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Abstract: Infectious diseases remain the most serious public health issue, which requires the devel-
opment of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is
essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted
increasing attention worldwide due to its wide application in different areas, including medicine.
Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely de-
veloped for their attractive biomedical applications. With advantages such as low costs in preparation,
hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials
have been proven to show promising potential in anticancer and anti-infection treatment. In this
review, we summarize the characters of cobalt nanomaterials, followed by the advances in their bio-
logical functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt
nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection
treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.

Keywords: cobalt nanomaterials; anti-infectious agents; drug carriers; immunomodulators;
anti-infection therapy

1. Introduction

Infectious diseases are the second most important cause of human death worldwide [1].
Main symptoms of infectious diseases include fever, increased pulse, increased breathing,
anxiety, and insanity, which may lead to rapid death in some uncontrolled infection condi-
tions. Antibiotics are the cornerstone of therapy for infected critically ill patients, and have
saved millions of lives worldwide. However, antibiotics are often not optimally administered
due to the compliance of patients, which always results in less favorable patient outcomes
and drug resistance [2]. Recent years, drug resistance to some commonly used antibiotics has
been widely developed with the abuse of antibiotics, which further increases the emergence
of the extremely dangerous multidrug-resistant mutant [3]. Therefore, it is urgent to explore
new therapeutic strategies for more effective control of infectious diseases.

Cobalt (Co) and its compounds are widely distributed in nature with numerous
anthropogenic activities [4]. Cobalt is considered to be an essential trace element as it is a
critical component of vitamin B12 [5]. Cobalt can regulate the metabolism of fatty acids and
affect the synthesis of amino acids and proteins in nerve cells. Moreover, cobalt compounds
also have promising medical applications. For example, cobalt-based alloys can be used to
make frictional and supporting parts of artificial joints, such as femoral heads, acetabular
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liners, femoral components, and stems due to their excellent corrosion and wear resistance,
strength, and machinability [6].

Nanoparticles (NPs), typically defined as ultra-small particles ranging from 1 to
1000 nm in diameter, can be comprised of different materials such as lipids, polymers, or
metals, all of which offer unique delivery advantages [7]. During recent decades, metal
nanoparticles (MNPs), one of the most important catalysts for biomedical application,
have gained increasing attentions [8]. Among these MNPs, cobalt nanoparticles (Co NPs)
are not only used in engineering fields, but also in the medical area according to their
advancing properties [9]. For example, one study showed that Co NPs have the ability to
induce cell apoptosis [10], which indicates the feasibility and relevance of Co NPs as novel
nanomedicines for potential chemotherapy, phototherapy, and thermotherapy.

Cobalt can strengthen protein metabolism and promote the synthesis of some enzymes,
thus can enhance the body immunity of human. Based on the promising properties of
cobalt, Co NPs are also used as potential therapeutic agents for the treatment of various
infectious diseases [11,12]. Co NPs are known to induce the production of reactive oxygen
species (ROS), which are responsible for the inhibition effects of Co NPs against different
kinds of bacteria, fungi, and viruses [13,14]. Here, we summarized the biological activity
and biomedical uses of Co NPs, especially their potential for anti-infectious treatment,
which may contribute to the future development of anti-infection strategies.

2. The Biological Activity of the Cobalt Element
2.1. Cobalt Is the Core Element of VB12

Cobalt, a silvery-gray, lustrous, brittle but hard metal, is distributed widely in nature,
including rocks, soil, plants, and animals. As a transition metal located in the fourth row
of the periodic table, cobalt is a neighbor of iron and nickel with an atomic weight of
58.9 [15]. Cobalt is an essential trace element for human health and can occur in organic and
inorganic forms. The most widely known organic forms are the core element of cobalamin
(vitamin B12 and its derivatives), which serve as cofactors of a wide range of enzymes and
components of proteins [16]. As a water-soluble vitamin, vitamin B12 contains mineral
cobalt, which is positioned centrally and coordinated with upper and lower ligands as a
corrin ring [17,18] (Figure 1). For this reason, the compounds with vitamin B12 activity are
always called as “cobalamins”.
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2.2. Physiological Function of Cobalt Based on Their Critical Roles in VB12

As an essential vitamin, vitamin B12 is obtained entirely from the diet. It is naturally
found in animal food products, including meat, poultry, shell, fish, eggs, milk, and other
dairy products [19]. It is also synthesized naturally by some large intestine-resident bacteria
in humans in the rumen from cobalt and has a major role in metabolism, especially in the
peri-parturient period [20,21]. Vitamin B12 is always bound with proteins in food, which
must be released by gastric acid breakdown in the stomach, where the salivary R-binder
can bind with VB12 to prevent VB12 destruction [22]. The absorption of vitamin B12 into
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the blood stream is dependent on their binding with the protein intrinsic factor (IF) to form
the VB12-IF complex in the small intestine [23].

Vitamin B12 is stored primarily in the liver and always acts as a cofactor for methionine
synthesis from homocysteine and succinyl-CoA synthesis from methylmalonyl-CoA in
mammalian systems [24]. As an essential nutrient for folate metabolism and DNA synthe-
sis, VB12 is critical for normal fetal and childhood growth and development [25]. Maternal
VB12 deficiency during pregnancy may increase the risk of neural tube defects and brain
development retardation, as well as preterm birth and low birth weight [26]. VB12 is also
necessary for basic body functions, such as the nervous system, cardiovascular system,
and immune system [27], as well as the maintenance of skeletal muscle and neurobehav-
ioral parameters, and modulation of gut microbiota [28]. VB12 deficiency has also been
associated with several metabolic disorders such as macrocytic anemia, cardiovascular,
cerebrovascular, and neurological disorders [29]. Clinical disease caused by VB12 deficiency
usually results from the failure of the gastric or ileal phase of physiological B12 absorption,
best exemplified by the autoimmune disease, pernicious anemia [30].

