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Abstract: Top-down tissue engineering aims to produce functional tissues using biomaterials as
scaffolds, thus providing cues for cell proliferation and differentiation. Conversely, the bottom-up
approach aims to precondition cells to form modular tissues units (building-blocks) represented
by spheroids. In spheroid culture, adult stem cells are responsible for their extracellular matrix
synthesis, re-creating structures at the tissue level. Spheroids from adult stem cells can be considered
as organoids, since stem cells recapitulate differentiation pathways and also represent a promising
approach for identifying new molecular targets (biomarkers) for diagnosis and therapy. Currently,
spheroids can be used for scaffold-free (developmental engineering) or scaffold-based approaches.
The scaffold promotes better spatial organization of individual spheroids and provides a defined
geometry for their 3D assembly in larger and complex tissues. Furthermore, spheroids exhibit potent
angiogenic and vasculogenic capacity and serve as efficient vascularization units in porous scaffolds
for bone tissue engineering. An automated combinatorial approach that integrates spheroids into
scaffolds is starting to be investigated for macro-scale tissue biofabrication.

Keywords: adult stem cells; spheroids; scaffolds; building-blocks; biofabrication

1. Background

“Top-down tissue engineering” approaches aim to restore the functions of damaged or lost
tissues using biomaterials as scaffolds [1]. An ideal biomaterial must mimetize the physical and
chemical properties of a tissue extracellular matrix guiding proliferation, migration, and differentiation
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of stem cells [2]. Smart biomaterials refer to stimulus-responsive materials that can undergo
controlled modification of their properties through stimulus such as temperature, pH, moisture,
and electric or magnetic fields [3]. The advantage of using smart biomaterials over conventional
ones relies on their increased cell affinity and tissue repair. Indeed, temperature and pH-responsive
smart biomaterials have been applied as delivery agent for drugs, DNA, antibiotics, and growth
factors [4,5]. Nonetheless, the use of thermos-responsive coatings for tissue engineering is beneficial
due to their ability to harvest the cell sheet without enzymes (e.g., trypsin), maintaining intact the
structure of the extracellular matrix produced by the cells [6]. Smart hydrogels, commonly used as
bioink for bioprinting technology, may also respond to temperature-induced properties change [7].
However, in scaffold-based approaches cells in suspension are not distributed homogeneously; besides,
large-scale tissue construction is impaired [8]. In order to solve these issues, the scaffold-free approach
using adult stem cells is being developed based on organogenesis process recapitulated in vitro [9].
In scaffold-free approaches, cells are arranged directly with each other, re-creating a functional and
ordered three-dimensional (3D) structure named as spheroids [10,11].

Recently, spheroids have been used in the following ways (1) in tissue engineering, as a model
of organogenesis, better known as developmental engineering [12–14]; (2) they have been seeded
into biomaterials to improve tissue regeneration in vivo [15]; and (3) they have been used as building
blocks for bioprinting and bioassembly approaches [16]. The aim of this review is to summarize
the self-assembly process and molecular biology of spheroids, as well as their use in developmental
tissue engineering and their association with biomaterials, revealing an innovative perspective of the
biofabrication line, in which spheroids can be automated and seeded on the biomaterials’ surface for
large scale tissue engineering.

2. Scaffolds in Top-Down Tissue Engineering

2.1. Cartilage

Cartilage is an avascular and aneural tissue with a low metabolic rate, representing a challenge
for regeneration approaches. Therefore, lesions related to cartilage impair life quality of an actual
growing age population. Deterioration of this tissue is usually treated with drugs, physical therapies,
and, in many cases, surgery. In this context, top-down tissue engineering can be considered as
an alternative route for treatment, once a scaffold that can support cell growth and differentiation is
developed that allows cartilage repair [17].

There are two main approaches for cartilage engineering: hydrogel and solid scaffold.
Several biomaterials have been investigated for the production of injectable hydrogel, which include
natural and synthetic biomaterials [18]. Hydrogels have several advantages, including a network that
promotes cell adhesion, migration, and proliferation. Such benefits are provided due to 3D network
microenvironment that mimics the extracellular matrix and is capable of delivering nutrient and
growth factors [19].

