a first line of defense against viral and bacterial infections.
ILC2s predominantly produce T helper 2 (TH2)-cell associated
cytokines (including IL-4, IL-5, IL-9, and IL-13) and are involved
in the innate immune response to parasites. They can also
produce amphiregulin (AREG) to promote tissue repair. ILC3s
produce T helper 17 (TH17)-cell associated cytokines (including
IL-17A, IL-17F, and IL-22) and contribute to the control of
extracellular microbes and maintain intestinal homeostasis. LTi
cells produce lymphotoxin and are involved in the formation of
secondary lymph nodes and Peyer’s patches during embryonic
development (58, 59). Recently, a regulatory subpopulation of
ILCs (ILCregs) was identified in the gut that contribute to the
resolution of innate intestinal inflammation (60).

A liver-resident subpopulation of murine NK cells was
recently defined with a distinct CD49a+DX5− phenotype, which
is different from the conventional CD49a−DX5+ NK cells (15).

These liver-resident NK cells differ from the conventional NK
(cNK) cells in their phenotype, cytokine production, cytotoxicity,
and developmental pathways. They express higher levels of
CD69, CD44, CXCR3, and CXCR6, which are related to tissue
residency (61), and CD160, compared with cNK cells. Compared
with cNK cells in the liver and spleen, they do not express
the lymphoid homing marker CD62L (62). Notably, CXCR6
is crucial for hepatic NK cell-mediated memory responses,
suggesting that liver-resident NK cells may possess memory-
like properties (63). Liver-resident NK cells produce higher
levels of TNF-α and GM-CSF and similar amounts of IFN-
γ, compared with liver and splenic cNK cells, which are key
players in inflammatory responses. They express higher levels of
TNF-related apoptosis-inducing ligand (TRAIL) and FasL, which
indicate a higher cytotoxic capacity compared with cNK cells
(61). TRAIL contributes to the NK-cell-mediated elimination of
activated CD4+ T cells or virus-specific CD8+ T cells during
chronic viral infection. TRAIL+ liver-resident NK cells may
negatively regulate antiviral immunity in chronic viral infection,
but also constrain viral-induced autoimmunity (64, 65). Bone
marrow also contains a very small subpopulation of DX5− NK
cells which were considered to be immature NK cells. However,
hepatic DX5− NK cells expressed much higher CD11c and
TRAIL compared with bone marrow DX5− NK cells, indicating
that liver-resident NK cells are phenotypically different from
those of the bone marrow (15). Liver-resident NK cells also have
different transcription factor requirements compared with cNK
cells. They express lower levels of EOMES. The HOBIT-BLIMP1
transcriptional module is also required for tissue retention of
liver-resident NK cells (35). They are generated from hepatic
NK1.1−CD3−CD19− hematopoietic progenitor cells (HPCs)
and have a unique developmental pathway that does not require
NFIL3, but depends on Tbx21 (15, 62, 66). The aryl hydrocarbon
receptor (AHR) is required for the maintenance of liver-resident
NK cells (67).

In humans, NK cells are divided into two main subsets,
CD56dim and CD56bright NK cells, based on their expression
of CD56 and CD16 (68). CD56dim NK cells are the dominant
population in the peripheral blood. In contrast, human liver is
enriched in CD56bright NK cells and most of them are described
as liver-resident NK cells (36, 69, 70). Studies have shown
that human liver-resident NK cells express retention-related
molecules, such as CD69, CXCR6, and CCR5, while they lack
expression of CD62L and CCR7, which are involved in the
recruitment of circulating NK cells to lymphoid tissues (69, 70).
HOBIT is involved in the regulation of tissue residency of human
intrahepatic CD56bright NK cells (36). Several different human
liver-resident NK cell subsets have been found. It is gradually
becoming accepted that there are two non-overlapping human
liver-resident NK cell populations that are distinguish between
human cNK and liver-resident cells by the expression of T-bet
and EOMES (3, 71). EOMEShiT-betlo NK cells largely overlap
with the CD56bright and CXCR6+ NK cells that are located in the
sinusoids, but are completely absent in blood (70, 72). In contrast,
the EOMESloT-betint phenotype is described for CD49a+ liver-
resident NK cells, which are found in the parenchyma, although
some EOMESlo cNK cells recirculate freely (73). The function
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of the two human liver-resident NK cell subsets has not been
clarified. The distribution and protein expression of the two
subsets may provide clues to their different functions. EOMEShi

