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1  |  INTRODUC TION

Reduced representation sequencing (RRS) is a population genomic 
approach that enables assaying of a reduced set of genetic loci 
across the genome of an organism. There are many reduced repre-
sentation sequencing approaches, some of which assay loci associ-
ated with restriction sites within the genome, including approaches 
such as genotyping-by-sequencing (GBS), restriction site-associated 

DNA sequencing (RADseq), double digest RADseq (ddRADseq), 
DArTSeq, and hybridization of RAD probes (hyRAD) (see Andrews 
et al., 2016 for a discussion and summary of these methods). These 
approaches are an efficient and, in comparison with whole genome 
sequencing (WGS), cost-efficient method for generating population 
genomic data sets, often with a focus on inferring population struc-
ture of non-model organisms. The uniting feature of these differ-
ent approaches is utilizing restriction sites in an attempt to assess 
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Abstract
Reduced representation sequencing (RRS) is a widely used method to assay the di-
versity of genetic loci across the genome of an organism. The dominant class of RRS 
approaches assay loci associated with restriction sites within the genome (restric-
tion site associated DNA sequencing, or RADseq). RADseq is frequently applied to 
non-model organisms since it enables population genetic studies without relying on 
well-characterized reference genomes. However, RADseq requires the use of many 
bioinformatic filters to ensure the quality of genotyping calls. These filters can have 
direct impacts on population genetic inference, and therefore require careful con-
sideration. One widely used filtering approach is the removal of loci that do not con-
form to expectations of Hardy–Weinberg equilibrium (HWE). Despite being widely 
used, we show that this filtering approach is rarely described in sufficient detail to 
enable replication. Furthermore, through analyses of in silico and empirical data sets 
we show that some of the most widely used HWE filtering approaches dramatically 
impact inference of population structure. In particular, the removal of loci exhibiting 
departures from HWE after pooling across samples significantly reduces the degree 
of inferred population structure within a data set (despite this approach being widely 
used). Based on these results, we provide recommendations for best practice regard-
ing the implementation of HWE filtering for RADseq data sets.
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genome-wide diversity while not having to sequence the complete 
genome. For the remainder of this study, we group these various 
approaches under the umbrella term of “RADseq”.

The application of RADseq, particularly to non-model organ-
isms, however, can pose challenges. First, RADseq can be affected 
by allelic dropout, the failure to identify an allele due to the loss of a 
restriction site which leads to missing data for that “null” allele and 
therefore an apparent reduction in heterozygosity in samples (Cooke 
et al., 2016). Null alleles are not unique to RADseq data: for exam-
ple, PCR profiling of microsatellites can manifest a null allele when 
a mutation in the primer-binding site adjourning the satellite se-
quence inhibits amplification of that allele (Pemberton et al., 1995). 
There is a rich literature dedicated to the various issues such null 
alleles cause, including difficulties in parentage assignment, inflating 
population-level estimates of inbreeding, reducing the success of as-
signment tests, and inflating estimates of population differentiation 
(Carlsson,  2008; Chapuis & Estoup,  2007; DeWoody et al.,  2006; 
Pemberton et al.,  1995). Furthermore, the inferences drawn from 
RADseq data originating from non-model species often depend on 
the availability of a reference genome of the species of interest or a 
closely related one (Galla et al., 2019). While a reference genome is 
not essential for conducting analyses based on RADseq data sets, de 
novo assembly without a reference can result in more misassembled 
genetic loci (LaCava et al., 2020). However, as RADseq typically pro-
duces a large amount of data, bioinformatic filtering approaches can 
be leveraged to adjust for the potential biases of RADseq approaches.

The application of such filters help to normalize RADseq data 
across experiments, and to check if the data is consistent with the 
assumptions made by downstream analyses (O'Leary et al., 2018). 
For population structure inference in non-model species (Choquet 
et al., 2019), downstream analyses often make assumptions about 
factors such as the population size (i.e., very large), the sampling 
scheme (i.e., randomized sampling), and the species in question (i.e., 
diploid). Ordination techniques such as principal component analysis 
(PCA) are therefore often used for preliminary analysis of RADseq 
data since they do not rely on these assumptions, however, they lack 
the translation to population parameters that are offered by para-
metric approaches such as admixture analyses or F-statistics (Falush 
et al., 2003; Wright, 1943).

