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ABSTRACT
Phosphorelays are signal transduction circuits that sense environmental changes and
adjust cellular metabolism. Five different circuit architectures account for 99% of
all phosphorelay operons annotated in over 9,000 fully sequenced genomes. Here
we asked what biological design principles, if any, could explain selection among
those architectures in nature. We began by studying kinetically well characterized
phosphorelays (Spo0 of Bacillus subtilis and Sln1 of Saccharomyces cerevisiae). We
find that natural circuit architecture maximizes information transmission in both
cases. We use mathematical models to compare information transmission among the
architectures for a realistic range of concentration and parameter values. Mapping
experimentally determined phosphorelay protein concentrations onto that range
reveals that the native architecture maximizes information transmission in sixteen
out of seventeen analyzed phosphorelays. These results suggest that maximization
of information transmission is important in the selection of native phosphorelay
architectures, parameter values and protein concentrations.

Subjects Biochemistry, Computational Biology, Mathematical Biology, Molecular Biology,
Synthetic Biology
Keywords Biological design principles, Biological information transmission, Selection, Bacterial
signal transduction, Mathematical modelling

INTRODUCTION
Organisms and cells use signal transduction circuits to detect environmental changes and
make decisions on how to adjust their internal milieu to better survive those changes.
Those circuits modulate the cellular response and its metabolic adjustments.

Phosphorelays (PR) are a large and important class of signal transduction circuits in
microorganisms and some plants (Ulrich & Zhulin, 2010; Porter, Wadhams & Armitage,
2011; Kobir et al., 2011; Salvado et al., 2015). A self-phosphorylating Sensor Kinase (SK)
modulates its own phosphorylation state in response to the environmental signal. The
phosphorylated SK transfers its phosphate to an aspartate residue in a phosphotransfer
intermediate protein (RR1). This response regulator transfers its phosphate to a Histidine
phosphotransfer (Hpt) protein domain, which then transfers the phosphate to a final
response regulator (RR2) (Fig. 1). The phosphorylation state of the circuit modulates
cellular activity and adaptation. PR are important for making life or death decisions
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Figure 1 The five most abundant phosphorelay circuit architectures, as inferred from operon struc-
ture, account for over 99% of all detected phosphorelays. Architecture M1 is for a circuit where the four
phosphorylatable domains exist in independent proteins. Architecture M2 is for a circuit with a hybrid
Sensor Kinase (SK), which contains the SK and the first Response Regulator (RR1) domain in the same
protein, while the remaining phosphorylatable domains exist in independent proteins. Architecture M2′

is for a circuit where the SK and the Hpt domains are in the same protein, while both RR domains exist in
independent proteins. Architecture M3 is for a circuit where the SK, RR1 and the Hpt domains are in the
same protein, while the final RR, RR2, is in an independent protein. Architecture M4 is for a circuit where
all phosphorylatable domains exist in the same protein. A total of 5219 PR operons were surveyed, out of
which 5,182 fall in one of the five architectures shown here.

Full-size DOI: 10.7717/peerj.11558/fig-1

about sporulation (Burbulys, Trach & Hoch, 1991), in adapting to various stressors (Bekker,
Teixeira de Mattos & Hellingwerf, 2006), such as changing levels of oxygen (Georgellis,
Kwon & Lin, 2001), or in developmental decisions made by many plants (Kieber & Schaller,
2018).

The four-step nature of the PR phosphotransfer cascade enables the creation of signal-
response curves that are steeper than those of two component systems (TCS) (Feliu,
Knudsen & Wiuf, 2012; Feliu et al., 2012; Knudsen, Feliu & Wiuf, 2012; Kothamachu et al.,
2013; Jovanovic et al., 2015), a simpler signal transduction alternative to PR with only two
steps (Alves & Savageau, 2003; Igoshin, Alves & Savageau, 2008; Salvado et al., 2012; Sáez,
Wiuf & Feliu, 2017). Steeper response curves are required for cells to mount ultrasensitive,
all-or-non responses, such as sporulation in Bacillus subtilis (Narula et al., 2012; Narula
et al., 2015). Another difference between TCS and PR is that only PR enable reversible
phosphotransfer between phosphorylated domains of the signal transduction cascade
(Janiak-Spens, Cook & West, 2005; Tindall et al., 2010). These differences might explain the
selection of PR as an alternative to TCS signaling.

Still, PR circuits can assemble the four-step cascade using alternative protein domain
assembly architectures (Kim & Cho, 2006; Feliu, Knudsen & Wiuf, 2012; Knudsen, Feliu
& Wiuf, 2012; Kothamachu et al., 2013; Jovanovic et al., 2015; Salvado et al., 2015) (Fig.
1). On one extreme of the circuit architecture (M4, Fig. 1), all phosphotransfer steps
happen in the same protein. In the other extreme (M1 or M2′, Fig. 1), all phosphotransfer
steps occur between different proteins. In between, there are other architectures where
some phosphotransfer steps happen in the same protein, while others occur between
different proteins (M2 and M3, Fig. 1). This raises the question of whether alternative PR
architecturesmay have irreducible physiological differences for the behavior of the circuit or
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Table 1 Physiological variables used as proxy for performance in signal transduction circuit.