liver-resident NK cells are long-lived (they can persist for up to
13 years in sinusoids) and reside in the sinusoids and possibly
recognize bacterial antigens coming from gut (71, 74). CD49a+

human liver-resident NK cells are found in the parenchyma
and express cytotoxic effector molecules and receptors for
MHC class I molecules, suggesting that they may perform
immunosurveillance by recognizing and killing virally infected
or cancerous hepatocytes. The expression of NKG2C suggested
that CD49a+ human liver-resident NK cells may have memory-
like properties (73). Interestingly, a human CD49e− NK cell
population identified by cytometry by time-of-flight (CyTOF)
analysis was reported to be liver-resident. These CD49e− liver-
resident NK cells have similar capacities to produce cytokines
and degranulate upon stimulation with PMA and ionomycin,
although their exact function remain to be fully determined (75).
Liver-resident NK cells are also reported to possess memory-like
properties upon sensitization with haptens or virus-like particles
(15, 21, 76). Liver-resident NK cells from influenza virus-infected
mice conferred protective immunity against secondary influenza
virus infection (21).

ILCs are abundant in the liver, with the dominant NK cells
and ILC1s and the relatively rare ILC2s and ILC3s (77). Several
studies have shown that hepatic ILC1s and ILC2s have features of
liver residence (15, 78, 79). Based on the phenotypes of CD49a+

TRAIL+ CD49b−, the liver-resident NK cells were regarded as
hepatic ILC1s (15). Human intrahepatic ILC2s express the tissue
residence marker CD69. The majority of liver-derived ILC2s
express chemokine receptor CCR6, allowing them to respond
to CCL20 secreted by the biliary epithelium. They express
high levels of integrins, such as Very Late Antigen-5 (VLA-
5) and VLA-6, which bind fibronectin and laminin in normal
and inflamed livers (79). ILC1s and ILC2s are both developed
from common helper innate lymphoid progenitors (CHILPs)
and innate lymphoid cell precursors (ILCP), depending on the
transcription factor PLZF (59).

Liver-Resident γδT Cells
γδT cells, a subset of innate-like T lymphocytes, are enriched
in the mucosal surface and are defined as tissue-resident
lymphocytes in skin, lung, and intestinal mucosa, where they
serve as sentinels and exert immunosurveillance functions in
response to infection and tumorigenesis (80–85). γδT cells are
also abundant in liver at a frequency of 3–5% of all intrahepatic
lymphocytes and predominantly IL-17-producing γδT cells. A
mouse parabiosis model demonstrated the residency of hepatic
γδT cells (16). Lipid antigens from gut commensal microbes
presented by hepatocyte-expressed CD1d can be recognized
by the γδTCRs (T-cell receptors) of liver-resident γδT cells,
which supports their development and homeostasis (16). Murine
CD8αα γδT cells, but not CD8αβ γδT cells, are recently identified
as liver resident. A class Ib MHC molecule H2-Q10, which is
highly expressed in liver, is confirmed as a new high affinity
ligand for CD8αα and controls the development of liver-resident
CD8αα γδT cells (86). In humans, a recent study found that a

CD27loCD45RAlo subset of Vδ1+ T cells expressing enhanced
levels of liver-resident associated marker CD69, CXCR3, and
CXCR6 reside in the liver. This population is functionally distinct
from equivalent subsets in peripheral blood. They produce
significantly more pro-inflammatory cytokines IFN-γ and TNF-
α and may play roles in chronic liver disease, such as CMV
infection (87). More recently, several lines of evidence have
shown that γδT cells form long-lived memory populations upon
local inflammation or infection (88, 89). Tissue-resident γδT
cells have been implicated in the protection processes such as
sustaining tissue homeostasis and control pathogen infection,
but their presence may also exacerbate local inflammation
under certain circumstances (90). However, the exact phenotypic
or functional characteristics of liver-resident γδT cells require
further study.