The extracellular matrix of cartilage is extremely complex and is composed mainly of collagen
type II and proteoglycans [20]. In this context, methodology to produce scaffold using hyaluronic acid
and collagen type II coupled with transforming growth factor-β1 into the hydrogel has been extensively
developed. In this system, chondrocytes maintain their viability, as well as their chondrocytic
properties [21]. Another great advantage of using injectable hydrogel is due to its ability to adjust to
the shape of irregular defects. For example, [22] performed decellularization and enzymatic digestion
from porcine meniscus to obtain a meniscus-derived hydrogel. Mouse subcutaneous implantation
showed excellent biocompatibility, holding promise for future in vivo studies on repair of meniscus.

The use of hydrogels also represents a minimally invasive methodology that can be performed
by injection or arthroscopy [23]. In clinical scenario, hyaluronic acid has widely used; however,
an important drawback is the limited durability in joint cavity. As an alternative, in vivo studies using
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osteoarthritis-induced rabbit model suggest that chitosan hydrogel prevented cartilage degradation
and synovial membrane inflammation [24].

Similar to hydrogel, solid scaffolds may also be of natural and synthetic derivatives. Collagen
scaffold and decellularized cartilage are one of the main natural solid scaffold. Decellularization
is mainly important because it contains bioactive signals from native cartilage that guide cellular
events such as adhesion and proliferation, and, above all, it has the capacity to be guiding
cellular differentiation. In addition, the extracellular matrix contributes to the maintenance of
its mechanical properties, which is mainly related to the arrangement of the collagen fibers [25].
Utomo and collaborators (2015) showed the potential of decellularized ear cartilage scaffolds from
in vitro studies [26]. Kang and collaborators (2014) showed full thickness repair in rabbit’s femur
after adipose stem cells (ASC)-loaded decellularized cartilage extracellular matrix scaffolds [27].
However, donor site morbidity for autologous and allogeneic decellularized cartilage represents an
important disadvantage [28].

Recent studies have revealed that collagen scaffold associated with bioactive molecules and cells is
capable of generating an efficient engineered tissue. In this context, it has recently been demonstrated
that ASCs are capable of acquiring a chondrocytic phenotype when associated with collagen-based
scaffold and bioactive factors [29]. In order to mimic the interface bone and cartilage present in
the knee joint, collagen sponge-incorporating cartilage and bone matrix-component chondroitin
sulfate/hydroxyapatite (HA) composite has been developed [30].

In conclusion, cartilage tissue engineering is a promising approach; however, some problems are
still unsolved, such as a stable chondrocyte phenotype from in vitro-differentiated MSCs or ASCs and
the microarchitecture of the ideal scaffold.

2.2. Bone

Progressively, the population is becoming a victim of bone critical defects because of trauma and
illness related to this tissue. The current treatment is autologous or heterologous grafting [31]. On the
other hand, this worldwide problem has stimulated the development of biomaterials as an alternative,
to be used as implanted scaffolds. As with any other biomaterial, the golden standard properties for
bone regeneration are (1) biocompatibility, (2) bioactivity, (3) mechanical resistance, and (4) having a
porous structure to allow cells to grow and proliferate into a new, healthy, bone-like tissue [32].

Several synthetic scaffolds can be used for bone tissue engineering because they have the basic
properties already mentioned. However, all types of materials have advantages and disadvantages
that must be considered before application. For example, inorganic bioceramics are bioactive and
biodegradable; at the same time, these cannot be classified as suitable for load-bearing scaffold
applications [31].

Another type of scaffold generally used for bone tissue engineering is polymers, which
can be natural or synthetic. Natural polymers such as fibrin, hyaluronic acid, chitosan, and
collagen have a nice biocompatibility and osteoinduction properties. Otherwise, synthetic polymers
such as polyanhydride, polypropylene fumarate (PPF), polycaprolactone (PCL), polyphosphazene,
polylactic acid (PLA), polyether ether ketone (PEEK), and poly(glycolic acid) (PGA) have controlled
biodegradation. Due the flexibility properties, polymers can be fabricated at low cost using different
complex shapes. Besides, polymers can be used as smart materials to deliver soluble molecules [33].