Variables Circuit performance
improves witha

Experimental support

Signal amplification Higher amplification (Alves & Savageau, 2003; Kærn et al., 2005; Igoshin, Alves & Savageau,
2008; Kuchina et al., 2011; Salvado et al., 2012; Espinar et al., 2013;
Berens et al., 2017)

Noise attenuationb Attenuated noise (Kærn et al., 2005; Kaufmann & Van Oudenaarden, 2007; Raj & Van
Oudenaarden, 2008; Tiwari & Igoshin, 2012)

Information transmissionb Higher transmission (Kærn et al., 2005; Kaufmann & Van Oudenaarden, 2007; Raj & Van
Oudenaarden, 2008; Tiwari & Igoshin, 2012)

Robustness to changes in
parameter values

High robustness (low
sensitivity)

(Alves & Savageau, 2003; Igoshin, Alves & Savageau, 2008; Cağatay et
al., 2009; Salvado et al., 2012; Berens et al., 2017)

Speed of response to
changes

Rate of adaptation (Alves & Savageau, 2003; Igoshin, Alves & Savageau, 2008; Kuchina et
al., 2011; Cheong et al., 2011; Salvado et al., 2012; Narula et al., 2015;
Shimell et al., 2018)

Metabolic cost of circuit Low cost (Noor et al., 2016; Pereira et al., 2018)

Notes.
aAs a general trend.
bRelevant in the stochastic domains of dynamic behavior.

if those differences may be quenched easily by evolving appropriate parameter values (Forst
& Roberts, 1994; Samadani, Mettetal & Van Oudenaarden, 2006; Igoshin, Alves & Savageau,
2008; Hazelbauer & Lai, 2010). In this context, can we identify general physiological
requirements that dominate the selection of PR circuit architectures and/or parameters?

To understand the physiological differences between the five PR architectures we
consider a set of physiological variables (Table 1) that are important for the function of
PR and focus on two PR that are kinetically well characterized: Spo0 of Bacillus subtilis
and Sln1-Ypd1-Ssk1-Skn7 of Saccharomyces cerevisiae. We create mathematical models
for each system, and identify which architecture performs best with respect to each
physiological variable. Of these variables, we found that only information transmission
through the circuit was optimized in the natural architecture with respect to all alternative
architectures. To investigate how general this result is, we scanned parameter values and
protein abundances and identified the regions in parameter space for which information
transmission through the circuit is maximized by each architecture. Then, we analyzed
seventeen phosphorelays, for which experimental determinations of protein abundance
are available but a full set of kinetic parameters is not. The architectures of 16 of these are
also consistent with maximization of information transmission.

Together, the results reported here have consequences for understanding the evolution
of PR signal transduction circuits and for the development of synthetic biology PR circuit
applications.
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MATERIALS AND METHODS
Mathematical modelling
Mechanistic models
PR shown in Fig. 1 represent more than 99% of all PR circuits present in the fully sequenced
genomes of more than 9,000 organisms. This information was obtained from Salvado et al.
(2015).

We used a mass action description of reactions to create a mechanistically more detailed
model for each architecture (Alves et al., 2008). These models are given in Appendix S1.
They were parameterized with experimentally determined parameter values and protein
concentrations compiled from the primary literature. We used these models to create
an atlas of performance with information transmission through the PR as a function of
protein amount, parameter values, and circuit architecture. The Mathematica notebooks
implementing the models and analysis are provided in Supplemental File S5.

Estimating protein concentrations
Proteins occupy approximately 20% of cell volume across the tree of life (Dill, Ghosh &
Schmit, 2011; Milo & Phillips, 2015). Taking into account average protein sizes, average
protein masses and factoring in cell volumes one can estimate that total protein
concentration in cells is of the order of ∼1 µM (ranging between 0.4−1.4) (Uri & Milo,
2010), or 6. 23× 106 proteins per µm3. We then use the average cell volume for the different
cell types to estimate the total amount of proteins per cell.

In order to estimate biologically relevant protein amounts for each circuit topology we
used whole-proteome relative abundance determinations (Table S1) reported by PaxDB
(Wang et al., 2015). The database information is given in parts per million. By multiplying
these number by total number of cell proteins, we calculate how many proteins exist for
each experimental PR system, within the experimental error.

With this information we can further estimate typical orders of magnitude for the
ratios between protein abundances within a PR circuit. In general, we find that protein
abundances and ratios between protein abundances have a limited range in PR (Table S1).