2.3. The Physiological Function of the Cobalt in Hematopoiesis

As the central cofactor of vitamin B12 and the critical roles for proper nucleotide
synthesis, cobalt can also stimulate the hematopoietic system of human bone marrow, which
promotes the synthesis of hemoglobin and increase the number of red blood cells [31]. The
detailed mechanisms about cobalt stimulated hematopoiesis are summarized as following:

Firstly, as mentioned above, as the active center of the VB12, cobalt participates in the
metabolism of ribonucleic acid and hematopoietic substances through VB12, which act on
the hematopoietic process [32]. Deficiency of cobalamin (vitamin B12) can result in mega-
loblastic anemia due to the inhibition of DNA synthesis caused by decreased availability
of purines and pyrimidines (Thymidine monophosphate), which results in enlarged red
blood cells and accumulation of significant, immature precursors (megaloblasts) of RBCs in
the blood and bone marrow [33].

Secondly, cobalt is involved in metabolism modulating transcriptional activator
hypoxia-inducible factor-1 (HIF-1), which stimulates erythropoietin (EPO) production [32].
HIF-1 is a transcription factor that controls hypoxia-induced autophagy by upregulat-
ing the expression of its downstream proteins [34]. Cobalt can activate HIF-1 at normal
oxygen levels, which is stabilized, translocated to the nucleus and then dimerized with
the constitutively expressed HIF-1 to elicit the transcription of target genes necessary for
increased oxygen demand [10]. Study has also demonstrated that cobalt treatment may
increase hypoxic tolerance of different tissues, improve muscle metabolism and exercise
performance [35].

Third, cobalt can promote the absorption of iron. Fe is an essential element important
in a wide variety of metabolic processes, including oxygen transport, DNA synthesis, and
electron transport. Fe is required for the production of red blood cells and forms part of
hemoglobin, helping in the binding and transportation of oxygen in the body [36]. Cobalt
can promote the absorption of iron in the intestinal mucosa and accelerate the storage of
iron into the bone marrow, which therefore very important for hematopoiesis.

2.4. The Anti-Infective Activity of Cobalt

In recent decades, an increasing number of studies have focused on investigating the
structure and chemical behavior of some metal compounds to discover new drugs with
antibacterial capabilities. Among them, cobalt has proven the ability to act as a potential
candidate for antibiotic [37]. Cobalt alloys have high corrosion resistance with a balance
among biocompatibility and mechanical strength [38], which makes it suitable for the
artificial joint materials manufacturing. It was also recently reported that in addition to
inducing a hypoxic response, Co(2+) incorporation could also improve the antibacterial
ability of titanium-based bone implants, which suggested that Co(2+) had an additional
effect as an antimicrobial agent.



Pharmaceutics 2022, 14, 2351 4 of 21

Co2+ can directly bind to the DNA of bacteria to induce bacterial cell death by different
pathways [39], for example, by inducing reactive oxygen species (ROS) production. ROS is
the reduction products of oxygen, such as peroxides, which can destroy the cell membrane
of bacteria and play a significant role in DNA and other cellular damage [40]. Apart from
that, cobalt can inhibit the function of RecBCD, which is crucial for initiating the SOS repair.
The SOS response can promote the integrity of DNA, it also includes error-prone factors that
allow for improved survival and continuous replication in the presence of extensive DNA
damage [41]. Moreover, cobalt can also be helpful to cure infectious diseases [42], which is
also partially associated with the immunological regulation effects. Cobalt can help in the
creation and repair of the myelin sheath, which encircles the nerve cells and further protects
them from external damage. A study has shown that cobalt is able to induce new blood
vessel formation, as well as to improve wound closure and avoid bacterial infection [43].

2.5. The Immunoregulatory Role of Cobalt

The immune system, which is integrated into all physiological systems and critical for
human health, protects the host against infections [44] and provides constant surveillance
of native cells that may be harmful, such as cancerous cells [45]. It is reported that metals
are critically implicated in regulating both the innate immune sensing of and the host
defense against invading pathogens [46], which suggests that metals play an important
role in regulating the immune system against infection. A recent study has shown that
transition metal-based compounds could modulate autophagy, one of the most important
host immunological responses, which therefore provides a new therapeutic strategy based
on transition metal-based compounds for disease treatment [47]. For example, CoCl2
treatment activates autophagy through the target genes induced by HIF, and correlates
with the expression of certain pro-apoptotic factors [48]. Additionally, Co(2+) can induce an
HIF-1α-dependent metabolic shift from oxphos towards glycolysis in macrophages, which
plays an early and pivotal role in the inflammatory responses [49]. Thus, the growing
interests of researchers in transition metal-based compounds is not only due to their potent
antibacterial, antifungal, antiviral, antitumor, and anti-inflammatory properties [50], but
also due to the promising immunological regulation effects.