One commonly used admixture approach is STRUCTURE, a 
widely used tool for identifying distinct genetic groups in population 
genetic data, and for subsequently analysing the degree of admix-
ture within and between individuals (Falush et al.,  2003; Porras-
Hurtado et al.,  2013). STRUCTURE iteratively clusters individuals 
into groups in order to minimize the Hardy–Weinberg disequilibrium 
(HWD) within groups while maximizing it between groups (Pritchard 
et al., 2010). Thus, STRUCTURE makes explicit assumptions about 
the relationship between HWD and genetic structure within groups.

F-statistics are frequently used to infer the degree of genetic 
structure within predefined groups based on observed heterozygos-
ity relative to expected heterozygosity. Population structure is typ-
ically measured using FST, which is defined as the relative reduction 
in heterozygosity due to partitioning the total data set into putative 

populations (Whitlock, 2011; Wright, 1943). Accurate a priori delin-
eation of groups or “populations” is essential for leveraging FST to 
characterize population structure (De Meeûs, 2018). FST can further 
be influenced by independent factors that impact the heterozygos-
ity of individual single nucleotide polymorphisms (SNPs) (such as 
natural selection or technological artefacts including null alleles; De 
Meeûs, 2018; Meirmans & Hedrick, 2011; Whitlock, 2011).

The assumptions of the various methods highlighted here rein-
force the need for appropriate bioinformatic filtering approaches 
when inferring population structure from RADseq data. Filtering ap-
proaches can substantially influence the inference of genetic struc-
ture, especially when filters disproportionately affect potentially 
informative loci (Graham et al., 2020; Shafer et al., 2017). Linck and 
Battey  (2019) showed that minor allele frequency (MAF) filtering 
of data sets may be problematic since it alters the site frequency 
spectrum (SFS) across loci according to their rate of missingness. 
Additional recent studies have revealed that both variant call rate 
and MAF can affect population genetic inferences and genotype-
environment association studies (Ahrens et al.,  2021; Selechnik 
et al., 2020). In Table 1, we summarize filtering approaches that are 
commonly applied to RADseq data, the reasons for their usage, and 
how they can affect population genetic inference.

The removal of genetic loci exhibiting departures from 
Hardy–Weinberg equilibrium (HWE) is a commonly applied filter 
(Waples, 2015). HWE describes the state of an ideal population in 
the absence of evolutionary forces, where allele frequencies are 
predictable since they remain constant across generations (Garnier-
Géré & Chikhi, 2013).

The identification of genetic loci departing from HWE is often 
used to remove loci subject to genotyping errors such as null alleles 
(Hendricks et al., 2018) and loci that are potentially under selection 
(Lachance,  2009; Wang et al.,  2005). The removal of genotyping 
errors is, in general, beneficial for downstream analyses, while the 
removal of loci under selection may be required for analyses that 
assume neutrality of loci. However, many other factors can cause 
departures from HWE, especially since the assumptions of HWE are 
rarely met in real biological populations (Waples, 2015), and there-
fore the removal of loci out of HWE may have substantial effects on 
population genetic inferences.

The, arguably, most obvious other factor that can cause de-
partures from HWE is the Wahlund effect due to the inadver-
tent pooling of multiple populations (De Meeûs, 2018). Under the 
Wahlund effect, expected heterozygosity of loci is, on average, 
reduced relative to observed heterozygosity, with the reduction 
in heterozygosity proportional to FST. Excessive deviation from 
HWE heterozygosity expectations can also arise from repetitive 
genomic elements (Hohenlohe et al.,  2011). Other scenarios that 
lead to HWE departure, frequently observed in real populations, 
include overlapping generations, non-panmictic reproduction, non-
diploidy, and very small population sizes. Genotype/single nucle-
otide polymorphism (SNP) calling approaches represent further 
potential sources of departure from HWE: Genotype calling can be 
sensitive to sequencing depth, and to the number of mismatches 
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allowed to call a variant, both of which can lead to a reduction 
in heterozygosity and in turn lead to HWE departures (Cumer 
et al., 2021).