Parameter values for the mass action models
To find experimentally determined parameter values for the individual reactions of the
PR, we searched Medline and the Biomodels database (Glont et al., 2018). We searched for
previous mathematical models for TCS and signal transduction PR. In addition we also
search the primary literature for known circuits that have been characterized biochemically
and collected all different parameter values for the various reactions in the PR circuit. This
information is compiled in Table S2, revealing that kinetic parameters for corresponding
reactions in experimentally well-characterized systems are quite similar and, in most cases,
within the same order of magnitude.
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Calculating the dynamic behavior of each model
Steady state concentrations and stability
We obtained steady state concentrations by numerically solving the models for each set of
parameter values. We then calculated the Jacobian of the ODE system and the eigenvalues
of that Jacobian to determine the stability of the steady state. We compared the steady state
stability of the PR circuits in two ways. As we selected for sets of parameter values that
generate systems with stable steady states (see methods), all real parts of the eigenvalues of
the steady state are negative. Taking this into account we compared the minimum of the
real parts of the eigenvalues in each pair of models. This comparison allows us to compare
the fastest time scale in which the two circuits respond to a transient perturbation to their
steady states. We also compared the maximum of the real parts of the eigenvalues between
the two circuits in each pair. This allows us to compare the slowest time scale in which the
two circuits respond to a transient perturbation to their steady states.

Logarithmic gains and parameter sensitivities
To estimate the response of a physiological variable to changes in environmental signals or
model parameters, we compute (Alves et al., 2008)

L(X ,θ)=
dLog (X)
dLog (θ)

=

(
θ

X
×

dX
dθ

)
SS

Here, ss indicates evaluation at a reference steady state.

Signal amplification
To estimate signal amplification we calculated the logarithmic gains of the concentration of
the phosphorylated form of the final response regulator (RR2) with respect to the cognate
signal of the system (Signal), as given by:

L
(
RR2P,Signal

)
=

dLog (RR2P)
dLog (Signal)

=
Signal
RR2P

dRR2P
dSignal

In our case the Signals are the rate parameters for the self-phosphorylation and self-
dephosphorylation reactions of the SK.

Sensitivity to the total amount of protein
To estimate sensitivity of the different phosphorylated forms of the PR proteins (Prot-P)
with respect to the total amount of circuit proteins (Prtot), we calculated the logarithmic
sensitivities, as given by:

L(Prot−P,Prtot )=
dLog (Prot−P)
dLog (Prtot )

=
Prtot

Prot−P
dProt−P
dPrtot

Global sensitivity to fluctuations in parameters
To estimate sensitivity of the different phosphorylated forms of the PR proteins (Prot-P)
with respect to fluctuations in each of the parameters (Par i), we calculated the logarithmic
sensitivities, as given by:

S(Prot−P,Pari)=
dLog (Prot−P)
dLog (Pari)

=
Pari

Prot−P
dProt−P
dPari
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Then, for each protein, we calculate the norm of the vector whose coordinates are the
individual sensitivities of that protein, as described in (Savageau, 1971a; Kitano, 2002).
Thus, for architectureMi, the aggregated sensitivity is given by

Saggregate,Mi=

√√√√ n∑
i=1

S(Prot−P,Pari)2

This is an aggregated measure of the robustness of circuits to fluctuations in parameter
values (Alves et al., 2008).

Response times
We performed two independent experiments per architecture and per set of parameter
values to calculate the response times. First, we start with the system fully dephosphorylated
and run a time course simulation using the same scan procedure for the self-
phosphorylation and self-dephosphorylation rate constant of SK. We then calculate
the time it takes each of the architectures to reach 90% of the new steady state values. We
repeated this experiment starting with fully phosphorylated proteins.

Amount of information transmitted through the circuit
To calculate the information transmitted through the PR we simulated that system to
steady state using Gillespie’s algorithm for stochastic simulation one hundred times per
set of parameter values (Gillespie, Hellander & Petzold, 2013). The proxy for changes in the
environmental information was taken to be the number of phosphorylatedmolecules of the
SK domain, as this is the sensing domain of the PR. The output of the PR was considered
to be the number of phosphorylated final response regulators. A high correlation between
the variations in the amount of phosphorylated SK and RR2 implies that information is
transmitted in higher amounts through the circuit.

To calculate the amount of information being transmitted through the circuit we started
by running twenty five stochastic simulations with each set of parameter values and initial
conditions. At steady state, we sampled each simulation at one second intervals, running the
steady state for 20 min. We pooled together the simulations and calculated the individual
relative frequencies, for the number of SKP, RR1P, HptP and RR2P molecules. We also
calculated the paired relative frequencies for (SKP, RR2P). We then used these numbers to
estimate the information being transmitted through the circuit by applying the standard
formula for mutual information between the two variables (Bekker, Teixeira de Mattos &
Hellingwerf, 2006; Lan & Tu, 2016):

MI (SKP→RR2P)=
∑
SKPi

∑
RR2Pj

p(SKPi,RR2Pj)log(
p(SKPi,RR2Pj)
p(SKPi)p(RR2Pj)

)

In these formulas, p(x) is the relative frequency of x , and p(x,y) is the joint relative
frequency of x and y . MI (SKP→RR2P) estimates the amount of information being
transmitted through the circuit.

