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Abstract: We have established a novel analytical method for solvent polarity on resin surface by
combining the synthesis of fluorescent solvatochromic resin with optical waveguide spectrometry.
The fluorescent solvatochromic resin was obtained via Suzuki–Miyaura cross-coupling between
4-iodobenzoic acid immobilized on Wang resin and 5-[4-(N,N-dihexylamino)phenyl]-2-thienylboronic
acid N-methyl-iminodiacetic acid (MIDA) ester. The optical waveguide spectrometry studies on the
resin showed a strong fluorescent solvatochromism in various organic solvents.
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1. Introduction

The solid-phase synthesis technique was originally developed in 1959 by R. B. Merrifield to
synthesize a tetrapeptide [1]. The major advantage of this method is the easy purification of the desired
compounds on an insoluble resin by filtration and washing [2]. Generally, the solid-phase synthesis
of bioactive molecules, such as oligonucleotides, peptides, and oligosaccharides, involves the use
of highly reactive activators, such as phosphoramidite and carbodiimides, to form non-conjugated
bonds [3–5]. The Suzuki–Miyaura cross-coupling is also a candidate for the elementary reaction in
the solid-phase synthesis due to its high reactivity [6–8]. This coupling reaction has been applied for
combinatorial chemistry to develop π-conjugated compounds by solid-phase synthesis [9–11].

In general, non-conjugated compounds prepared through solid-phase synthesis were used
to be fully identified using several analytical techniques such as nuclear magnetic resonance,
high-performance liquid chromatography, and mass spectrometry after cleavage from the
solid-phase [12]. For π-conjugated compounds, their specific photophysical properties such as
fluorescence and absorption characteristics could be used to identify the resin modification sensitively
without cleavage [13,14]. Herein, we report the synthesis of a fluorophore modified resin and its uses
for a highly sensitive analytical method to identification of the synthesized compound based on its
photophysical properties. Our previously reported fluorescent solvatochromic dyes exhibit strong
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absorption and emission bands in the visible light region, and the fluorescence color changes depending
on the solvent polarity [15–17]. Thus, photophysical properties of fluorescent solvatochromic dye
are suitable as an indicator to identify a synthesized compound on resin surface. Wang resin has
been frequently used as a solid-phase for the synthesis of small π-conjugated compounds [18–20].
Furthermore, along with these reasons, owing to a good swelling ability in various organic solvents,
a simple cleavage reaction proceeding in acidic or basic conditions, the ability to purify and identify
the cleaved product using the usual method, and the use of synthesized dye as a reference compound,
we chose the Wang resin as a solid phase [21]. To measure the photophysical properties of the synthesized
resin, we used an optical waveguide spectrometer with a xenon light source. Optical waveguide
spectroscopy is known to be a powerful tool for the detection of optical materials because of its good
selectivity, high sensitivity, and simultaneous detection of absorption and emission spectra [22]. It has
also been applied to study optical materials and development of an optical sensors [23–27]. In this work,
we established an optical measurement system including the synthesis of a fluorescent solvatochromic
resin using the Suzuki–Miyaura cross-coupling reaction and the analysis of its specific photophysical
properties as the identification of the synthesized compound on the resin surface.

2. Materials and Methods

2.1. General

All chemicals were reagent grade and used without further purification. Reagents were
purchased from Wako Pure Chemical Industries (Osaka, Japan) with the following exceptions:
Wang resin was purchased from Watanabe Chemical Industries, Ltd. (Hiroshima, Japan),
N-methyliminodiacetic acid and bis(pinacolato)diboron were purchased from Tokyo Chemical
Industry Co., Ltd., (Tokyo, Japan) 2-dicyclohexylphosphino-2’,6’-dimethoxybiphenyl (SPhos) and
N,N-dimethyl-4-aminopyridine (DMAP) were purchased from Sigma-Aldrich Japan Co., LLC (Tokyo,
Japan), and 5-bromothiophene-2-boronic acid was purchased from Combi–Blocks Inc. (San Diego,
CA, USA). The reactions were monitored by thin-layer chromatography (TLC) on a pre-coated plate
of silica gel 60F254 (layer thickness, 0.25 mm; E. Merck, Darmstadt, Germany). TLC plates were
visualized with UV. Wakosil® C-300 (0.04–0.06 mm, Wako Pure Chemical Industries) was used for
open column chromatography.