One study shows that Co(2+) has a significant influence on osteoblastic activity, differ-
entiation, and inflammatory processes [51]. The formation of Co NPs in the wear process
of MoM hip implants may lead to inflammatory fluid collections or osteolysis [4]. In vitro
studies have shown that Co(2+) can activate the production of bone-resorbing cytokines
through the activation of redox-dependent mechanisms and activate the biosynthesis
of inducible NO synthase and pro-inflammatory interleukins in macrophages [52], thus
inducing inflammatory responses in macrophages [53] (Figure 2). Macrophages are the pre-
dominant immune cells in periprosthetic tissues, which induce a type IV hypersensitivity
reaction. Both T-lymphocytes and B-cells (to a lesser extent) are involved in the production
of inflammatory mediators. Pro- and anti-inflammatory cytokines, the interleukins IL-1,
IL-6, IL-4, and tumor necrosis factor-α (TNF-α), play a central role in the inflammatory re-
action [54]. A study identified a new downstream effect of cobalt-induced ROS production,
which reduced RhoA expression in modulating macrophage migration and cytoskeleton or-
ganization, leading to an enhancement in macrophage spreading, adhesion, and inhibition
of migration. These effects could induce a prolonged immune cell retention, which thereby
propagates the chronic inflammation [55]. Co(2+) can also promote pro-inflammatory gene
expression by binding to the human TLR4 receptor [56], which could activate dendritic
cells migration to draining lymph nodes and present allergen-induced epitopes to trigger
antigen-specific T cell proliferation, differentiation, and memory formation [57]. Co(2+)
has also been shown to increase the binding of T lymphocytes to endothelial cells and the
transendothelial migration of these lymphocytes [58], which independently induce circulat-
ing cytokine or chemokine production to promote the accumulation of T lymphocytes [55].
Moreover, the fibrotic response could be further enhanced by the presence of macrophages.
In the light of these results, Co(2+) and macrophages act synergistically to influence the
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functional properties of fibroblasts and extracellular matrix (ECM) homeostasis [59]. Cobalt
can also modulate immune cell functions in the lung and induce airway hyperreactivity
with a mixed neutrophilic and eosinophilic inflammatory responses, which are accompa-
nied by dendritic cells and innate lymphoid cells [60]. However, epidemiological studies
have demonstrated a higher risk of asthma in workers exposed to cobalt, and several case
series of cobalt-induced asthma have also been reported [60], which also highlight the
toxicity issue of cobalt to human health.
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Figure 2. Co(2+) can induce inflammatory responses in macrophages [53]. Different environmental
factors can induce the differentiation of macrophages into different subsets: M1 and M2 macrophages,
which have different phenotypes, secrete different cytokines, and have different biological activities.
M1 macrophages cells are activated by the classical way (activators include IFN-γ, TNF-α and LPS,
etc.), which mainly play a role in killing microorganisms and promoting inflammation. M2 macrophage
cells are activated by alternative ways (activators include IL-4 and IL-13), which are mainly involved
in immune regulation, inhibition of inflammation, and tissue repair, and are related to the chronic
progression of infectious diseases. M1 and M2 macrophages can transform into each other in different
pathological processes and microenvironments. ↑means upregulate and ↓means downregulate.

In summary, as an essential trace element of the body, cobalt has an important physio-
logical role. It is a component of vitamin B12 and some other enzymes, participates in the
metabolism of the human body, and has the effect of stimulating hematopoiesis in various
ways. The release of cobalt into the human body can also trigger the body’s immune system,
which provide new therapeutic strategies for infectious diseases.

3. The Synthesis of Cobalt Nanomaterials

Along with the time, various chemical and physical synthesis methods of cobalt
nanomaterials have emerged [61], such as thermal decomposition, hydrothermal synthe-
sis, chemical wet processing, thermal reduction, micro-emulsion, precipitation, sol–gel,
microwave-assisted, reverse micelles, evaporation–condensation, and laser ablation [62].
Cobalt nanomaterials are always synthesized by top-down or bottom-up methods [63].
In the top-down method, cobalt compounds based on bulk materials are transformed to
NPs through sputtering techniques, grinding, and milling. While in bottom-up methods,
the self-assembly of miniature compounds into NPs is performed [64]. A typical feature
of physical methods for cobalt nanomaterial preparation is the production of particles
by the so-called “top-down” approach, such as laser ablation [65], which is opposite to
the chemical methods characterized by a “bottom-up” approach. These physical and
chemical methods used for cobalt nanomaterial preparation showed a narrow range of
size and controlled morphology, which are very suitable for the industry production of
cobalt nanomaterials [66]. However, the use of physical methods always requires high
temperature or pressure, and most chemical methods need some chemicals that are toxic
and hazardous to the environment and biological systems [67]. Therefore, there is still a
demand for the development of safer, greener, eco-friendly, and cost-effective synthetic
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methods that can eliminate the arduousness and complications of current physicochemical
methods for cobalt nanomaterials [9].

In the current scenario, green chemistry is known as an intellectual approach for
nanomaterial preparation. The surging popularity of green methods has triggered the
synthesis of Co NPs using different sources, such as bacteria, fungi, algae, and plants,
resulting in large-scale production with less contamination [68]. The bacterial synthesis
of nanoparticles has been adopted due to the relative ease of manipulating the bacte-
ria [69]. The fungi-mediated approach exhibits unique advantages, as the growth process
of fungi is easily handled and isolated, with the large amount of biomass and high yield of
proteins [64]. Compared with bacteria and fungi-based cobalt nanomaterial preparation
methods, plant extracts have been extensively used to synthesize Co NPs as it is an inex-
pensive, biocompatible, and easy scale-up method that can fully avoid the requirement of
additional stabilizing agents during the nanoparticle synthesis [70]. For example, IsmatBibi
et al. fabricated cobalt–oxide nanoparticles using Punica granatum peel extract from cobalt
nitrate hexahydrate at low temperature [71]. Furthermore, the nanoparticles obtained from
plant extracts exhibit greater reduction and stabilization effects, which therefore allows
the cobalt nanoparticles to show multiple properties, including catalyst/photocatalyst,
magnetic, antibacterial, anticancer, and gas sensing [72].

4. The Characteristics of Cobalt Nanomaterials

Nanomaterials, due to their excellent physical and chemical characteristics, have be-
come one of the most rapidly growing research areas in the biomedical field in recent
years [73]. In broad terms, nanomaterials are inorganic, organic, or polymeric materials
that possess physicochemical features with a size range of 1–1000 nm [74]. The small size
of nanomaterials allows them to easily distribute throughout the body, traverse biological
barriers, and enter the systemic circulation [75]. Nanoparticles always show large surface
areas, which therefore can help them interact with biological systems more precisely [76].
In addition, nanomaterials can be engineered to show different properties such as size,
shape, charge, and surface chemistry [77], which could lead to different applications in
the biomedical fields [78]. For example, nanomaterials allow molecular scale detection for
the diagnostic application of pathogenic microbes [79]. Additionally, small-sized nanoma-
terials always exhibit enhanced permeability and retention (EPR) effects in tumors, with
relative increases in local tumor concentrations of contrasting agents [80]. Such promising
properties therefore make nanomaterials potential candidates for novel diagnostic and
therapeutic method development.