Hepatic NKT Cells
NKT cells are innate-like T cells that express TCR and recognize
both exogenous and endogenous lipid antigens presented by a
class I MHC-like molecule, CD1d. Based on the differences in
TCR usage and the various antigens that they recognize, NKT
cells can be divided into two main subsets, type I or invariant
NKTs (iNKTs), expressing an invariant TCR recognizing α-
galactosylceramide (α-GalCer), and type II NKT cells, displaying
a diverse TCR repertoire that can recognize sulfatide or other
glycolipids (91, 92). Following activation, type I NKT cells
can secrete different kinds of cytokines and further stimulate
dendritic cells (DCs), NK cells, B cells, and T cells, thus playing
an important immunoregulatory role in both innate and adaptive
immune responses. However, the activation of type II NKT cells
by sulfatide does not induce the activation of B, NK, or T cells.
Accumulating evidence has shown that the two NKT subsets
may vary in their roles in health and disease. Type I NKT cells
predominantly play pro-inflammatory roles in inflammatory
conditions, while type II NKT cells play anti-inflammatory
or immunosuppressive roles in several experimental
models (93, 94).

NKT cells are generally known as tissue-resident lymphocytes.
Similar to other liver-resident lymphocytes, NKT cells are mostly
positive for CD49a and CD69. Both human andmouse NKT cells
express high levels of CXCR6. The CXCR6–CXCL16 interaction
not only mediates the accumulation, maturation, and survival
of recent thymic emigrants in the liver, but also regulates the
activation of NKT cells (95–97). Hepatic NKT cells express
high levels of the adhesion molecule LFA-1, and LFA-1–ICAM-
1 interactions result in long-term residence of NKT cells in
the liver. Notably, PLZF is an NKT cell-specific transcription
factor. PLZF orchestrates a part of innate-like phenotype of NKT
cells via a set of target genes such as Id2 (encoding ID2), Maf
(encoding c-Maf), Icos (encoding c-ICOS), Il12rb1, and Il18r1
that are essential for cytokine secretion, survival, co-stimulation,
and responsiveness to proinflammatory cytokines (98). PLZF
plays essential roles in the accumulation of hepatic NKT cells
by up-regulating LFA-1 and down-regulating CD62L and KLF2
(43, 99). Transcriptional regulator Inhibitor of DNA-binding-2
(ID2) controls the survival of hepatic NKT cells by regulating
the expression of CXCR6 and anti-apoptotic molecules Bcl-2 and
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Bcl-XL (100). HOBIT-BLIMP1 transcriptional programing is also
required for themaintenance of liver NKT cells and they function
by suppressing lymphocyte egress genes, such as Klf2, S1pr1,
Tcf7, and Ccr7. Numbers of NKT cells lacking both HOBIT and
BLIMP1 were reduced in the liver (35).

ROLES OF LIVER-RESIDENT
LYMPHOCYTES IN LIVER DISEASES

Liver-Resident Lymphocytes in Viral
Infection of Liver
CD8+TRM cells are believed to exert stronger anti-viral immune
responses than circulating memory T cells do. The role of
CD8+TRM cells in the protection and control of hepatotropic
viral infection has been demonstrated. Preliminary experiments
demonstrated an essential role of liver-resident CD8+TRM cells
in long-term protection from chronic hepatitis C. Virus-specific
CD8+ TRM cells can reside in the liver for months or even years
after primary viral infection. A second infection by HCV can
be controlled rapidly, partly because of the rapid acquisition of
the virus-specific cytolytic activity of hepatic CD8+TRM cells
(101). Researchers also found a distinct population of CD8+TRM

cells that are enriched in the liver of patients with chronic
HBV infection, and observed an inverse correlation between
TRM frequency and HBV titer. TRM cells express high levels of
perforin, which may contribute to the direct killing of infected
hepatocytes. Notably, TRM cells express high-levels of cell-
autonomous IL-2 that allows them to survive and overcome
PD-L1-mediated inhibition to maintain immediate noncytolytic
antiviral functions (50, 102). Moreover, Chun et al. found that
CD8+ TRM cells were enriched in HBV-related HCC compared
with non-viral-related HCC and indicated a good prognosis
(103). All of above results suggested that TRM cells could
contribute to a functional cure of hepatic viral infection and viral-
related HCC. Therapeutic expansion of virus-specific TRM cells
might effectively control viral infection and related tumors.