While the impact of such factors is often minor, genetic infer-
ences for species that have many potential causes of HWE depar-
tures (such as endangered species) might be heavily impacted by 

TA B L E  1  Description of commonly used filtering approaches in the analysis of RADseq data (“filter”), the reason for their usage (“usage”), 
and how they impact population genomic inference (“impact”)

Filter Usage Impact Reference

Hardy–Weinberg 
equilibrium (HWE)

•	 Removes loci under selection
•	 Removes library and 

sequencing artefacts

•	 Unknown Gruber et al. (2018), Sethuraman 
et al. (2019), Waples (2015)

Linkage within loci •	 Mitigates effects of 
nonindependence of single 
nucleotide polymorphisms 
(SNPs) by removing physically 
linked SNPs.

•	 Reduces false signals of population 
structure

•	 Necessary for STRUCTURE (if LD 
correction is not used)

O'Leary et al. (2018)

Locus level diversity •	 Loci with high SNP density 
(i.e., many SNPs within a 
locus) may be the result of 
polyploidy

•	 Can remove putative paralogous loci Hohenlohe et al. (2011), Mastretta-
Yanes et al. (2015)

Minor allele frequency 
(MAF)/count (MAC)

•	 Identification of genotyping 
errors

•	 Can remove informative loci if not 
applied carefully

•	 MAF will affect loci differently based 
on missingness

•	 Removes genotyping errors

Linck and Battey (2019), O'Leary 
et al. (2018)

Variant call rate •	 Ensures SNP panel is well 
represented across individuals

•	 Can dramatically reduce number of 
loci

•	 Helps ensure samples are comparable

O'Leary et al. (2018)

F I G U R E  1  Five potential Hardy–Weinberg equilibrium (HWE) filtering options (loci removed indicated by grey crosses). In the case of “no 
filter”, no loci are removed, even if they exhibit departures from HWE. In the case of “out all”, loci are removed if they exhibit departures 
from HWE in all sampling locations. “Out some” can be considered a subset of “out all”, where loci are removed if they are out of HWE in a 
certain proportion of populations. In “out within”, loci are removed only from the populations in which they depart from HWE. In “out any”, 
loci are removed if they exhibit departures from HWE in any of the sampling locations and, finally, in “out combo”, loci are removed if they 
exhibit HWE departures when sampling locations are grouped together
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decisions around HWE-based filtering. Specifically, when conser-
vation decisions are based on genetic inferences that utilize HWE 
filtering, it is essential to ensure that this is done appropriately to aid 
in the management of already vulnerable populations.

The question of when, and if so how, a genomic data set should 
be filtered for departure from HWE is a difficult one. Sample strat-
ification has to be taken into account; genetic loci that depart from 
HWE can be filtered in various ways (Figure 1): No loci removed 
based on HWE departures (“No Filter”), loci removed if they ex-
hibit departures in any sampling location (“Out Any”), loci removed 
if they exhibit departures from HWE in all sampling locations (or a 
certain proportion of sampling locations) (“Out All”, “Out Some”), 
loci removed if they exhibit departures across sampling locations 
(“Out Combo”). Finally, loci can be removed from the popula-
tions in which they exhibit deviations from HWE (“Out Within”) 
(Figure 1).

The “Out Combo” approach removes genetic loci that de-
part from HWE across the entire genomic data set. This filtering 
scheme will have a substantial impact on downstream analyses 
since loci that are strongly informative for population structure are 
likely to be removed by this filter due to the differences in allele 
frequencies between populations leading to these loci to being out 
of HWE when analysed at the total data set level. However, ap-
plying “No Filter” could lead to the retention of genotyping errors 
or of genetic loci under selection which might be problematic in 
downstream analyses. A potentially equally extreme filter would 
be “Out Any”, in which loci are discarded if they exhibit deviations 
from HWE in any population. Middle ground approaches between 
these two extremes may be “Out All”, or “Out Within”. In the “Out 
All” (or “Out Some”) approach, only loci that depart from HWE in 
all (or some) populations would be removed, that is, the loci that 
are most likely to be problematic. In the “Out Within” approach, 
loci are only removed from populations where they depart from 
HWE—this would maximize the number of loci available for pair-
wise comparisons and thus retain the most information possible. 
However, these latter three approaches (“Out Any”, “Out All”, and 
“Out Within”) require knowledge of the underlying population 
structure in order to correctly define populations for assaying pat-
terns of HWE. In the absence of prior knowledge, studies often 
assume sampling locations to be a proxy for genetic populations. 
While this assumption might not be problematic in the case of 
pronounced population structure, conflating sampling location 
with genetic populations in the case of subtle population struc-
ture could be problematic. This is because the application of HWE 
filters might inflate divergence estimates between sampling loca-
tions if they do not accurately map to the underlying population 
structure (i.e., where different sampling locations represent the 
same underlying panmictic population). This inflation may occur 
if loci that discriminate “true” populations were removed through 
HWE filters, and loci that discriminate sampling locations were 
retained. This would erroneously reinforce the a priori hypothe-
sis that sampling locations reflect underlying genetic populations. 
This “over-splitting” of populations can be as problematic in a 