We calculated MI (SKP→RR2P) as a simultaneous function of the rate constants for
the phosphorylation and dephosphorylation reactions of the SK and RR2. To present this
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information in a way that is visually easier to interpret, we calculate an aggregated mutual
information defined as:

MIagregated (SKP→RR2P)=
kmax∑

k=kmin

MI (SKP→RR2P)

Here, k represents the rate constant that is not explicitly represented in the plots.

Comparison of dynamic properties between architectures
Numerical comparison of mechanistic models
We took a reference architecture and generated a latin hypercube sampling for the
parameter values of the mechanistic models of architecture M1. We approximated the
experimentally determined protein abundances to the order of magnitude and then also
generated a latin hypercube sampling strategy, which we combined with that for the
parameter values. Overall, we performed several hundred million sets of simulations.

Mathematical modelling of the Spo0 and Sln1 phosphorelays
Detailedmechanisticmodels were created for the Spo0 and Sln1 phosphorelays, as described
in Appendix S1. These models use experimental data from Narula et al. (2015) for Spo0
and from the SGD (Hirschman, 2006) for Sln1.

Then, for each of the PR, four additional equivalent models were created, each assuming
that the PR would have a different architecture. The parameter values for these alternative
architectures were considered to be the same as those for the native circuit architecture.
The concentrations for the proteins were optimized by first simulating the original model
at different signal intensities and calculating the steady state phosphorylation state of the
final RR. Using these results we then performed the same experiments for each alternative
architecture and allowed for the proteins that got fused or separated with respect to the
cognate architecture to change in concentration by up to one order of magnitude below
or above that in the natural architecture. We then selected the concentrations that led
to the most similar signal-response curves using a least square minimum criteria for the
differences between phosphorylated final RR.

Calculating the cost of alternative architectures for the Spo0 and Sln1
phosphorelays
To calculate the cost of alternative architectures for the Spo0 and Sln1 we first counted the
number of amino acids in the sequence for each protein in the original architecture. Then,
we assumed that any alternative architecture would result from fusing or splitting the
original proteins while conserving the same number of amino acids. Finally, we multiplied
the number of amino acids of the individual proteins in the phosphorelay by the number of
proteins in the cell and used this number as a proxy for the cost of each architecture. This
makes it so that the cost of maintaining one copy of the PR circuit is the same between the
alternative architectures. Thus, differences in themetabolic cost for alternative architectures
of the Spo0 (or Sln1) PR circuit are simplified to the differences in ATP consumption rate.
As we also adjusted concentrations of each alternative architecture to make the signal
response curves of the alternative architectures as similar as possible to that of the native
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architecture (see below), this makes differences in the cost of circuit maintenance equate
to differences in protein concentration.

Software
All models and analysis were done using Mathematica (Wolfram Research I, 2014). The
notebooks containing all code to generate each figure are given as supplementary data pack
S1.

RESULTS
Physiological variables as a proxy for circuit performance in signal
transduction
Theoverall fitness of organisms is affected by how theirmolecular components organize into
biological circuits (Savageau, 1976;Alon, 2007). The organization ofmolecular circuits with
common biological functions in different organisms may have alternative architectures.
Often, these alternatives lead to improved circuit performance in the context of the
organisms where they are observed. Understanding how the alternative architectures affect
circuit performance requires that the physiological variables that are important for the
biological function of the circuit are understood. Over the last few decades, several of these
physiological variables were identified as important in determining the performance of
molecular signal transduction circuits. We compiled those variables and summarize them
in Table 1.

What physiological variables are optimized by native architectures in
kinetically well characterized PRs?
To answer this question, we focus on two systems for which abundant quantitative and
kinetic information is available: The Spo0 PR in Bacillus subtilis and the Sln1 system in
Saccharomyces cerevisiae.

The Spo0 phosphorelay of Bacillus subtilis
The Spo0 phosphorelay in B. subtilis is probably the PR system with the most abundant
and reliable experimental determinations of kinetic information (Grimshaw et al., 1998;
Eswaramoorthy et al., 2010; Sen, Garcia-Ojalvo & Elowitz, 2011; Narula et al., 2012; Narula
et al., 2015). The architecture of this system is of typeM1, and Appendix S1 gives the protein
abundances and parameter values for the reactions. We created a mass actionmathematical
model describing the dynamic behavior of the native M1 architecture for this PR. We then
created mathematical models for the four alternative PR architectures (M2–M4) with
the same parameter values. Protein abundances were adjusted in each case to minimize
differences in the signal response curve with respect to the native circuit architecture. Then,
we compared the architectures with respect to the variables in Table 1. We found that the
cost of protein synthesis is an order of magnitude lower for architecture M3 than for M1
(Fig. 2A). Protein costs for architectures M1, M2′, and M4 are an order of magnitude
higher than in M3 and one order of magnitude lower than in M2. The robustness of signal
transmission to environmental fluctuations in parameters is smaller in architectures M1
and M2′ and larger in M2, M3, and M4, as shown by the higher aggregate sensitivities of
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Figure 2 Effects of architectures onmetabolic cost and robustness of the response for the Spo0 phos-
phorelay of Bacillus subtilis and the Sln1 phosphorelay of Saccharomyces cerevisiae. In all cases, the
protein amounts of the alternative architectures were optimized to make the steady state signal-response
curves be as similar as possible (see methods). A and B to the Spo0 phosphorelay. C and D pertain to the
Sln1 phosphorelay. (A, C) Cost of synthesizing the circuit under different architectures. X–axis: PR archi-
tecture. Y–axis: total metabolic cost of the circuit proteins (arbitrary units). (B, D) Normalized sensitivity
of the steady state concentration of the final response regulator to changes in parameters. X–axis: PR ar-
chitecture. Y–axis: euclidean norm of the sensitivities vector of the response regulator.