We recoded the nuclear magnetic resonance (NMR) spectra on a JEOL instrument (Tokyo, Japan)
at 400 MHz for 1H NMR in CDCl3 and acetone-d6 with tetramethylsilane (TMS) as internal reference.
High-resolution electrospray ionization (ESI) mass spectra were recorded on a Thermo Scientific
Exactive spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). The attenuated total reflection
infrared (ATR-IR) spectra of the synthesized beads and compounds were obtained using a Nicolet iS10
FT-IR spectrometer (Thermo Fisher Scientific).

2.2. Measurements

All spectroscopic measurements were performed in spectrometric-grade solvents from Wako Pure
Chemical Industries.

For the solid sample, the absorption and emission spectra were obtained using an optical
waveguide spectrometer (PLT-5000SLC, System-Instruments Co., Tokyo, Japan) with a xenon 150 W
light source. A micrometer was used to prevent the float and spread of a synthesized resin on the optical
waveguide (a schematic view of the optical waveguide spectrometer is shown in Figure 1). A glass
plate (65 × 20 mm with a thickness of 400 µm and a refractive index of 1.81) was used as the optical
waveguide. The incident angle (normal to the waveguide surface) was fixed at 56.5◦ and the angle of
detection (normal to the waveguide surface) was fixed at 46.2◦ when toluene was used as the solvent.
In other solvents, the incident angle was fixed at 53.6◦ and the angle of detection was fixed at 44.0◦.
For the solution sample, the absorption spectra were recorded on a JASCO V–560 spectrometer and the
fluorescence spectroscopic studies were performed on a Hitachi F-4500. The samples for the absorption
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and emission measurements were contained in 1 × 1 cm quartz cell. The concentration of the dye 7
solution was adjusted to 50 µmol L−1 for measuring the absorption spectra and to 5 µmol L−1 for the
emission spectra. The slit width was 5 nm for both excitation and emission. All the fluorescence images
were obtained on a Nikon eclipse 50i fluorescence microscope with a DS–Fi2–L3 microscope camera
(Nikon) and a 395 nm UV hand lamp as the excitation light source. The fluorescence quantum yields
of the samples were calculated using a Quantaurus-QY (Hamamatsu Photonics, Hamamatsu, Japan).
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Figure 1. A Schematic view of the optical waveguide spectrometer with micrometer (left) and
measurement process of optical waveguide spectrometry (right).

2.3. Synthetic Procedure

2.3.1. Loading of 4-iodobenzoic Acid to Wang Resin (1)

Wang resin (0.500 g, 0.790 mmol g−1, 0.395 mmol) was suspended in anhydrous dichloromethane
(7.50 mL) in a 15 mL of screw vial. 4-iodobenzoic acid (0.294 g, 1.19 mmol) and
N,N-dicyclohexylcarbodiimide (0.245 g, 1.19 mmol) were added to the resin mixture. Then, DMAP
(5.00 mg, 0.0409 mmol) in a minimum amount of dichloromethane solution was added dropwise at
that mixture. The mixture was shaken for 24 h at room temperature. The resin was filtered and washed
with dichloromethane (DCM), tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and MeOH
(×3) and finally dried under vacuum. The loading of this resin was determined to be 0.545 mmol g−1

by cleaving with 10% TFA/DCM solution.