Metal materials have a long history in bone tissue engineering. The principal advantages of metal
scaffolds, such as titanium, stainless steels, and cobalt, are their excellent biocompatibility, mechanical
strength, and elevated corrosion resistance. However, implanted scaffolds produced from metal
materials are generally stiffer compared to live bones, leading to eventual failure of implants [34].

Bioceramics are used in approaches to repair bone with the intention of replacing metal materials.
Ceramics, such as beta-tricalcium phosphate (TCP), HA, and dicalcium phosphates, are biocompatible,
have excellent resistance to corrosion, and have already been proven to have elevated bioactivity
in vivo. However, their principal disadvantages are low fracture toughness, fragility, and stiffness [35].



Int. J. Mol. Sci. 2018, 19, 1285 4 of 14

Composites can include two or more materials from all three groups mentioned: (1) polymers;
(2) metals; and (3) ceramics, natural or synthetic [36], with the aim of combining properties. The
most current composite material used is the inorganic-organic type, because it combines ductility of
polymers with elevated stiffness of inorganic components, creating a material with better mechanical
properties and a better biodegradation rate [37]. For example, Yang and colleagues (REF) achieved full
repair using collagen type I and porous TCP scaffolds seeded with ASCs in a rabbit model [38].

Classical or top-down tissue engineering combines cells with scaffolds. Mesenchymal stem cells
(MSCs) or ASCs may be mixed with injectable scaffolds as hydrogels or seeded on a porous composite
biomaterial. Ex vivo amplification is then followed by direct transplantation or by pre-differentiation
before transplantation. A recent strategy proposed for bone tissue engineering is a pre-differentiation
to cartilage as a template for endochondral bone repair after transplantation [39].

Most studies involve the use of ceramic and composite materials alone or with MSCs or ASCs.
Calabrese and collaborators (2017) developed a composite scaffold made of collagen-(HA) and
characterized its regenerative properties in vivo after subcutaneous implantation in mice [40]. The
efficiency of angiogenesis and osteogenesis was evaluated by Fluorescent Molecular Tomography
(FMT) in vivo. The main result found was that scaffolds seeded with ASCs had improved
mineralization and vascularization.

In conclusion, the use of scaffolds, mainly composites and ceramics, as an approach for bone
tissue engineering is very promising for substitute bone grafts. However, there are some challenges,
such as, for instance, the (1) difficulty of making the process (cells and scaffolds) industrially scalable to
attend population demand, (2) cost of a perfect design and production of constructs, and (3) diffusion
of nutrients inside the scaffolds [40].

3. Developmental Tissue Engineering

3.1. Spheroids

Since a discovery of the cell as a basic tissue unit, two-dimensional (2D) cell culture has been
routinely used by several laboratories. However, 2D culture does not replicate the tissue morphology
for more robust and profound studies on cellular biology and physiology, because it does not mimic
the native tissue microenvironment.

Spheroids are formed through a process named self-assembly. Initially, cells stay in direct
contact with each other to form aggregates due to long extracellular matrix fibres with multiple
Arginylglycylaspartic acid (RGD) motifs interacting tightly with integrin on cells membranes surfaces.
The direct cell to cell contact due to these initial aggregation results in upregulation of N-cadherin
expression. The accumulation of N-cadherin in membrane surface drives compaction, resulting in
spheroids [41].

Spheroids optimize intracellular signaling, improving differentiation process, which in turn
enables cells to be organized into a more similar structure of tissues in vivo. Moreover, in spheroids,
receptors and adhesion molecules are more naturally spread. In 2D culture, cells are polarized, and
their receptors are concentrated in the ventral surface, in which cells interact directly with flask culture
plastic [42].