Full-size DOI: 10.7717/peerj.11558/fig-2

the latter architectures with respect to the former ones (Fig. 2B). Architecture M4 is the
fastest in responding to phosphorylating signals, and M4 and M1 are faster in a similar
percentage of cases when the signal dephosphorylates the system (Table 2). Thus, M4 is
statistically optimal with respect to fast adaptation. M1 transmits the highest amounts
of information about the environment over the regulatable signal range for the Spo0
phosphorelay, whether the signal comes at the level of the SK (modulation of k1) or at
the level of regulating dephosphorylation of the final response regulator (modulation of
k18, Fig. 3). Taken together, these results suggest that the native architecture of the Spo0
phosphorelay (M1) optimizes the amount of information transmitted to the cell about
changes in the environmental signal over the regulatable signal range. The other analyzed
performance goals seem to be of secondary importance.

The Sln1/Ypd1/Ssk1 and Sln1/Ypd1/Skn7 phosphorelays of
Saccharomyces cerevisiae
S. cerevisiae uses a PR with architecture M2 to sense changes in the osmolarity of the
medium and regulate its internal metabolism and membrane composition, adapting to
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Table 2 Percentage of simulations where each architecture was fastest to reach new steady state for the
Spo0 and Sln1 PR.

Spo0 System
Architecture Type of signal

Inducing Phosphorylation
8000 simulations

Inducing Dephosphorylation
8000 simulations

M1 (Cognate) 0.5 34.3
M2 6.7 18.3
M2′ 2.7 6.1
M3 4.4 4.6
M4 (optimal) 85.7 36.6

Sln1 System
Architecture Type of signal

Inducing Phosphorylation
8000 simulations

Inducing Dephosphorylation
8000 simulations

M1 0 100
M2 (Cognate) 30.9 0
M2′ 5.3 0
M3 10.5 0
M4 (Optimal) 53.3 0

Figure 3 (A-B) Effects of alternative architectures in the transmission of information through the
Spo0 phosphorelay of Bacillus subtilis. In all cases, the protein amounts of the alternative architectures
were optimized to make the steady state signal-response curves be as similar as possible. The Y -axis
represents the accumulated mutual information over a range of six orders of magnitude for the self-
dephosphorylation rate constant of kinA between variations in the number of phosphorylated kinA
molecules and that of phosphorylated Spo0E molecules. kKinA→KinA−P represents modulation of the
kinA phosphorylation rate, while kSpo0A→Spo0A−P represents modulation of SpoA dephosphorylation.
Architecture M1 transmits the most information for comparable parameter values.

Full-size DOI: 10.7717/peerj.11558/fig-3

those changes. The hybrid sensor kinase Sln1 senses changes in membrane curvature
and ultimately modulates the phosphorylation state of the terminal response regulators
Ssk1 and Skn7. Phosphorylation of Ssk1 acts as a molecular switch in controlling the
yeast’s osmosensing mitogen-activated protein (MAP) kinase cascade (Janiak-Spens,
Cook & West, 2005), while phosphorylation of Skn7 directly affects the transcription of
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SLN1-SKN7-responsive genes (Fassler & West, 2013). Skn7 is also involved in regulating
heat shock response in a Sln1-Ypd1 independent way (Fassler & West, 2013). Reliable
kinetic parameter values and protein abundances are available for this PR.

We use those values to create a PRmodel where we consider the simultaneous presence of
the terminal response regulators Ssk1 and Skn7. Then, create four independent alternative
models, with architecturesM1,M2′, M3, andM4 and parameter values equal to those of the
native circuit architecture. Finally, we optimize protein abundance to minimize differences
in the dynamic signal-response curve of each alternative architecture with respect to that
of the native architecture of the system.

We find that the cost of architecture M2′ is one order of magnitude higher than that
of each of the other architectures, which have a similar metabolic cost (Fig. 2C). The
sensitivity of the steady state concentrations for the Ssk1 RR are low and similar in all
alternative architectures except M4, where sensitivity is high. In contrast, the sensitivity
of Skn7 concentration is highest in architectures M1 and M2 (Fig. 2D). Architecture M4
most frequently responds faster to signals that increase the phosphorylation levels of the
proteins, followed by M2 (Table 2). In contrast, architecture M1 is always the fastest if the
change in environmental conditions decreases phosphorylation levels of the circuit. When
it comes to transmitting information about the environment to Skk1 over the regulatable
range of the circuit, architecture M2 is the best for a wider range of parameters. It surprised
us that all non-native architectures are better information transmitters to Skn7 than M2
(Fig. 4; see discussion for a rationale on why this may be so). It is interesting to note that
only very high rates of dephosphorylation for one RR affect the information transmitted
by the circuit to the other, increasing it significantly.