2.3.2. Synthesis of N,N-dihexyl-4-iodoaniline (2)

4-iodoaniline (2.00 g, 9.13 mmol), 1-iodohexane (6.39 g, 30.1 mmol) and Na2CO3 (1.74 g, 16.4 mmol)
in DMF 25.0 mL, and flushed with nitrogen gas in a 50 mL of round-flask. The mixture was heated at
95 ◦C for 20 h. After cooling to r.t., the mixture was poured into H2O 100 mL and extracted with ethyl
acetate 50.0 mL for three times. The combined organic layers were washed with H2O 50.0 mL for two
times, and dried over Na2SO4. The concentrated residue was purified by silica column chromatography
(hexane) to give compound 2 as a colorless oil (2.56 g, 72.4%). 1H NMR (400 MHz, CDCl3) δ (ppm) 7.39
(d, 2H, J = 8.1 Hz), 6.40 (d, 2H, J = 8.1 Hz), 3.20 (t, 4H, J = 7.5 Hz), 1.52 (m, 4H), 1.30 (m, 12H), 0.89
(t, 6H, J = 6.8 Hz); ESI–HRMS (m/z) [M+H]+ calcd for C18H31NI 388.14957, found: 388.14943.

2.3.3. Synthesis of N,N-dihexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (3)

Compound 2 (1.00 g, 2.58 mmol), KOAc (1.27 g, 12.9 mmol), bis(pinacolato)diboron (1.31 g,
5.16 mmol) and PdCl2(dppf)CH2Cl2 (0.105 g, 0.129 mmol) were dissolved in DMF 11.0 mL, and flushed
with nitrogen gas in a 30 mL of round-flask. Then, the mixture was stirred at 90 ◦C for 21 h. After
cooling to r.t., the mixture was neutralized by 1N aq. HCl solution and extracted with 20.0 mL of ethyl
acetate. The organic layers were washed with sat. aq. NaCl solution and sat. aq. NaHCO3 solution,
and dried over Na2SO4. The residue was purified by silica column chromatography (1% ethyl acetate
in hexane) to give compound 3 as a colorless oil (0.461 g, 46.1%). 1H NMR (400 MHz, CDCl3) δ (ppm)
7.64 (d, 2H, J = 8.8 Hz), 6.59 (d, 2H, J = 8.8 Hz), 3.27 (t, 4H, J = 7.8 Hz), 1.56 (m, 4H), 1.31 (m, 12H), 0.89
(t, 6H, J = 6.8 Hz); ESI–HRMS (m/z) [M+H]+ calcd for C24H43O2N10B: 387.34177, found: 387.34206.
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2.3.4. Synthesis of 5-bromo-2-thienylboronic Acid N-methyliminodiacetic Acid Ester (4)

5-bromothiophene-2-boronic acid (1.40 g, 6.77 mmol), N-methyliminodiacetic acid (N-MIDA,
1.05 g, 7.14 mmol) were dissolved in toluene 50 mL and DMSO 5 mL mixture in a 100 mL of round-flask,
and flushed with nitrogen gas. The flask was fitted with a Dean–Stark trap, and stirring at 95 ◦C for
24 h. The mixture was concentrated under reduced pressure, and then the residue was poured into
H2O to form precipitate. The resulting powder was filtered and washed with H2O and diethyl ester at
several times to give compound 4 as a white sold (1.76 g, 80.9%). 1H NMR (400 MHz, acetone-d6) δ
(ppm) 7.19 (d, 1H, J = 3.5 Hz), 7.13 (d, 1H, J = 3.5 Hz), 4.39 (d, 2H, J = 17 Hz), 4.20 (d, 2H, J = 17 Hz),
2.92 (s, 3H); ESI–HRMS (m/z) [M+Na]+ calcd for C9H9O4N10BBrNaS: 338.94572, found: 338.94590.