There are various kinds of nanomaterials, including metal nanomaterials, ceramic
nanomaterials, carbon-based nanomaterials, polymeric nanomaterials, and lipid-based
nanomaterials [75]. Among them, metal nanomaterials are widely used due to their low
toxicity, biocompatibility, and excellent conductivity [81]. For example, MNPs have been
largely implemented to facilitate the conjugation with biomolecules for the improvement
of biosensors [82]. The NiCo@f-MWCNT nanocomposite has been proved to be a kind of
novel sensor with high stability and excellent electrochemical properties [83]. Recently,
cobalt nanomaterials (Co NMs) have attracted considerable attention due to their low costs
in preparation [84], great electrical property, magnetic property, and catalytic property [85].
For example, Mn0.75Co0.25Fe2O4 NPs can be utilized in industrial and environmental
objects such as water treatment from the pollutant dyes due to their effective photocatalytic
performance to protect the environment from toxic pigments [86].

Co NMs are renowned catalysts, particularly in Fischer–Tropsch reactions [87], with
high Curie temperature, which makes it applicable over a wide temperature range [88].
The high saturation magnetization and large anisotropy field of pure cobalt nanoparticles
give them an intrinsic advantage within the strict requirements of hyperthermia [89].
Co NMs have a variety of size-dependent structural, electrical, magnetic, and catalytic
capabilities [90]. Therefore, efforts have been conducted to attain various structures and
sizes such as spheres, sheets, snowflakes or cauliflower like particles, and flakes [91]. The
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instability of Co NMs is their main drawback, which can be diminished by using different
stabilizers such as surfactants and dendrimers [92]. Based on these features, Co NMs
have demonstrated various biological and medical applications, such as antimicrobial,
anticancer, antioxidant, anti-fungal, and enzyme inhibition properties [9].

5. Anticancer Activity of Cobalt Nanomaterials and Cobalt-Hybrid Nanomaterials

In recent years, cobalt nanoparticles (Co NPs) have been proven to show promising
anticancer activities [84]. Cobalt is a non-accumulative element for the human body [87],
indicating that it would not induce metal poisoning caused by cobalt accumulation. Cyto-
toxicity studies demonstrate that Co NPs exhibit mild anti-proliferative character against
the cancer cells and safe nature towards the normal cells [93]. Our recent work also indi-
cated the cancer cell inhibition effects of cobalt oxide nanoparticles (Co3O4 NPs) with few
proliferation inhibition effects on normal cells [94]. The compatibility of Co NPs with hu-
man RBC has also been proven to have no harmful effects in the human blood stream [93],
which also indicates Co NPs an attractive candidate for cancer treatment.

The anticancer potential of these nanomaterials is attributed to their ability to induce
ROS production in cellular compartments, which could eventually lead to the activation
of autophagic, apoptotic, and necrotic death pathways [95]. Co NPs can be internalized
by cancer cells through endocytosis [87]. After penetrating into the membrane of cancer
cells, Co NPs can lead to cancer cell apoptosis [87]. Our recent work indicated that Co NPs
inhibited U-87 MG cancer cell proliferation was not cobalt–ion- or apoptosis-dependent,
which was due to the ability of Co3O4 NPs to induce the aggregation of autophagosomes,
break the intracellular homeostasis, and block the flux of autophagy [94]. Additionally, Co
NPs can also significantly induce reactive oxygen species (ROS) generation, lipid peroxida-
tion (LPO), mitochondrial outer membrane potential loss (MOMP), and caspase-3 enzymes
activation in cancer cells [96]. In animal models, Co NPs can accumulate preferentially in
cancer sites due to an enhanced permeability and retention (EPR) effect [97], which there-
fore can passively deliver drugs to tumor tissue [98]. The highly efficacious nanocarriers
can ferry cargo such as imaging and therapeutic agents, which make them very suitable for
drug delivery as well as diagnosis, facilitating the advent of personalized medicine [99].
By acting as drug carrier, researchers have proved that Co NPs can effectively reverse the
side effects of cisplatin [98]. Moreover, drug loading/release characterization reveals that
the cobalt nanowires can interact with doxorubicin (DOX) by electrostatic interaction, and
accordingly form a composite which can release DOX with a temperature increase under
near-infrared light (NIR) treatment [100], which indicates the potential of Co MPs to act as
chemosensitizer and protective agents for anticancer treatment. Furthermore, angiogen-
esis assessment reveals that the released cobalt ion from the nanowires can significantly
enhance the angiogenesis efficacy for cancer treatment [100], which provides a promising
multifunctional platform for cancer treatment and postoperative recovery. Moreover, we
have previously demonstrated that Co3O4 NPs have shown a very high photothermal
conversion rate, which allows the application of Co3O4 NPs for the photothermal elimina-
tion of tumors [94], which allow them to manipulate protein degradation pathways (ALP
and UPS) and photothermal therapy for enhanced anticancer treatments both in vitro and
in vivo [94]. Additionally, CoNWs-GO-PEG-DOX nanosystems show the satisfactory effect
to eliminate cancer cells with synergistic chemo-photothermal therapy in vitro and have
the potential to serve as a targeted antitumor agent in synergistic chemo-photothermal
therapy [101]. In addition, DAPI stained nuclear DNA staining analysis has demonstrated
that Co0.5Ni0.5NbxFe2−xO4 nanosystem can cause nuclear DNA disintegration and pro-
grammed cancer cell death [102]. The Co3O4@Glu/TSC nanoparticles’ complex can also
inhibit the growth of cancer cells by inducing apoptosis in them with their anticancer
activity [103], while the Co(OH)2@Glu-TSC nanosystem can also be considered as a new
treatment for breast cancer by inducing cancer cell apoptosis [104].
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These results collectively suggest the anticancer application of Co NMs based on their
promising biological activities, which also indicates their potential for the treatment of
other diseases, such as infectious diseases.