Overall, the analysis of these two systems suggests that transmission of information is an
important determinant of architectural selection in PR. While different architectural
solutions are used in each case (M1 for Spo0 and M2 for Sln1), the native circuit
architectures maximize information transmission for the parameter values and typical
concentration ranges of each system.

Analyzing real PR examples: How do different PR architectures
influence information transmission?
A performance atlas for information transmission in the parameter space of
PR architectures
With the hypothesis that information transmission is important in the selection of PR
architecture, we created a data-driven atlas that describes how architecture, protein
abundance, and parameter values influence information transmission in PRs. To create that
atlas we compiled experimentally determined parameter values and proteins abundances
for as many PR systems as we could find in the primary literature and in public databases
(see methods and Appendix S1). Then we used those parameters and protein abundances
to calculate the capacity to transmit information of each alternative architecture with all
possible combinations of protein abundances and kinetic values. Finally we ranked the five
architectures with respect to increasing capacity of information transmission. The atlas is
summarized in Table S3.
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Figure 4 (A-F) Effects of alternative architectures in the transmission of information through the
Sln1 phosphorelay of Saccharomyces cerevisiae. In all cases, the protein amounts of the alternative ar-
chitectures were optimized to make the steady state signal-response curves be as similar as possible. The
Y -axis represents the accumulated mutual information over a range of six orders of magnitude for the
self-dephosphorylation rate constant of Sln1 between variations in the number of phosphorylated Sln1
molecules and that of phosphorylated Ssk1 or Skn7 molecules. kSln1→Sln1−P represents modulation of the
Sln1 phosphorylation rate, kSsk1-P→Ssk1 represents modulation of Ssk1 dephosphorylation, and kSkn7-P→Skn7

represents modulation of Skn7 dephosphorylation. Architecture M2 transmits the most information to
Ssk1 for comparable parameter values.

Full-size DOI: 10.7717/peerj.11558/fig-4

Experimentally determined protein abundances are consistent with amount
of transmitted information being an important driver of PR architecture
selection
We identified and obtained protein abundances for seventeen PR systems that are present
in the PAXDB database (Wang et al., 2015) and belong to seven different organisms (Table
S1). Then we matched these abundances with the performance in the atlas of amount of
transmitted information as a function of parameter values, protein abundance and circuit
architecture given in Table S3. In 16 out of the 17 cases we find that the native architecture of
the PR systems is consistent with maximizing the through-circuit transmitted information
under experimentally known parameter conditions (Table 3).

DISCUSSION
Implications
Mutations in the genomes of organisms led to the emergence of variant architectures
for biological circuits with similar biological function. Natural selection acting upon this
variability led to fixing those architectures that are more efficient for the function of
the circuit in the genome, contingent on life history. Elucidating the reasons why these
architectures improve performance of the circuit reveals biological design principles that
constrain evolution and explain the observed patterns.

In some cases, biological design principles are general and apply to a whole class of
biological circuits. For example, overall feedback inhibition of the final product to the
initial reaction of a linear biosynthetic pathway leads to molecular systems that are faster,
more responsive, and less sensitive to fluctuations than any other regulatory alternatives
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Table 3 Observed native architectures and predictions of where in parameter space their observation is expected.

Organism Phosphorelay Ratios of abundance
(order of magnitude)

Estimated proteins
per cell h

Predicted operational
regions

TorS:TorR (M3) 1:1:1:10 100:1000 k1, k2>10−1 s−1a

EvgS:EvgA (M3) 1:1:1:100 100:10000 k1, k2>10−1 s−1a

BarA:UvrY (M3) 1:1:1:10 1000:10000 k1, k2>10−1 s−1a

ArcB:ArcA (M3) 1:1:1:10 10000:1000000 k1, k2>10−1 s−1a

Escherichia coli

RcsC:RcsD:RcsB (M2) 1:1:1:100 1000:1000:100000 k1>10−1 s−1b

BarA:UvrY (M3) 1:1:1:1 1000:1000 M1 or M2′
Shigella flexneri

ArcB:ArcA (M3) 1:1:1:10 10000: 100000 k1>10−1 s−1c

Shewanella
oneidensis SO0859:SO0860 (M3) 1:1:1:1 100000:100000 k1>10−1 s−1d

Desulfovibrio
vulgaris

DVU_3062:DVU_3061 (M3) 1:1:1:1 100000:100000 k1>10−1 s−1d

Sln1:Ypd1:Ssk1 (M2) 1:1:1:1 1000:1000:1000 eSaccharomyces
cerevisiae Sln1:Ypd1:Skn7 (M2) 1:1:1:1 1000:1000:1000 e