3.2. Organogenesis and Spheroids

Spheroids were initially used as embryonic or tumor models. Moscona and Moscona were
pioneers using the self-assembly of cell suspensions from organ rudiments of the early chick embryo.
The authors discovered that it was possible to produce tissue-like aggregates showing the ability to
recapitulate characteristics of tissue in vivo [43].

Currently, spheroids have been used in tissue engineering for drug screening and regenerative
medicine approaches. Multilineage differentiation potential from MSCs is significantly enhanced in
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spheroids culture, mainly due to intensive cell-cell and cell-extracellular matrix contacts established in
3D microenvironment of spheroids [44]

MSCs self-assembly into spheroids improves expression of anti-inflammatory protein tumor
necrosis factor (TNF)–alpha stimulated gene/protein 6 (TSG-6), and the paracrine secretion of
angiogenic factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), and angiogenin [45,46], representing attractive vascularization units. In this context,
MSCs spheroids were applied in several preclinical studies, involving different animal models. The
main in vivo studies were done with the intention of repairing osteochondral diseases, cardiovascular
disorders, and wound healing [47].

More importantly, spheroids provide a controlled spatial organization of MSCs and ASCs,
recapitulating important events of morphogenesis—a field known as developmental engineering [48].
In fact, the nomenclature of spheroids and organoids can be misunderstood. Organoid has been
defined as a 3D structure derived from stem cells (embryonic, neonatal, or adult source) resembling
their in vivo tissue counterpart and mimicking at least one function of tissue or organ [49,50]. For
example, Kale and collaborators (2000) showed crystalline human bone from spheroids [51], which
was later categorized as organoids [49]. Therefore, we can postulate that MSC spheroids showing at
least one function of tissue or organ (e.g., crystallization in bone) could be categorized as organoid.

Spheroids from ASCs were used to promote bone [52] and cartilage [53] regeneration successfully.
For example, our research group has recapitulated in vitro chondrogenic events using spheroids from
ASCs (manuscript in preparation) and cartilage progenitor cells. Cartilage progenitor cells spheroids
represent an interesting model, since they present gene upregulation of Trio SRY-Box (SOX) up to 200
times compared to monolayer [54].

Spheroids and organoids have revolutionized the understanding of cellular behavior [55–57]
providing a relevant tissue microenvironment closer to human physiology. Many “omics” research
studies, primarily focused on the analysis of secreted proteins, allow the identification of protein
biomarkers for cellular modifications such as cell differentiation or disease progression. The secretome
(secreted proteins) are an important class of proteins that control and regulate a range of physiological
and biological processes, becoming a source of relevant biomarkers, including therapeutic target
findings [58].

The search for biomarkers in secretome (proteomic of culture medium) using spheroids is a
promising approach for identifying new molecular targets for diagnosis and therapy. For example,
our research group is currently investigating the secretory capacity using proteomic of ASC spheroids
induced into chondrocytes to identify possible biomarkers for a stable chondrocyte phenotype
(manuscript in preparation). Recently, Santos and collaborators detected higher amounts of several
growth factors in culture medium of umbilical cord tissue-derived MSCs compared to monolayer [59].

4. Scaffolds and Spheroids

The association of spheroids with scaffolds is a fascinating approach for tissue engineering.
Scaffolds must recreate extracellular matrix in which cells in spheroids can adhere, proliferate, and
differentiate [15]. Moreover, the scaffolds should be designed to retain the spheroids in vivo to
promote repair, vascularization, and, finally, regeneration of injured tissue. The spheroids have the
intrinsic capacity to fuse to each other, mimicking the natural tendency of embryonic tissues during
morphogenesis [60].