2.3.5. Synthesis of 5-[4-(N,N-dihexylamino)phenyl]-2-thienylboronic Acid MIDA Ester (5)

Compound 3 (71.5 mg, 0.185 mmol), compound 4 (40.0 mg, 0.126 mmol), K3PO4 (80.0 mg,
0.377 mmol) and PdCl2(dppf)CH2Cl2 (4.00 mg, 4.90 µmol) in THF 2 mL and H2O 0.0110 mL were
dissolved to a 10 mL of round-flask, and flushed with nitrogen gas. The mixture was stirring at 20 ◦C
for 24 h. The mixture was poured into H2O 10.0 mL and extracted with ethyl acetate 20.0 mL for three
times. The combined organic layers were washed with H2O 10.0 mL for two times, and dried over
Na2SO4. The concentrated residue was purified by silica column chromatography (45% acetone in
hexane) to give compound 5 as a yellow oil (29.3 mg, 46.7%). 1H NMR (400 MHz, acetone-d6) δ (ppm)
7.48 (d, 2H, J = 8.8 Hz), 7.21 (d, 1H, J = 3.5 Hz), 7.14 (d, 1H, J = 3.5 Hz), 6.70(d, 2H, J = 8.8 Hz), 4.35 (d,
2H, J = 17 Hz), 4.15 (d, 2H, J = 17 Hz), 3.35 (t, 4H, J = 7.6 Hz), 2.86 (s, 3H), 1.68-1.53 (m, 4H), 1.34 (m,
12H), 0.89 (t, 6H, J = 7.0 Hz); ESI–HRMS (m/z) [M+H]+ calcd for C27H40O4N2

10BS: 498.28327, found:
498.28364.

2.3.6. Synthesis of Fluorescent Solvatochromic Dye Substituted Resin (6)

0.150 g of resin 1 (0.545 mmol g−1, 81.8 µmol) was suspended in dioxane 3.00 mL in a 15 mL of
round-flask. Compound 5 (59.0 mg, 0.118 µmol), SPhos (2.00 mg, 4.87 µmol) and Pd(OAc)2 (0.600 mg,
2.67 µmol) were added to the flask, and flushed with nitrogen gas. The mixture was stirred at r.t. for
10 min. To the flask was added 3 M aq. K3PO4 0.400 mL, flushed with nitrogen gas and then the
mixture was stirred at 60 ◦C for 24 h. The resin was filtered and washed with DCM, THF, DMF and
MeOH (×3) and finally dried under vacuum yielded 156 mg of resin 6.

2.3.7. Synthesis of Methyl 1-[4-[5-[4-(N,N-dihexhylamino)phenyl]-2-thienyl]-phenyl]-carboxylate (7)

The synthesized compound on resin was cleaved from 28.9 mg of resin 6, NaOMe (4.00 mg,
74.0 µmol) with THF 2.40 mL and MeOH 0.600 mL mixture were added to a 15 mL of flask, and flushed
with nitrogen gas. The mixture was stirred at reflux for overnight. The resin was filtered and washed
with DCM, THF and MeOH. Then the filtrate was dried and purified by silica column chromatography
(10% ethyl acetate in hexane) to give compound 7 as a yellow solid (1.60 mg, 21.3%). 1H NMR (400 MHz,
CDCl3) δ (ppm) 8.02 (d, 2H, J = 8.6 Hz), 7.66 (d, 2H, J = 8.5 Hz), 7.48 (d, 2H, J = 8.8 Hz), 7.36 (d, 1H,
J = 3.9 Hz), 7.14 (d, 1H, J = 3.7 Hz), 6.64 (d, 2H, J = 8.8 Hz), 3.93 (s, 3H), 3.30 (t, 4H, J = 7.6 Hz), 1.57 (m,
4H), 1.33 (m, 12H), 0.91 (t, 6H, J = 6.8 Hz); ESI–HRMS (m/z) [M+H]+ calcd for C30H40O2NS: 478.27743;
found: 478.27721.