The exact roles of liver-resident NK cells in hepatic viral
infection remain poorly understood. The high expression of
TRAIL and the efficient production of multiple cytokines,
such as IFN-γ, TNF-α, and granulocyte-macrophage colony-
stimulating factor (GM-CSF), indicate the potential importance
of liver-resident NK cells in viral clearance. Human liver-resident
EOMEShi T-betlo CD56bright NK cells display higher expression
of activating receptors, such as NKG2D, NKp44, and NKp46,
which recognize stress-induced ligands and viral-associated
antigens. They also express a higher level of CD107a and perforin
to provide a potent cytotoxic cellular response and enhanced
degranulation (70). These properties suggest that liver-resident
NK cells may spontaneously lyse virus-infected hepatocytes
and promote Th1 polarization via secreting IFN-γ, thereby
contributing to viral clearance in the liver. However, because
of their high expression of immunosuppressive molecules, such
as NKG2A, LAG-3 and CD39, liver-resident NK cells may
exert negative a regulatory role that would contribute to the
maintenance of liver immunotolerance (15, 78, 104, 105). Upon
hepatic viral infection, NKG2A signaling in liver-resident NK

cells inhibits the CXCL9 expression required for the infiltration
of peripheral CD49b+ cNK cells into the liver. Blocking or
creating a deficiency of NKG2A in liver-resident NK cells
increased the numbers of IFN-γ-producing CD49b+ cNK cells,
which further activated liver CD103+ DCs, leading to enhanced
antigen-specific, anti-viral CD8+ T cell responses required for the
clearance of hepatic viral infections (78). Therefore, inhibition
of NKG2A signaling in liver-resident NK cells may be a novel
vaccine strategy to improve CD8+ T cell responses against
persistent liver infections. Interestingly, liver-resident NK cells
negatively regulated the antiviral activity of hepatic T Cells via
the PD-1–PD-L1 interaction during acute and chronic LCMV
infection and adenovirus infection. The number and cytokine-
producing levels of virus-specific T cells increased, accompanied
by reduced viral loads in liver-resident NK-cell-deficient mice,
while transferring of liver-resident NK cells into liver-resident
NK-cell-deficient or wild-type mice suppressed hepatic T cell
function during viral infection. The inhibitory effect of liver-
resident NK cells on T cells can be abrogated by blockade of
PD-L1 (105).

Human intrahepatic Vδ2− γδT cells were highly clonally
focused, among which the CD45RAloCD27loVδ1+γδT cells were
proved to be liver-resident. These hepatic Vδ1+ γδT cells are
competent producers of IFN-γ and TNF-α (87). CMV infection
is one of the drivers of hepatic Vδ2− γδT cell infiltration,
expansion, and memory formation. It is hypothesized that liver-
resident or memory γδT cells have a protective effect against
infection or tumor formation, and thus exert a critical role in local
hepatic immunosurveillance (90). The exact characteristics of
liver-resident or memory γδT cells and their roles in liver-related
diseases require further investigation.

Type I NKT cells play a major role in controlling HBV
or HCV infections via IFN-γ secretion, which inhibits
HBV/HCV replication and stimulates adaptive immune
responses, particularly in the early stages of infection (106, 107).
However, NKT cells may also contribute to liver injury during
chronic viral hepatitis infection by secreting of pro-inflammatory
cytokines and inducing hepatocyte apoptosis (108).

Liver-Resident Lymphocytes in Parasite
Infection of Liver
Liver-resident TRM cells are necessary to resist anti-parasite
infection. A study has demonstrated that resident memory
T lymphocytes can be induced during Leishmania infantum
infection in the liver and may play a protective role (109). In
addition, CD8+TRM cells patrol the liver sinusoids and form
the frontline defense against Malaria liver-stage infection (34,
52, 54). A prime-and-trap strategy that first activates T cells in
the spleen and then traps them in the liver efficiently induces
liver TRM cells and protects against sporozoite challenge. At the
first stage, anti-CLEC9A antibodies were used to target malaria
antigens to CD8α+DCs to efficiently prime malaria-specific
CD8+ T cells. At the next stage, the liver was infected with
adeno-associated virus (AAV) expressing the malaria antigen
to trap circulating primed CD8+ T cells in the liver and then
drive TRM cell formation to protect against Malaria infection
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(52). Recently, researchers created a heterologous “prime-and-
trap” regimen, combining CD8+ T cell priming by gene gun-
administered DNA vaccines and boosting with liver-homing
radiation-attenuated sporozoites to induce high-frequency liver
TRM cells and achieved complete protection against sporozoites
challenge (110). The efficacy of liver-resident T cells can be
enhanced by intravenous administration of a malaria vaccine,
resulting in expansion of pathogen-specific CD8+ T cells to
provide long-term protection against malaria (111). Although
there are various challenges, it will be significant to extrapolate
these murine findings of Plasmodium-specific liver-resident
CD8+TRM cells to human malaria research and generate malaria
vaccine for human in the future (112).