6. Anti-Bacterial Activity of Cobalt Nanomaterials and Cobalt-Hybrid Nanomaterials

Bacteria, especially antibiotic-resistant bacteria, are currently one of the most serious
issues worldwide, which are responsible for numerous life-threatening diseases [105].
Every year, bacterial infection leads to substantial morbidity and mortality worldwide [106],
which requires more effective control of bacterial infection. Cobalt-based nanoparticles
(CBNPs) have displayed dose-dependent cytotoxicity and antimicrobial activities against
microbial species [107].

Cobalt nanomaterials have shown promise in the antimicrobial applications against
a vast diversity of bacteria [37]. Singh has introduced a plant extract-based route for the
synthesis of cobalt nanoparticles and their potential anti-bacterial uses [70]. For example,
Suvarta D et al. introduced the biogenic synthesis of Cobalt nanoparticles using Hibiscus
cannabinus leaf extract, and demonstrated their antimicrobial activity against Bacillus
substilis and Escherichia coli [108]. And Co3O4 NPs were evaluated against Gram negative
and Gram positive bacteria to show active inhibition against Klebseilla pneumonia and
Bacillus lichenifermia [109]. There is also a study showing that Co NPs have even stronger
antibacterial activities compared to the standard antibiotic drug ciprofloxacin [110], and
the low-concentrated Co NPs are non-toxic in vivo which make thempotential substitutes
as novel antibiotics [111]. Moreover, Co NPs have shown amazing antibacterial activity
against multidrug-resistant pathogens, including Staphylococcus aureus, Proteus spp., Bacillus
substilis, and Escherichia coli [37]. Li et al. found that CoFe2O4 nanoparticles can act on
Gram-negative bacteria at lower concentrations [112], and show the ability to attach to
negatively charged bacterial cells [113]. Zn0.75Co0.25Fe2O4 NPs are reported to replace
some disinfectant solutions used for surface washing in hospitals and for inclusion in some
paints used in the medical operating rooms to defend the pathogenic microbes [86].

However, the bacterial detection ability of NPs varied depending on the different
factors [114], such as bacterial strain, concentration, and particle size. For example, small
Co NPs showed statistically higher toxicity compared to large Co NPs under experimental
conditions for the bacterial systems [90].

Additionally, cobalt nanomaterials leverage distinct mechanisms against bacterial
infections and the mechanisms are summarized in Figure 3. Cobalt-based nanomaterials
can not only act as direct bacterial inhibition agents, but can also act as drug carriers for
antibiotics and natural antimicrobial compounds for more effective anti-bacterial treat-
ments [115]. Firstly, nanoparticles (NPs) can serve to reduce the toxicity, enhance the
bioactivity, and improve the targeting effects of drugs, which could result in increased drug
bioavailability and efficacy with reduced side effects [116,117]. Based on the advantages of
nanomaterials, Co NPs allow drugs to reach the infected areas of the body while keeping
healthy tissue uninfected. In addition, the magnetic properties of Co NPs can positively
affect the targeting effects of drug delivery, which indicates that we can control the targeting
effects of Co NPs using an extra magnetic fields [93].

Secondly, the surfaces of the Co NPs can interact directly with the bacterial outer mem-
brane, causing the membrane damage to destroy the bacteria functions and growth [108].
Thirdly, the small Co NPs with a high surface-to-volume ratio interact with the bacteria’s
outer membrane and cause a change in its permeability. This higher permeability allows
the NPs and the encapsulated drugs to enter the bacteria, which can thereby kill the bacteria
more effectively [37].

Moreover, the positively charged metal ions from Co NPs, such as Co(2+), can directly
interact with the cell surface of Gram-negative bacteria, which is negatively charged at near-
neutral pH due to the presence of lipopolysaccharides, potentially leading to inhibition
of enzyme biosynthesis [118]. Moreover, due to the optimal and potent antibacterial
activity and proper stability of Co NPs [119], it is difficult for microbial pathogens to
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develop resistance towards them [120]. This property therefore provides new possibilities
to develop more effective methods for bacteria killings with the reduced emergence of
drug-resistant mutants.
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Interestingly, Co NPs can also be used for bacterial detection based on their promising
physical, chemical, and biological properties. For example, researchers incorporated a
bovine serum albumin-templated Co3O4 magnetic nanoenzyme with a novel specific
fusion phage protein, which could be combined with magnetophoretic chromatography
to detect Staphylococcus aureus [121]. These results demonstrate the potential of Co NPs to
construct novel nanobiosensors for bacterial detection.

7. Anti-Virus Activity of Cobalt Nanomaterials and Cobalt-Hybrid Nanomaterials

Viruses are mainly formed by nucleic acids (DNA or RNA) and which can infect
their host cells, use parts of the cellular machinery to reproduce, and release the replicated
virus to infect more cells [122]. It is widely accepted that viruses are currently the most
threatening pathogens to human lives due to the epidemic of COVID-19, which has caused
millions of deaths worldwide with more than 5 hundred million infected cases.

Numerous nanomaterials have shown their potential for the control of virus infec-
tion [123,124], and among them, metallic nanomaterials are also considered to have a wide
variety of activities against viruses [125]. Metal nanoparticles by virtue of their unique
shape, size, structure, and local-field enhancement action can interact with viral surface
proteins through Kazimir interaction and van der Waals forces causing its inactivation [126],
which provides new potential antivirus methods. Interestingly, Co NPs have also been
reported to show attractive antiviral properties [127]. Delong et al. indicated the potential
anti-virus effects of cobalt-doped ZnO nanoparticles [128], which demonstrated the poten-
tial use of cobalt to enhance the anti-virus effects combining with other metal nanoparticles.
Kevadiya et al. synthesized a kind of Europium (Eu3+)-doped cobalt ferrite (CF) dolute-
gravir (DTG)-loaded nanoparticles, and further investigated their use as platforms for
nanoformulated drug biodistribution, which might benefit the long-acting, slow, and effec-
tive release of antiretroviral therapy by drug delivery to human immunodeficiency virus
cell and tissue reservoirs [129]. These results suggest the potential of cobalt to construct
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anti-viral nanoparticles, although further investigation on the anti-virus activity of pure Co
NPs is needed.