Mak1:Mpr1:Mcs4 (M2) 1:1:1:10 1000:1000:10000 f

Mak2:Mpr1:Mcs4 (M2) 1:1:1:10 1000:1000:10000 fSchizosaccharomyces
pombe

Mak3:Mpr1:Mcs4 (M2) 1:1:1:10 1000:1000:10000 f

KinA:Spo0F:Spo0B:Spo0A (M1) 1:100:1:100 12:4200:110:1700 k1, k2<10−1 s−1. g

KinB:Spo0F:Spo0B:Spo0A (M1) 1:100:1:100 93:4200:110:1700 k1, k2<10−1 s−1. gBacillus subtilis
KinC:Spo0F:Spo0B:Spo0A (M1) 1:100:1:100 82:4200:110:1700 k1, k2<10−1 s−1. g

Notes.
aAs compared to architectures M1, M2, M2′. M4 does not allow for the observed abundance ratio between signal transduction domains.
bAs compared to M1, the only other architecture that allows for the observed ratio between abundances of signal transduction domains. Regulation by the environment expected
at the SK phosphorylation step.

cAs compared to architectures M1, M2, M2′. M4 does not allow for the observed abundance ratio between signal transduction domains. Regulation by the environment expected
at the SK phosphorylation step.

dAs compared to architectures M1, M2, M2′ and M4. Regulation by the environment expected at the SK phosphorylation step.
eSee analysis of the system as a Sln1-Ypd1-Skn7-Ssk1 PR in the main text.
fOutside the range of protein abundances tested in this work. Nevertheless, comparing the trends of similar abundance ratios for one order of magnitude less suggests that M2
would be the preferred architecture if we pool the abundances of Mac1, Mac2 and Mac 3 proteins together.

gComparison between architectures M1 and M2′, which are the only ones that allow for this ratio of abundance between domains. Consistent with experimental determinations
of the rate constants (supplementary materials).

hThese numbers are calculated by multiplying cell volume (µm3), average number of proteins in cells perµm3, and the protein abundance in parts per million: CellVolume ×
6.23×108×Proteinabundances×10−6.

(Alves & Savageau, 2000a; Alves & Savageau, 2000b; Alves & Savageau, 2001). As such that
regulatory solution is widespread in the tree of life. However, in many cases, design
principles appear casuistic and are specific to a single circuit. For example, the circuit
that regulates competence in B. subtilis appears to have been selected over alternative
designs because of its noisy response (Cağatay et al., 2009), which enables bet edging in the
competence response of the bacterium and improves its survival chances.

In the case of PR, a specific architecture is observed in over 72% of all genomic PR
(Salvado et al., 2015) in a sample of more than 9,000 organisms (Salvado et al., 2015). This
suggested that indeed there could be design principles for selecting the architecture of
these circuits. To test this hypothesis we needed to understand what physiological variables
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influence the performance of the circuit. Then, we needed to study how architecture affects
those variables, allowing natural selection between alternative PR architectures.

Initially we compiled a list of physiological variables that are important for the
function of these signal transduction circuits (Savageau, 1971b; Savageau, 1971a; Alves
& Savageau, 2003; Igoshin, Alves & Savageau, 2008; Shinar & Feinberg, 2010; Shinar &
Feinberg, 2011; Shinar & Feinberg, 2013; Csikász-Nagy, Cardelli & Soyer, 2011; Sen, Garcia-
Ojalvo & Elowitz, 2011; Ray, Tabor & Igoshin, 2011; Salvado et al., 2012; Knudsen, Feliu &
Wiuf, 2012; Kothamachu et al., 2013; Amin et al., 2014; Uschner & Klipp, 2014; Feng et al.,
2016). We found that information transmission is maximized by the native architectures
of kinetically well characterized PR Spo0 of B. subtilis and Sln1 of S. cerevisiae. This result
led us to hypothesize that optimization of information transmission is an important
driver of selection for PR architectures. This is consistent with previous studies of TCS
suggesting that selection to maintain efficient signal transmission through a circuit appears
to be sufficient to prevent loss of specificity in the interactions between the various signal
transduction domains of the circuit (Rowland & Deeds, 2014). Those results indicate that,
after genomic duplication of a TCS, the signal sensing domain of the histidine kinase evolves
at a slower rate than that of the interface between sensor kinase and the response regulator.
This differential evolution keeps specificity of the circuits and minimizes crosstalk (46–49).

To investigate this hypothesis in a data driven manner, we created an atlas of how
architecture, protein abundance, and parameter values influence information transmission
capacity. To create that atlas we collected experimentally determined parameter values and
proteins abundances for as many PR systems as we could find in the primary literature and
in public databases. Then we used those parameters and protein abundances to calculate
the capacity to transmit information of each alternative architecture with all possible
combinations of protein abundances and kinetic values. Finally, we selected seventeen PR
from different organisms and mapped them onto the performance atlas by using their
experimentally determined protein abundances. The native architecture of the system is
the one that maximizes information transmission in sixteen out of seventeen cases.