Up to now, there is rarely evidence about the role of other
liver-resident lymphocytes in parasite infection of liver.

Liver-Resident Lymphocytes in Hepatic
Inflammatory Diseases
Liver-resident lymphocytes are involved in the pathogenesis
of hepatic inflammatory-related diseases, such as hepatitis,
liver fibrosis, liver cirrhosis, and non-alcoholic fatty liver
disease (NAFLD).

Liver-resident NK cells play an important role in inhibiting
or limiting liver fibrosis by killing activated hepatic stellate cells
(19, 113). However, another study reported a high frequency
of CD49a+ liver-resident NK cells that express CD25, CD34,
and CXCR3 in cirrhotic livers. These CD49a+CD25+ liver-
resident NK cells exhibited a high proliferative capacity in
response to low doses of IL-2, and thus might contribute to liver
inflammation and fibrosis (114). A DX5−CD11chi liver-resident
NK cell subset was recently found to play an immunosuppressive
role in autoimmune cholangitis by inhibiting CD4+ T cell
proliferation and increasing the expression of genes involved in
negative regulation of immune response in the inflammatory
microenvironment (115).

ILC2s had a pro-inflammatory effect in a murine model
of Con A-induced hepatitis. Hepatic ILC2s were activated and
expanded via CD4 + T cell-mediated tissue damage and elevated
IL-33, and then secreted IL-13 and IL-5, which led to further
accumulation of eosinophils in the liver, thus aggravating liver
tissue damage (116). Liver-resident ILC2s have pro-fibrotic
effects in hepatic fibrosis. Under chronic hepatocellular stress,
ILC2s accumulated and activated in the liver via ST2-dependent
signaling resulting from elevated IL-33 (117, 118). ILC2s produce
IL-13, which in turn triggers hepatic stellate cells (HSCs)
activation in an IL-13Rα1- and STAT6-dependent fashion, and
then aggravate hepatic fibrosis (119). A study on patients with
inflammatory liver diseases demonstrated that the proportion
of liver-resident ILC2s correlated positively with worsening
liver function. ILC2s may contribute to ongoing fibrogenesis in
liver disease through IL-13 and amphiregulin (79). However,
there were reports showing that liver-resident ILC2s may have
a protective response to repair tissue damage. In an study
using an adenovirus (Ad)-induced liver hepatitis model, ILC2s
were expanded via the increased expression of IL-33 and its
receptor ST2, and then attenuated T cell-mediated liver injury by

inhibiting TNF-α production (120). Another research found that
IL-33–ST2 signaling protects against Con A-induced hepatitis
by preventing Th1 and Th17 cell-mediated hepatic immune
responses (121).

Hepatic ILC3s are involved in protection or pathogenesis via
secretion of IL-22 in some liver diseases. ILC3s produce IL-22
and protect against liver injury induced by carbon tetrachloride
(CCL4), Con A, and alcohol by activating STAT3 signaling
(122). In contrast, in a study of HBV-infected patients and HBV
transgenic mice, IL-22 played a pathological role in exacerbating
chronic liver inflammation and fibrosis by recruiting hepatic
Th17 cells (123). Recently, researchers demonstrated the pro-
fibrotic role of ILC3s in both human and mouse liver fibrosis
progression. ILC3s not only directly promote LX-2 (a human
hepatic stellate cell line) fibrogenesis by producing IL-17A and
IL-22 but also produce IL-22 to suppress IFN-γ production
by other immune cells to exert indirect fibrogenic effects
(124). More studies are required to clarify the respective roles
of ILCs in different liver diseases and in different stages of
disease progression.

γδT cells are a direct and potent source of critical
inflammatory cytokines such as IFN-γ, TNF-α, and IL-17A
in many pathological process. There is some evidence that
liver-resident γδT cells are involved in the progression of
NAFLD. Obesity-driven activation of the IL-17 axis is central
to the development and progression of NAFLD (125). Increased
numbers of γδT17 cells were found in the livers of high-
fat diet (HFD)-fed mice and their NAFLD symptoms were
reduced in Tcrδ−/− mice, suggesting that hepatic resident γδT17
cells are one of the main sources of IL-17A in the liver
during NAFLD and can accelerate NAFLD progression (16).
The microbiota functions as a co-factor to accelerate HFD/high
fat-high carbohydrate diet (HFHCD)-triggered NAFLD via
increasing the number of liver-resident γδT17 cells.