This innovative approach that integrates spheroids into scaffolds has been investigated in
several studies. Huang and colleagues demonstrated the association between ASC spheroids into
poly(lactide-co-glycolide (PLGA) scaffold for chondral defect using rabbit as animal model. The quality
of in vivo neo cartilage was proportional to substrate composition and culture conditions [61]. Ho and
collaborators investigated the efficacy of multicellular spheroids compared to cell monolayer seeded
into 3D polymeric biodegradable scaffolds. The results suggested that spheroids represent a better tool
for recreating carcinogenic microenvironment [62].
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Laschke and collaborators (2014) produced undifferentiated and bone-differentiated spheroids
of murine ASCs for polyurethane scaffolds seeding [63]. The engineered constructs were implanted
into dorsal skinfold chambers in a mice model. Interestingly, scaffolds seeded with one differentiated
spheroid exhibited a markedly impaired vascularization in vivo. Ho and collaborators (2017) compared
in vitro and in vivo the functions of MSC spheroids and monolayer induced to bone [64]. After 8 weeks
of implantation in mice, both materials contained mineralized tissue; however, elevated osteocalcin
staining was found in induced spheroids compared to monolayer.

To achieve success, the association between scaffolds and spheroids must rely on four main
parameters: (1) The scaffold design should consider the spheroid size, as well as the anatomic
implantation site; (2) The final construct should be scalable; (3) Spheroids must be able to interact
with each other. The scaffold architecture should not interpose between them; and (4) The process of
scaffold fabrication should not impair its functionalization. For example, it must be permitted to carry
molecules for cell survival or differentiation.

4.1. Spheroids Seeded into Nanofibers

Polymeric fibers have been a major target for cell delivery strategies, mainly due to their wide cell
adhesion surface and low volume, as well as high porosity [65]. These characteristics allow cell growth,
migration, and differentiation, and enable a greater interaction of cells with polymeric fibers [66].
Nanofiber scaffolds were developed in order to create a system similar to the natural extracellular
matrix. Cells that dwell in tissue are inserted inside a 3D matrix composed of ambiguous collagen
content [67].

Our research group has developed an innovative methodology for seeding spheroids in polymer
nanofibers. Our aim is a cartilage construct, since ASC spheroids are pre-differentiated in chondrocytes.
ASC spheroids differentiated in chondrocytes are seeded in aligned nanofibrillar structures produced
by jet-spraying using PCL [68]. This nanofiber was chosen mainly due to its biocompatibility, low
degradation rate, and mechanical property. ASC spheroids differentiated in chondrocytes after
seeding in aligned nanofibrillar structure showed rapid and homogeneous cell dispersion by material
surface (Figure 1B,D). Furthermore, our ASC spheroids fused to each other (Figure 1C), increasing
the cell contact of the nanofibers surface with high cellular viability (Figure 1D). On the other hand,
ASC spheroids differentiated in chondrocytes after seeding in non-aligned nanofibrillar structure
showed a non-homogeneous cell dispersion preventing an efficient cell colonization along nanofibers
surface [69]. An efficient spheroid seeding in nanofibers is critical for the retention of cartilage construct
in implantation site.

Int. J. Mol. Sci. 2018, 19, x 6 of 15 

 

After 8 weeks of implantation in mice, both materials contained mineralized tissue; however, 
elevated osteocalcin staining was found in induced spheroids compared to monolayer. 

To achieve success, the association between scaffolds and spheroids must rely on four main 
parameters: (1) The scaffold design should consider the spheroid size, as well as the anatomic 
implantation site; (2) The final construct should be scalable; (3) Spheroids must be able to interact 
with each other. The scaffold architecture should not interpose between them; and (4) The process of 
scaffold fabrication should not impair its functionalization. For example, it must be permitted to carry 
molecules for cell survival or differentiation. 

4.1. Spheroids Seeded into Nanofibers 

Polymeric fibers have been a major target for cell delivery strategies, mainly due to their wide cell 
adhesion surface and low volume, as well as high porosity [65]. These characteristics allow cell growth, 
migration, and differentiation, and enable a greater interaction of cells with polymeric fibers [66]. 
Nanofiber scaffolds were developed in order to create a system similar to the natural extracellular 
matrix. Cells that dwell in tissue are inserted inside a 3D matrix composed of ambiguous collagen 
content [67]. 