3. Results

3.1. Synthesis of Resin 6 and Dye 7

Resin 6 and dye 7 were synthesized as shown in the synthetic procedure and identified by 1H
NMR spectra (Scheme 1, Figures S1–S5). The Wang resin was modified with 4-iodobenzoic acid
to obtain resin 1, which was then used as an electron-withdrawing moiety to generate resin 6 by
reaction with 5-[4-(N,N-dihexylamino)phenyl]-2-thienylboronic acid N-MIDA ester 5 (electron-donating
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functionalized hetero aromatic moiety) via Suzuki–Miyaura cross-coupling. For identification and
comparison of the product, dye 7 was obtained via transesterification using NaOMe.
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Scheme 1. Synthetic schemes for resin 6 and dye 7.

To confirm the condensation of 4-iodobenzoic acid and the coupling reaction with intermediate 5
on the resin, the ATR-IR spectra of resins 1 and 6, as well as that of dye 7, are compared in Figure 1.
The peaks at 1714 cm−1 from the ester group suggest the condensation of 4-iodobenzoic acid on
the naked Wang resin (Figure 2a). In addition, cleaved dye 7 shows several specific peaks from the
stretching vibrations in the aromatic ring (Figure 2b–d).
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Figure 2. ATR-IR spectra of Wang resin (blue), resin 1 (orange), resin 6 (red), and dye 7 (green) in the
dry state. Line (a) 1714 cm−1; (b) 1694 cm−1; (c) 1600 cm−1; (d) 1006 cm−1.
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3.2. Photophysical Properties of Resin 6 and Dye 7

As shown in Table 1, both resin 6 and dye 7 solutions show the absorption maxima around 400 nm
in every solvent. Additionally, compared to dye 7, the absorption spectra of resin 6 rise shoulder peaks
above 400 nm. The emission spectra of resin 6 indicate that a spectral shift occurred upon swelling in
solvents with different polarities. This spectral shift was in the range of 525–565 nm, whereas that of
the dye 7 solution was within 473–551 nm (Table 1, Figure 3). Compared to dye 7 solution, the emission
maxima (λem) of resin 6 red-shifted in every solvent (Table 1). The Stokes shift of resin 6 becomes
a large value from dye 7 solution (Table 1). Furthermore, the fluorescence quantum yield of resin
6 was lower than those of the dye 7 solutions. These results indicate that resin 6 shows fluorescent
solvatochromism, which remains even on the resin surface and the emission bands were red-shifted
from the dye 7 solutions in every solvent.
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Table 1. Photophysical properties of resin 6 and dye 7 in various solvents.

Solvent ET(30) 1/
kcal mol−1

6 7

λabs
2/

nm
λem

3/
nm

Stokes shift/
103 cm−1 Φfl

4 λabs
2/

nm
λem

3/
nm

Stokes shift/
103 cm−1 Φfl

4 ε 5/
104 M−1 cm−1

Toluene 33.9 401 525 5.88 0.22 401 473 3.80 0.97 4.19

1,4-Dioxane 36.0 398 529 6.21 0.30 400 489 4.53 0.83 4.47

THF 37.4 401 533 6.20 0.38 403 516 5.42 0.97 4.19

EA 6 38.1 394 532 6.61 0.28 399 511 5.47 0.88 4.48

DCM 7 40.7 404 548 6.52 0.37 405 521 5.50 1.00 4.14

DMF 8 43.2 403 565 7.12 0.36 408 551 6.36 0.91 4.20
1 The solvent polarity parameter [28]. 2 λabs represents the absorption maximum. 3 λem represents the emission
maximum. 4 Φfl represents the fluorescent quantum yield. 5 ε represents the molar extinction coefficient. 6 EA
represents ethyl acetate. 7 DCM represents the dichloromethane. 8 DMF represents the N,N-dimethylformamide.
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3.3. Influence of the Concentration of Immobilized Dye Molecules on the Photophysical Properties