Type I NKT cells usually play pro-inflammatory role
and promote liver injury in the majority of chronic liver
diseases, including hepatic ischemia reperfusion injury (IRI),
Con A-induced hepatitis, primary biliary cirrhosis (PBC), and
NAFLD (92, 126, 127). The activated type I NKT cells secrete
large amounts of pro-inflammatory cytokines, which further
recruit the accumulation of myeloid cells and neutrophils, and
promote the activation of HSCs and NK cells, resulting in
steatosis, fibrosis, hepatocyte necrosis, and even the development
of HCC (92). Hepatic type I NKT cells also accumulate
and activate, which are mediated by Kupffer cell-derived
NLRP3 inflammasome activation and IL-1β release, subsequently
promoting liver inflammation, neutrophil infiltration, inducing
alcoholic liver injury in models of alcoholic liver disease (ALD),
and exacerbating the disease progression (128). Activated hepatic
type I NKT cells inhibit liver regeneration by producing high
levels of IFN-γ in inflammatory conditions such as after partial
hepatectomy (129). Type I NKT cells may also play a protective
role in some conditions. The regulatory activity of NKT cells
has been described in mice and mediates immune suppression
through interaction with myeloid derived suppressor cells
(MDSCs) or the production of IL-10 (130, 131). A recent report
demonstrated that type I NKT cells could acquire a regulatory
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function and suppress T effector lymphocytes upon culture with
rapamycin or TGF-β (132). However, whether hepatic type I NKT
cells have regulatory or protective effects in liver inflammatory
diseases has not been reported.

In contrast to the predominantly pro-inflammatory role
of type I NKT cells, type II NKT cells suppress the pro-
inflammatory response induced by type I NKT cells and
consequently protect against liver damage. Activated type II
NKT cells promote the recruitment of type I NKT cells into
mouse livers; however, the interaction between type II and type
I NKT cells leads to the tolerization of cDCs and anergy of
type I NKT cells, thus further inhibiting adaptive immunity
and suppressing neutrophil recruitment into the liver, which
attenuates Con A-induced hepatitis (133, 134). The opposing
roles of type I and type II NKT cells have also been demonstrated
in IRI, ALD, NAFLD, parasite infection, and autoimmune
diseases (92, 94, 134).

Liver-Resident Lymphocytes in
Hepatocellular Carcinoma
The liver is one of the most common sites for cancer in the
body. It is a frequent target of both primary and secondary
tumors. Although CD8+T cells are important effector cells
to killing tumor cells, CD8+TRM cells in anti-tumor immune
responses has yet to be fully clarified. CD103+TRM cells have

been found to accumulate in tumor sites in several human solid
tumors, including HCC (135–137). The abundance of CD8+TRM

cells was shown associated with prolonged survival and better
prognosis in patients with HCC (103).

Liver-resident NK cells are enriched in HCC. The high
expression of TRAIL, CD107a and perforin, as well as the
efficient production of multiple cytokines, such as IFN-γ, TNF-
α, suggest the potential importance of liver-resident NK cells
in tumor control. It is reported that up to 79% of intratumoral
NK cells had the CXCR6+CD69+ liver-resident phenotype.
However, the tumor microenvironment impaired the antitumor
function of liver-resident NK cells displayed by down-regulation
of NKG2D and reduced capacity for cytotoxicity and production
of cytokines (138). Importantly, IL-15 can recover the impaired
anti-tumor function of liver-resident NK cells (138). A recent
study reported a significant depletion of liver-resident NK cells
from tumors of colorectal liver metastasis. This depletion of
liver-resident NK cells correlated with hepatic recurrence post-
resection. They further demonstrated that the accumulation of
lactate in the tumor microenvironment caused a reduction in
intracellular pH in hepatic NK cells, leading to mitochondrial
dysfunction and apoptosis of liver-resident NK cells (139). This
finding highlights the immunosurveillance role of liver-resident
NK cells against tumor, and provides a promising therapeutic
approach to restoring local NK-cell activity.