Our research group has developed an innovative methodology for seeding spheroids in polymer 
nanofibers. Our aim is a cartilage construct, since ASC spheroids are pre-differentiated in 
chondrocytes. ASC spheroids differentiated in chondrocytes are seeded in aligned nanofibrillar 
structures produced by jet-spraying using PCL [68]. This nanofiber was chosen mainly due to its 
biocompatibility, low degradation rate, and mechanical property. ASC spheroids differentiated in 
chondrocytes after seeding in aligned nanofibrillar structure showed rapid and homogeneous cell 
dispersion by material surface (Figure 1B,D). Furthermore, our ASC spheroids fused to each other 
(Figure 1C), increasing the cell contact of the nanofibers surface with high cellular viability (Figure 
1D). On the other hand, ASC spheroids differentiated in chondrocytes after seeding in non-aligned 
nanofibrillar structure showed a non-homogeneous cell dispersion preventing an efficient cell 
colonization along nanofibers surface [69]. An efficient spheroid seeding in nanofibers is critical for 
the retention of cartilage construct in implantation site. 

 
Figure 1. Association of ASC spheroids induced for chondrogenic pathway in PCL nanofibers. (A) 
Aligned PCL nanofibers, (B) induced ASC spheroids associated with PCL nanofibers, (C) initial stage 
of induced ASC spheroids fusion, (D) induced ASC spheroids associated with PCL nanofibers 
incubated with cytoplasmic calcein (green staining) and ethidium homodimer (red staining) revealed 
mostly viable cells and few necrotic cells (arrow). (E,F) scanning electron microscopy of induced ASC 
spheroids associated with PCL nanofibers showing initial stages of spheroids proximity (E) and 
fusion (F). 

Figure 1. Association of ASC spheroids induced for chondrogenic pathway in PCL nanofibers. (A)
Aligned PCL nanofibers, (B) induced ASC spheroids associated with PCL nanofibers, (C) initial stage of
induced ASC spheroids fusion, (D) induced ASC spheroids associated with PCL nanofibers incubated
with cytoplasmic calcein (green staining) and ethidium homodimer (red staining) revealed mostly
viable cells and few necrotic cells (arrow). (E,F) scanning electron microscopy of induced ASC spheroids
associated with PCL nanofibers showing initial stages of spheroids proximity (E) and fusion (F).
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Chua et al. showed that the association of surface modified nanofibers with hepatocyte spheroids
results in a functional tissue liver construct capable of secreting albumin, regulating ammonia
metabolism and enzymatic activity of the cytochrome P450 [70]. The nanofibers high porosity mimics
3D arrangement of collagen fibers favoring a rapid and homogenous cell distribution along nanofibers
surface. In this study, besides the cell distribution, we observed spheroids fusion (Figure 1). On the
other hand, Chua et al observed an efficient retention of individualized spheroids due to surface
modification of nanofibers. We can assume that the impairment of spheroids fusion favoured the
integration of spheroid-nanofiber construct, reaching the engulfment of spheroids by nanofibers. The
surface modification of nanofibers should be evaluated according to the desired tissue.

4.2. Cell Suspension and Spheroids Seeded into 3D Printed Scaffold

ASC spheroids have already been associated with biomaterials to promote bone regeneration
in vivo. The main advantage of this approach is the increase of vascularization due to angiogenic
capacity of ASC spheroids [63].

Our research group developed an innovative methodology using a 3D printed composite scaffold
made of PLA and carbonate HA (CHA) seeded with ASC spheroids for repair of critical-sized bone
defects in vivo. The HA is a ceramic material commonly used in bone tissue engineering once it
is considered “osteoinductive” to cells [71–73]. Our results showed spheroids interacting with 3D
printed scaffold in two different regions (Figure 2A). Cells of spheroids spreaded onto the biomaterial
surface (Figure 2B) and produced filopodia structure to improve the association with the biomaterial
(Figure 2C).
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Figure 2. Scanning electron microscope of ASC spheroids associated with 3D PLA/CHA printed
scaffold. (A) Two spheroids in different areas of scaffold. Bar size: 200 µm; (B) Cells of spheroid
interacting with the biomaterial surface. Bar size: 50 µm; (C) Note the presence of filopodia (arrow)
produced by spheroid cells promoting a better interaction with the scaffold. Bar size: 20 µm.