Overall, the results of our analysis for well characterized PR circuits are consistent with
the hypothesis that information transmission is a crucial driver of PR circuit selection in
nature. This was previously suggested to be the case for MAP kinase signaling and other
metabolic circuits in eukaryotes (Paulsson & Ehrenberg, 2000; Paulsson, Berg & Ehrenberg,
2000; Pedraza & Paulsson, 2007; Pedraza & Paulsson, 2008; Lestas, Vinnicombe & Paulsson,
2010; Hilfinger & Paulsson, 2011; Cheong et al., 2011; Nemenman, 2013).

Still, architecture selection is a complex function of the interplay between the architecture
itself, protein amounts and kinetic parameters, and evolution can playwith these ‘‘genotypic
variables’’ to find instances of each architectures that are almost equivalent information
transmission circuits. Although we did look for additional specific examples of PR, we
could not find any for which a complete set of parameter values had been measured either
by the same or by independent labs. For some of them there were partial sets of parameter
values (The ArcA –ArcB, the EvgS –EvgA, and the BvgS –BVgA PR). Nevertheless, creating
models for these systems would have required using more than half of the parameters from
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other systems. This would have created a situation where the model would not be driven
from the data, but rather from other estimates.

Our results suggest that maximization of information could be a design principle that
is consistent with the evolutionary selection of PR architectures. These results also have
consequences for synthetic biology. If we want to build synthetic PR that are stable in the
genome, and have a significant level of quantitative understanding about the operating
ranges for the circuit, then it should be designed using the architecture that has the highest
capacity to transmit information over that range.

Speculations
Our analysis invites some speculation regarding the ranges of operability for many PR. If
72% of all PR have aM3 architecture, as a first hypothesis we could expect that these systems
operate in the ranges where the M3 architecture outperforms the others. By looking at our
performance in information transmission atlas, this implies that M3 architecture systems
are likely to be operating at abundance ranges of the PR that are below 100 molecules
per cell for the protein containing the SK domain. This is amenable to testing in future
proteomic experiments. TheM3 circuits are also expected to be operating overmodulatable
ranges of the self-phosphorylation and self-dephosphorylation rate constants of SK above
10−1 min−1. Similarly, 18% of the identified PR might be operating mostly over the range
where architecture M2′ transmits a high amount of information about the system, and 6%
over the range where M4 is a better information transmitter.

In addition, we speculate that the type of environmental stimulus is also important in
selecting the architecture. If the stimulus changes in a graded way and cells can be adjusted
in a similar graded way, it makes sense that the architecture should allow for a high capacity
transmission. For example, an architecture that allows the cell to distinguish between n+1
states (that is, with a capacity to transmit information of n+1 bits) provides for a better
design that another architecture that only distinguishes between n states. On the other
hand, if a very sharp response is required, architectures that can distinguish between a
small number of states over a short operability range might be more effective.

Another tempting speculation arises fromourmodelling of the Sln1 phosphorelay. Given
its information transmission profile, it could be that Sln1-mediated activation of Skn7 and
its dependent genes may not be an important function of the circuit. For the experimentally
determined parameter values and protein concentrations, other architectures would
transmit more information to that RR. This suggests to us that Skn7’s role in heat shock
response might be much more important for the cell than its role in osmoregulation.

Limitations
Our study has several limitations. Here we discuss those we think are the most important.
First, the performance landscape of PR can be strongly affected by how its expression is
regulated (Cağatay et al., 2009; Narula et al., 2010; Ray, Tabor & Igoshin, 2011; Tiwari &
Igoshin, 2012). In fact Ray & Igoshin (2012) have shown that noise in the circuit is likely to
be dominated by gene expression, rather than protein fluctuations, which is the level we
analyze. Nevertheless, transcriptional regulation occurs on a timescale of tens to hundreds
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ofminutes, while the regulation of phosphorylation levels of the PR occurs on a timescale of
minutes and this timescale can also influence the performance of the PR signal transduction
circuit (Tiwari et al., 2010; Tiwari & Igoshin, 2012).

Second there might be a wider range of parameter values for each reaction of the PR in
the wild and this could change our phenotypical mapping of PR behavior onto the phase
and architectural spaces of the circuits. Nevertheless, if this is so, our results would still be
valid for the regions that were analyzed and considering that expanded set of values would
only increase the ‘‘genotypic space’’ without changing the mapping we present here.

Third, our analysis of the capacity to transmit information focuses on steady state shifts.
One could argue that the transient capacity could be a more important determinant of
systemperformance.However, we tested how the transient capacity to transmit information
compares to the corresponding steady state capacity and found that the latter is always an
upper limit of the former.

Fourth and final, our initial comparative analysis is based on two examples for which
there is quantitative information for the complete set of kinetic parameters and protein
abundances. All other PR systems we looked at lacked information about parameter values,
protein abundances or both. Still, when we identify 17 PR systems for which there is a
complete set of experimentally determined protein abundances, their cognate architecture
is the one we would expect if information transmission was being optimized by evolution,
with one exception.
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