FIGURE 1 | The pathological or protective roles of liver-resident lymphocytes in liver diseases. The liver contains multiple types of tissue-resident lymphocytes,

including CD8+TRM cells, NK cells, ILCs, γδT cells, and NKT cells. Liver-resident lymphocytes serve as the first line of defense in response to infection and

non-infectious insults, and play roles in immunosurveillance, immune regulation, and the maintenance of liver homeostasis. Liver-resident lymphocytes generally exert

protective or pathological effects via producing antimicrobial or homeostatic effector molecules, and by cooperating with other immune cells. They are involved in

many kinds of liver diseases, such as metabolic liver diseases (e.g., ALD and NFALD), acute liver injury, liver fibrosis, viral hepatitis, and hepatic carcinoma (HCC).

Modulation of liver-resident lymphocytes responses may represent promising therapeutic method to treat liver diseases.
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TABLE 3 | The role of liver-resident lymphocytes in liver diseases.

Protective response Liver diseases Pathological response

CD8+TRM
(Producing IFN-γ, TNF-α, Granzyme, and Perforin)

Viral infection

(HBV, HCV, LCMV infection)

Liver-resident NK

(Expressing NKG2A and PD-L1 to suppress T cell function)

Liver-resident NK

(Producing IFN-γ, TNF-α, and GM-CSF)

Liver-resident type I NKT

(Producing IFN-γ)

CD8+TRM
(Producing IFN-γ and TNF-α)

Parasite infection

(L.infantum infection, Malaria infection)

Liver-resident NK

(Killing activated HSCs)

Hepatic inflammatory diseases

(Hepatitis, Liver fibrosis, Liver cirrhosis, NAFLD, ALD)

Liver-resident ILC2s

(Producing IL-5 and IL-13)

Liver-resident ILC2s

(Inhibiting TNF-α production)

Liver-resident ILC3s

(Producing IL-22 to recruit Th17 cells)

Liver-resident ILC3s

(Producing IL-22)

Liver-resident γδT

(Producing IL-17)

Liver-resident type II NKT

(Antagonizing type I NKT)

Liver-resident type I NKT

(Producing IFN-γ and IL-13)

CD8+TRM
(Producing IFN-γ and TNF-α)

Liver-resident NK

(Producing IFN-γ and Granzyme)

Hepatocellular carcinoma

Liver-resident type I NKT

(Producing IFN-γ)

NKT cells play an important role in anti-tumor immunity.
Hepatic NKT cells that are activated by α-GalCer administration
or stimulated by HCC-derived antigens ex vivo contribute
to suppressing the growth of hepatocellular carcinoma and
eliminating disseminated hepatoma cells in the murine liver
(92, 140). Recently, a study reported a relationship between
gut microbiome-controlled bile acid metabolism and hepatic
NKT cell-mediated antitumor immunosurveillance. In both
primary and metastatic liver tumor models, depleting gut
commensal bacteria significantly enhanced the accumulation of
CXCR6+ NKT cells into the liver via a bile acid/CXCL16/CXCR6
axis, and further induced a liver-selective antitumor effect.
The accumulated hepatic CXCR6+ NKT cells activated and
produced more IFN-γ upon antigen stimulation, and inhibit
the tumor growth in the liver (141). These findings imply good
prospects for NKT cells in future immunotherapy for HCC and
other cancers.

CONCLUSION AND PERSPECTIVES

As an immunologically complex organ, the liver contains
multiple types of tissue-resident lymphocytes. Intense research
over recent decades has described the phenotypic and
transcriptional characteristics of liver-resident lymphocytes.
They share many hallmarks with other tissue-resident
lymphocytes and integrate signals within the hepatic
microenvironment to produce certain unique features. Through
residing and patrolling in the liver, they serve as sentinels and
perform immunosurveillance in response to infection and

non-infectious insults, and are critical in immune regulation
and the maintenance of liver homeostasis. Under pathological
conditions, distinct liver resident subsets are uniquely involved
in the process of various liver diseases, exerting protective or
pathological effects (Figure 1; Table 3). A deeper and more
comprehensive understanding of liver-resident lymphocytes
and their functional characteristics; and the cellular and
molecular interactions among different liver-resident subsets,
and other innate and adaptive lymphocytes, and the liver
microenvironment will be vital to develop novel therapeutic
strategies for diverse liver diseases.
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