To our knowledge, this is the first time in scientific literature that 3D printed scaffold has been
tested for spheroids seeding. Several studies reported cell suspension seeding in 3D printed scaffolds,
in particular for bone tissue engineering [74–80]. Weinand and collaborators used a TCP scaffold
printed with different types of hydrogels mixed with human bone marrow MSCs [76]. The scaffold
printed with collagen I hydrogel showed a better osteogenesis in vitro; however, although hydrogels
are not mechanically stable, the authors observed that MSCs do not penetrate the scaffold completely.
In this study, spheroids interacted with the PLA/CHA printed scaffold, represented by cell spreading
in material surface, which may be due to the absence of hydrogel.

Zhang and collaborators (2016) also showed that 3D printed PLA/HA scaffold seeded with human
bone marrow promotes cells proliferation and osteogenic differentiation in vitro [77]. A limitation
of this study was that cells did not accommodate properly, probably due pore size and the smooth
surface of scaffold. Hernandez and collaborators (2017) designed a hybrid system made of printed
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polycaprolactone mixed with hydrogel composed of alginate, gelatin, and nano-HA and filled with
MSCs for large bone defects in vivo [78]. The authors discussed that the presence of nano-HA enhanced
the bioactivity and osteoregenerative properties of the scaffold. In this study, the 3D printed scaffold
was printed with CHA at nano-scale. We can assume that the presence of CHA attracted cells in
spheroids to interact and spread into scaffold surface.

In this study, our results suggested that the impairment of spheroids fusion implies a deeper
interaction, resulting in an integrated spheroid-3D printed scaffold construct. Cells migrating from
spheroids showed a behavior of dispersion in nanofibers (Figure 1D) in contrast to the spreading
observed in 3D printed scaffold (Figure 2B).

5. Spheroids, Scaffolds, and Building-Blocks

Spheroids are formed by 3D culture systems and are advantageous compared to other systems.
Spheroids have defined geometry and concentric organization of distinct cell populations, which are
more related to in vivo [81]. Indeed, due the intrinsic capacity of these spheroids units to fuse to each
other (Figure 1C), forming tissues in macro-scale, they are considered as building blocks [8].

The seeding of spheroids into scaffolds, in contrast to cell suspension, allows for the delivery of
cells with greater biological features (e.g., enhanced MSCs stemness). Furthermore, the synergism
of spheroids and scaffolds (Figures 1 and 2) could promote a successful graft of spheroids in the
injured site.

A combinatorial approach that integrates spheroids into scaffolds has been investigated in several
studies. Huang and colleagues demonstrated a successful association between ASC spheroids into
PLGA scaffold for chondral defect in rabbits [62]. Ho and collaborators investigated the efficacy of
spheroids compared to cell monolayer, which were both seeded into 3D polymeric biodegradable
scaffolds for cancer therapeutics. Results suggested that spheroids culture might be a better tool for
screening cancer therapeutics, mimicking better the carcinogenic microenvironment [62].

Our research group postulated the fabrication of a tissue construct from spheroids within the
interlockable solid synthetic microscaffolds denominated as lockyballs [82]. Lockyballs are spheroidal
microscaffolds with a diameter of 200 µm architected with hooks and loops to increase the retention
capacity of the spheroids at implantation site. ASC spheroids were formed inside lockyballs showing
high aggregation capacity in vitro, maintaining master gene expression for chondrogenesis and
osteogenesis. This methodology represents an innovative strategy for tissue engineering, since the
resulting tissue construct shows a larger area of cells (spheroids) than material and could represent a
building-block [83].

Building-Blocks in Biofabrication

Biofabrication can be defined as “the automated generation of biologically functional products
with structural organization from living cells, bioactive molecules, biomaterials, cell aggregates such as
micro-tissues, or hybrid cell-material constructs, through bioprinting or bioassembly and subsequent
tissue maturation processes” [84]. Biofabrication methods have already been applied with cells and
scaffolds to bone tissue engineering and connective and muscle tissue [85,86].