One of the most effective means to combat virus infections are vaccinations [130],
which can be achieved by the development of novel vaccines [131]. Due to the remarkable
physical/chemical properties, high surface area to volume ratio, and high drug-loading
capacity, nanomaterials can be used for both drug and vaccine delivery [132,133]. The
roles of Co NPs are exhibited in Figure 4. Encapsulation or conjugation of antigens within
nanomaterials can greatly increase the persistence of antigens at the injection site, in the
circulation, lymphoid tissues, or even within antigen (Ag)-presenting cells (APCs) [134].
The promising ability of NPs to act as a cargo of immunogens for modulating immune
responses [135], including cell recruitment, activation of APCs, and induction of cytokine
and chemokine [136], is very attractive for the development of novel investigations on
in vitro immunogenicity of Co3O4 NPs and their effects on cancer-associated or tolerogenic
cytokines [137]. Co3O4 NPs have been shown to penetrate human skin and introduced
considerable immunostimulatory when pulsed with macrophages [137] (Figure 5), which
have shown the potential of Co3O4NP to enhance immunization efficacy. These results
collectively suggest that Co NPs can serve as potential antigen carriers for the development
of vaccines against viruses, which remains to be further explored.
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Finally, cobalt nanomaterial can also be applied to construct nanobiosensors for the
detection of viruses. For example, by immobilizing HBV probe DNA (ssDNA) onto Co3O4
nanostructures through coordinate bond formation between nucleic acid of ssDNA and
Cobalt metal, the obtained ssDNA/Co3O4PNCs/GCE system can act as potential electrode
to test HBV DNA in blood serum and urine samples [138]. Azab et al. also introduced a
method using Co NPs constructed nanobiosensors for the determination of daclatasvir: a
hepatitis C antiviral drug [139]. Co-metal functionalized TiO2 nanotube was developed as
a sensing material for the electrochemical detection of SARS-CoV-2 infection through the
detection of the receptor binding domain (RBD) of spike glycoprotein [140].
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Figure 5. Cobalt nanomaterials help to enhance immunization efficacy. Co3O4NPs can pene-
trate human skin and introduce considerable immunostimulatory when pulsed with macrophages.
Macrophages have powerful phagocytosis, digestion, and killing functions, can intake pathogens
such as virtual particles, form phagosomes, and fuse with lysosomes forming phagolysosomes,
through oxygen-dependent and oxygen-independent systems, under the participation of a variety of
enzymes, and kill and digest pathogens. Additionally, macrophages are an important class of dedi-
cated antigen-presenting cells that can uptake, process antigens, and present antigen peptide-MHC-II
molecular complexes to CD4+ T cells.

These results indicate that Co NPs can be engineered into novel nanobiosensors for
the detection of virus or anti-viral drugs, indicating the promising application of Co NPs
besides the anti-viral vaccination and treatment.

8. Anti-Fungal Activity of Cobalt Nanomaterials and Cobalt-Hybrid Nanomaterials

Fungi are a kingdom of multicellular eukaryotic organisms that are heterotrophs. As
an important part of the microbiota in healthy barrier tissues [141], the dysbiosis of fungi
would lead to different diseases, which make fungal infections an increasing threat to
global public health [142].

Cobalt nanomaterials have also showed various biomedical applications, including
anti-fungal uses [84]. Al-Fakeh MS et al. introduced that the cobalt oxide nanoparticles
made by calcination method showed stronger anti-fungal activity than the cobalt oxide
nanoparticles obtained by other methods due to their small particle size and large surface
area to induce the production of ROS [143]. Another study showed the antimycotic efficacy
of CoFe2O4 nanoparticles against Fusarium oxysporum, Colletotrichum gloeosporioides, and
Dematophora necatrix [144]. By anti-fungal investigations through colony forming unit (CFU)
technique and SEM, Co0.5Ni0.5GaxFe2−xO4 (0.0 ≤ x ≤ 1.0) nanosystem was found to inhibit
the growth of Candida albicans [145]. The synthesized cobalt ferrite nanoparticles were
found to be potent antifungal activities against Aspergillus niger, Alternaria solani, Fusarium
oxysporum, and Candida albicans [146]. CoO NPs could also be obtained by using natural
extracts for phytosynthesis followed by a calcination step (500 ◦C) to obtain crystalline
NPs, which showed antimicrobial potential towards fungi [147]. Additionally, Hasan
M et al. also found that Co3O4 NPs synthesized by Withania coagulans using different
solvent combination ratios showed different anti-fungal activities. A 90% fraction of
hexane/H2O showed excellent anti-fungal activity against P. niger and C. albicans, while
70% methanol/hexane showed strong anti-fungal activity for C. albicans, which indicated
the potential of Co3O4 NPs for the treatment of various fungal infections [148]. These results
strongly suggest the inherent inhibition effects of cobalt nanomaterials against fungi.

Nanomaterials not only exhibit improved inhibitory activity against fungal pathogens
at low concentrations, but can also act as nanocarriers to assist the targeted delivery of
anti-fungal drugs [149]. Nanoparticles have the potential to carry, stabilize, and protect
therapeutic payloads, which can penetrate extracellular polymeric substances (EPS) for
targeted fungal cell killings [150]. Various commercially available anti-fungal drugs can be
loaded into nanostructures, which significantly enhance their anti-fungal activities [151].
As a kind of functional nanomaterial with drug loading and delivery abilities, cobalt
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nanomaterials are expected to further assist anti-fungal treatments serving as drug carrier,
which needs to be further investigated.