To investigate the influence of the dye concentration on its photophysical properties on the
solid-phase, the Wang resin was immobilized with various amounts of 4-iodobenzoic acid and then the
same procedure was followed as that used to synthesize resin 6. Different amounts of 4-iodobenzoic
acid immobilized resins were prepared as follows: 0.222 mmol g−1 were prepared from 5.5 mg
4-iodobenzoic acid and 0.1 g Wang resin. In addition, 0.342 mmol g−1 were prepared from 8.5 mg
4-iodobenzoic acid and 0.1 g Wang resin. Furthermore, 0.545 mmol g−1 were prepared following
the same synthetic procedure as that described for resin 1; the prepared resins were then used to
obtain resin 6 in the same way. The emission color of resin 6 was red-shifted from 0.222 mmol g−1

to 0.545 mmol g−1 gradually in a dry state (Figure 4, left-side images). Furthermore, resin 6 shows
different solvatochromism behavior in various solvents (Figure 4, right-side images). The absorption
spectra of resin 6 also show shoulder peaks above 400 nm and emission spectra were red-shifted with
increasing concentration of dye molecule on the resin (Figures 5 and 6, Table S1). These results indicated
that photophysical properties of resin 6 were influenced by a modified amount of dye molecules.
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Figure 6. The emission spectra of resin 6 ((A) 0.222 mmol g−1, (B) 0.342 mmol g−1, (C) 0.545 mmol g−1).

3.4. Emission Spectral Shift for the Co-Solvent

To demonstrate the ratiometric fluorescence response of resin 6 in a different polarity solvent
mixture, we measured its fluorescence spectra in various ratios of 1,4-dioxane and a DMF solvent
mixture. With increasing the concentration of DMF, the emission spectrum was shifted to a longer
wavelength region (Figure 7, left). The spectral shift almost shows a linear correlation, which indicates
that resin 6 exhibits good solvation properties and ratiometric fluorescence response to a solvent
mixture (Figure 7, right). As a result, this solid-phase synthesis-and-measurement system is an efficient
way for the analytical method to measure the solvent polarity on resin surface. Thus, our fluorescent
solvatochromic resin would be applicable to tracing bio-affinity interaction that demonstrates polarity
changes on resin surface, such as antigen–antibody interaction [29]. Furthermore, our synthetic strategy
would be applied to ratiometric ion sensor material via exchanging the electron-donating moiety using
Suzuki–Miyaura cross-coupling based on previous reported fluoroionophores [30].
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Figure 7. The fluorescence spectra (left) and correlation of the emission maxima (right) of resin 6 in
1,4-dioxane with different concentrations of the DMF solvent mixture (Concentration of DMF: 0, 20, 40,
60, 80, and 100%, r2 = 0.9671).
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4. Conclusions

In conclusion, fluorescent solvatochromic resin 6 was successfully synthesized by solid surface
synthesis, and identified by its photophysical properties, NMR, and ATR-IR spectra. Resin 6 exhibited
strong solvatochromic characteristics for the various polarity solvent on the surface, and a ratiometric
fluorescence response for the 1,4-dioxane-DMF co-solvent. Following the synthetic strategy, it would
be possible to prepare fluorescent sensors for various applications based on the polarity changes on the
resin surface. We believe that the synthetic method would facilitate the fabrication of these fluorescent
sensor materials, and the combination of the optical waveguide spectrometry and fluorescent sensor
materials is a useful method for creating various fluorescent sensor devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/20/4483/s1,
Figure S1: 1H NMR of compound 2 measured in CDCl3 at 400 MHz, Figure S2: 1H NMR of compound 3 measured
in CDCl3 at 400 MHz, Figure S3: 1H NMR of compound 4 measured in acetone-d6 at 400 MHz, Figure S4: 1H
NMR of compound 5 measured in acetone-d6 at 400 MHz, Figure S5: 1H NMR of compound 7 measured in CDCl3
at 400 MHz, Table S1: Photophysical properties of resin 6 (0.222 mmol g−1, 0.342 mmol g−1, 0.545 mmol g−1) in
various solvents.
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