Due to the intrinsic capacity of spheroids to fuse to each other, seeding these building blocks
into 3D printed scaffolds might improve the regeneration of critical defects sizes, once it guides the
spheroids fusion to the geometry of interest. However, the automated seeding of spheroids onto 3D
printed scaffolds to produce a complex 3D construct has not been largely explored. The importance of
automated seeding relies on the non-homogeneous distribution of spheroids through the scaffold area,
in which they are seeded manually (Figures 1 and 2).

Currently, biofabrication technologies can control the cell distribution with accuracy, creating
hybrid cell-biomaterial constructs. Mekhileri and co-works have reported the successfully engineered
automated platform that integrates pre-differentiated chondrocyte spheroids bioassembly into
a predetermined polymeric scaffold [87]. The system is capable of individualizing the spheroids
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and forwarding them to the injection module. Once inside the injection module, the spheroids are
seeded onto a scaffold that was previously defined based on a 3D positioning system. The data
showed long-term cell viability, spheroids fusion, and also typical proteins of extracellular matrix
from cartilage.

Here, we hypothesized the state-of-the-art for the development of automated platforms capable
of precision for spheroids seeding into 3D printed scaffolds based on biofabrication concept (Figure 3).
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Figure 3. Automated platform for spheroids seeding into 3D printed scaffolds. (A) The bioprinter;
(B) spheroids are dispensed by the bioprinter into the 3D printed scaffolds; (C) the 3D printed
scaffold; (D) the bioprinter dispensing one layer of spheroids for each layer of the 3D printed scaffold.
The state-of-art is one spheroid seeded in each spacing of the 3D printed scaffold.

Another automatization alternative for cells-scaffold seeding is the use of 3D bioprinting.
This technology consists of computerized transfer of complex 3D patterns to either assembly
biomaterials or cells. In this approach, scaffolds (e.g., hydrogels) act only as structural support,
whereas the building block units need fusion to form tissue-like structures [12]. Bhise and co-workers
developed a system that integrates a bioprinter and a bioreactor. The main advantage of this technology
is monitoring several parameters of spheroids culture in real time (e.g., temperature, CO2, infusion
of testing drugs). Also, the association with the bioreactor allowed for long-term evaluation of the
resulting construct [88].

The development of technologies that promote automated seeding of building-blocks
(e.g., spheroids) into scaffolds has become an important key in tissue engineering, since it allows
(I) improvement of seeding efficiency, (II) the scale-up of production in a cost-effective manner,
(III) standardization of the process, and (IV) the homogeneous distribution of cells or spheroids
through the scaffold (mainly drawback of top-down approaches). Hence, the success of biofabrication
technologies provides the production of living constructs with more biomimicry with in vivo system,
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which can be used as valuable tool for disease modeling, drug development, and personalized
regenerative medicine.

6. Conclusions

Spheroids from adult stem cells can be considered as organoids since, they recapitulate tissue
morphogenesis resembling at least one tissue/organ function and are beginning to be used in tissue
engineering. Even with recent advances in smart materials, cell suspension seeding into scaffolds still
represents a drawback in tissue engineering. Spheroids are a new, developing approach for cell seeding,
and, based on our preliminary results in vitro, we can assume that cells migrating from spheroids can
disseminate and spread onto the scaffold surface, resulting in an integrated spheroid-scaffold construct.

The comparison between ASC spheroids seeding onto nanofibers and the 3D printed scaffold
suggested that the impairment of spheroids fusion implies a deeper interaction. Furthermore,
3D printed scaffold provides a defined geometry according to the size and shape of spheroids, enabling
automatized seeding using bioprinting approaches. Pre-induced spheroids from adult stem cells
bioprinted onto the 3D printed scaffold is a fascinating approach for future clinical trials, since they
can form larger, complex, and functional autologous tissues and organs.
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