Most of the pathogenic fungi are opportunistic in causing disease under immunocom-
promised conditions [152]. Hence, there are significant interests in stimulating the immune
system to obtain more effective anti-fungal immunological responses against pathogenic
fungi. Co(2+) can induce ROS production and reduce RhoA expression, which could further
modulate macrophage migration and cytoskeleton organization. Moreover, these effects on
ROS and RhoA cascades could also lead to an enhancement in macrophage spreading and
adhesion, and also regulate the inflammatory responses [55]. These effects strongly suggest
the potential of cobalt nanomaterials to regulate host immunity for anti-fungal treatments,
as the cobalt ions are abundantly involved as byproducts of cobalt nanomaterials.

Currently, although there are limited reports for the use of cobalt nanomaterials,
the potential abilities of cobalt nanomaterials to directly inhibit fungal growth, to act as
drug carrier and delivery system, and to stimulate anti-fungal host immunity make them
potential candidates for more effective anti-fungal treatments.

9. Other Biological Applications of Cobalt Nanomaterials and Cobalt-Hybrid Nanomaterials

Apart from the strong anticancer and anti-infection activities, cobalt nanomaterials
also have various other biological and medical applications. An increasing number of
studies have shown that cobalt nanomaterials have the potential to fight parasitic infections.
Khalil et al. proved that Co NPs displayed antileishmanial activity against both the axenic
promastigote and amastigote cultures [153], which might be one of the possible options
in nanomedicine to treat leishmania at any stage of the life cycle. There are also findings
showing the potential of Co NPs against A. castellanii due to their significant amoebicidal
effects and inhibition of encystation [11]. Cubic CoO NPs with an average size of 20.03 nm
diameter have been prepared using the leaf extract of S. thea to show strong antioxidant
capacity [153]. In addition, green-synthesized CoO NPs [154] also demonstrate an out-
standing ability to scavenge DPPH free radicals [155]. Shahzadi et al. also observed the
radical scavenging activity of bioinspired Co NPs and reported that the scavenging power
and antioxidant activity are dose dependent [92]. Cobalt ferrite nanoparticles synthesized
using Monascus purpureus cell-free culture filtrate exhibited a superparamagnetic nature
according to the VSM analysis, and promising antioxidant activity compared to ascorbic
acid as a standard according to the DPPH assay [146]. Cobalt nanomaterials can also aid
in healing by increasing the number of fibrocyte, the concentration of hydroxyproline,
hexuronic acid, hexosamine, and fibrocyte/fibroblast ratio [156]. Kulanthaivel et al. de-
veloped a highly efficient human mesenchymal stem cell (hMSC) encapsulation system
by incorporating bivalent cobalt doped nano-hydroxyapatite (HAN) and gum tragacanth
(GT) as angiogenic–osteogenic components into the calcium alginate (CA) beads, which
could promote osteogenesis and angiogenesis [157]. Additionally, cobalt nanomaterials
have other biomedical applications such as anticholinergic, and antidiabetic properties [84].

10. The Cytotoxicity of Cobalt Nanomaterials and Cobalt-Hybrid Nanomaterials

With the increasing number of applications of nanomaterials in various fields, such
as food, cosmetics, and medicine, there is a significant concern about their safety [158].
The toxic effects of Co ions could be attributed to its competition with Ca(2+) in the cell-
signaling and cell-binding proteins [159]. Cobalt has been shown to enter mitochondria,
thereby inhibiting the respiratory chain. Additionally, cobalt has also been reported to
show inhibition effects on the precursor processing of a single cytochrome c oxidase (COX)
subunit and cytochrome c oxidase in mitochondria [160]. These results indicate the potential
toxicity of excessive cobalt.

Cobalt nanomaterials and cobalt-hybrid nanomaterials also show the toxicity issues for
biomedical application. A study has also shown that metal particles mainly composed of
cobalt nanoparticles can cause systemic and local toxic reactions due to various physical and
chemical factors [161]. Co3O4 NPs can enter cardiomyocytes to induce ROS production and
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DNA damage, and alter cellular electrophysiological and mechanical properties, leading to
alterations in intracellular calcium handling and reduced electromechanical efficiency [162].
Exposure to Co NPs can cause oxidative stress, induce DNA damage and DNA mutation,
and lead to lung inflammation and injury [163]. Apart from that, the fast-dissolving CoO
NPs can also release cobalt ions to induce skin sensitization [164]. Some studies have also
indicated the cytotoxicity of Co NPs against primary human dopaminergic neurons and
platelets [165,166].

The toxicity of Co3O4 NP was recognized and presumably caused by the fast cell
internalization through endocytosis via the clathrin-dependent pathway. Once inside
the cells, Co3O4 NPs are preferably stored in endocytic vesicles and then recruited by
lysosomes, whose acidic pH can progressively solubilize the NPs to continuously release
cobalt ions [159]. After being released, the highly soluble Co(2+) can bind with synovial
fluid proteins and adjacent tissue surfaces, followed by dissemination into the peripheral
blood [4], and induce ROS production, DNA damage, and chromosomal aberration across
cellular barriers [55]. Co NPs and Co salt triggered a dose-dependent cytotoxicity with
the increase in cytosolic calcium, lipid peroxidation, and depletion of glutathione (GSH),
and also suppressed glutathione peroxidase 4 (GPX4) mRNA and protein expression [159].
Moreover, Co NPs could induce ferroptosis-like cell death through the enhancement of in-
tracellular reactive oxygen species (ROS) level, cytoplasmic Fe(2+) level, lipid peroxidation,
and consumption of reduced GSH [167].

Although nanotechnology has many advantages and potential, the investigation of the
interaction between NPs and biological systems is a major concern. It is crucial to further
study the effects and detailed mechanisms of Co NPs-mediated cytotoxicity and explore
effective methods for detoxification.

11. Challenges, Future Opportunities, and Perspectives

Cobalt, as a component of vitamin B12, participates in the metabolism of the human
body by regulating multiple signaling events. Cobalt can stimulate hematopoiesis, enhance
the immune responses, and show attractive antibacterial activities. Due to the unique
physical, chemical, and biological properties, nanomaterials have shown advancing ap-
plication potential in different areas. Using the advantages of cobalt and nanotechnology,
cobalt nanomaterials have been developed to show some promising properties, including
anticancer, anti-infection, and immunological regulation effects.

To develop nanomaterials into biomedical uses, their cytotoxicity is regarded as one
of the most important issues. Cobalt nanomaterials exhibit a safe nature towards the
normal cells and have no harmful effects in the human blood stream, which allow them
to have a wide range of biological and medical application. Interestingly, other works
as well as our previous works have both demonstrated that cobalt nanoparticles show
very low cytotoxicity against normal cells, while the same dosages of cobalt nanoparticles
show strong inhibition effects against cancer cells [93,94]. Our work also indicated that
cobalt nanoparticles treatment did not induce any toxicity in mice, indicating their in vivo
biocompatibility [94]. These results strongly suggest the safety of cobalt nanoparticles for
further biomedical application; however, more systemic works are still needed to further
evaluate their potential in vitro and in vivo toxicity. There is urgent need for long-term and
real-time assessments of the pharmacological and pharmacokinetics of cobalt nanoparticles.

Traditionally, NPs are synthesized by either physical or chemical methods, which leads
to environmental toxicity and energy-intensive labor. Cobalt nanomaterials, synthesized
by a green route using the extracts of different plants, microorganisms, and other biological
molecules are environmentally friendly, facile in terms of synthesis, low in cost, and are
expected to provide maximum protection to human health. Based on the potential role
in various therapies of cobalt nanomaterials, the detailed mechanisms for the biological
activities of cobalt nanomaterials need to be further investigated. Moreover, the toxicity of
cobalt nanomaterials also need to be further systemically explored in in vitro and in vivo
models to establish their application strategy with limited side effects.
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Due to the threatening facts of infectious disease and drug-resistance issues worldwide,
it is crucial to develop more effective treatments against virus, bacteria, and fungi infections.
Cobalt nanoparticles have been proven to show inhibition effects against different kinds
of viruses, bacteria, and fungi, which suggests their strong potential to serv as novel
anti-infectious agents. The surfaces of cobalt nanoparticles can interact directly with the
bacterial outer membrane, causing the membrane damage or leading to inhibition of
enzyme biosynthesis to destroy the bacteria functions and growth. However, more precise
mechanisms of how cobalt nanoparticles inhibit or kill different pathogens remains to be
further explored.

Most importantly, it is difficult for microbial pathogens to develop resistance towards
cobalt nanomaterials. With the advantages of their optimal and potent antibacterial activity
and proper stability, cobalt-based nanosystems are expected to not only provide novel possi-
bilities against the drug-resistant mutants, but also avoid the emergence of drug resistance.

Cobalt nanomaterials can also serve as drug carriers for targeted drug delivery. The
encapsulation of drugs into cobalt nanomaterials can not only reduce the drug toxicity,
but can also improve the targeting effects of drugs to achieve enhanced anti-infectious
efficiency of drugs. However, the targeting effects of cobalt nanomaterials still remain an
unsolved issue that need more attention. Thus, the involvement of more chemists to prepare
functional cobalt nanomaterials, or to perform surface modification of cobalt nanomaterials
is critical to develop cobalt nanomaterials with high targeting effects. Moreover, the drug
loading efficiency and controlled drug release behaviors of cobalt nanomaterials also need
to be further improved, which could benefit the targeted drug delivery for more effective
pathogen clearance.

Moreover, cobalt nanomaterials can also enhance immunization efficacy as a cargo
of immunogens for modulating immune responses to kill the pathogenic microorgan-
isms. These properties allow cobalt nanoparticles the possibility to act as anti-infectious
immunomodulators, vaccine carriers, or vaccine adjuvants. Cobalt nanoparticles have
been proven to activate the innate immunity for enhanced anti-infectious immunological
responses, but their exact mechanisms and their effects on adaptive immunity remain to be
further investigated. The combining of cobalt nanoparticles as immunomodulators and
antibiotics is expected to show enhanced anti-infectious efficiency, which still need further
investigation. With the advantages of selective lymph node accumulation, antigen assem-
bly, and antigen presentation, cobalt nanomaterials can also be used for vaccine delivery by
loading different kinds of antigens, such as proteins and RNAs. Furthermore, as a kind
of novel innate immunity activation agents, cobalt nanoparticles also show the potential
of adjuvants to enhance the immunological responses of vaccines. These immunological
application for cobalt nanoparticles all require the in-depth exploration of their precise
immunological regulation responses.

In addition, cobalt nanomaterials offer the potential for various biomedical applications
regarding cancer therapy, parasitic resistance, antioxidant effects, and wound healing. Cur-
rent advances in nanomaterials engineering indicate that well-designed nanomaterials have
the potential to improve healthcare in the future. Therefore, further studies are needed to in-
crease the understanding of the functional mechanisms and physical and chemical properties
of cobalt nanomaterials so that they can be utilized in a variety of diseased conditions.

Additionally, in order to accelerate the development of cobalt nanomaterials for future
clinical application, there is also a critical issue remains to be solved. Each of the biological
activities of cobalt nanoparticles has different levels of sensitivity based on their different par-
ticle structures, sizes, and surface coatings. To ensure the future uses of cobalt nanoparticles,
the basic issue requires the preparation of functional cobalt nanoparticles with quantified
standards, which would allow the standardized application of cobalt nanoparticles.

12. Conclusions

Here, we have reviewed the recent trends and understanding for the synthesis, biotox-
icity, and biological application of cobalt nanomaterials, in particular, discussing their
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anti-infective effects, mechanisms, and application. Overall, although a number of issues,
such as their biological mechanisms and unexpected toxicity, are still needed to be clarified
and solved, the promising abilities of cobalt nanomaterials indeed present an attractive
prospect for further biological and medical uses, including anti-infectious application. With
the increasing attention paid to cobalt nanomaterials, we believe that more strategies will
be developed for anti-infection treatments based on cobalt nanomaterials, which would
finally benefit the control of infectious diseases.
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