conservation setting as the previously discussed “over-lumping” of 
populations (i.e., Wahlund effects) in terms of implementing man-
agement recommendations.

Despite the potentially substantial impact of HWE-based fil-
tering approaches, they are frequently misused or their application 
is not reported at all (Sethuraman et al.,  2019). While it has been 
suggested that HWE filtering is often inadequately described and 
inappropriately applied (Gruber et al., 2018; Waples, 2015), this has 
not yet been systematically assessed within the field of RADseq-
based population genomic research (Table  1). For example, many 
widely used filtering tools such as VCFtools (Danecek et al., 2011), 
plink (Chang et al., 2015), and pegas (Paradis, 2010) calculate HWE 
departures directly from genetic data rather than utilizing a popula-
tion mapping file (i.e., the default behaviour would be “Out Combo”, 
subject to the impact of the Wahlund effect). This default behaviour 
might be desirable when studying a single population, as is often the 
case in large-scale human genomic studies, but it could be problem-
atic in studies comprising many populations for the reasons outlined 
above.

Here, we first review the common approaches for HWE filter-
ing currently used in the RADseq literature, and then systematically 
explore the effect of different HWE filtering approaches with the 
help of simulations and empirical biological data sets across a wide 
range of realistic levels of population structure. We hypothesise that 
HWE filtering will have a substantial effect, especially on marginally 
or nons-tructured populations. Specifically, we hypothesise that the 
removal of genetic loci that depart from HWE across populations 
will reduce estimated population structure, whereas the removal of 
genetic loci that depart from HWE in any population will increase es-
timated population structure and divergence by reducing the impact 
of “noisy” loci resulting from methodological artefacts (e.g., vari-
ant calling, null alleles). Finally, we hypothesise that HWE filtering 
schemes that consider population strata will reinforce the a priori 
sample groupings when genetic populations are conflated with sam-
pling locations.

2  |  MATERIAL S AND METHODS

2.1  |  Literature review

We conducted a literature review for RADseq-based popula-
tion genomic research using the Web Of Science (see Supporting 
Information material for specific search terms). From the initial re-
sults, we selected studies that contained any of the following terms 
“Hardy”, “Weinberg”, “HWE” or “Hardy–Weinberg”, and excluded 
those that met any of the following criteria:

1.	 Described a new panel of SNPs; these studies mostly describe 
a very small panel of genetic variants.

2.	 Studied a single population; studying a single population means 
that HWE filtering will not have an impact on population structure 
inference.
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3.	 Focused on human populations; we excluded human data sets to 
avoid ethical concerns around demarcating human populations 
and the comparatively rare use of RADseq for humans compared 
to WGS.

4.	 Consisted of transcriptome- or RNA-derived genetic variants; 
these variants are likely to display departures from HWE since 
they are transcriptionally expressed and therefore more likely to 
be under selection.

5.	 Did not explicitly discuss HWE filtering; we were not able to dis-
cern if these studies had not applied any filtering or had just not 
mentioned it. Furthermore, it was difficult to ascertain whether 
this filter was overlooked or intentionally avoided and would bring 
the scope of the literature review beyond what was manageable.

6.	 Was not based on RADseq data; we focused on RADseq data 
since allelic dropout can be a substantial source of HWE depar-
tures, and RADseq is currently one of the predominant RRS ap-
proaches for non-model organism population genetics.
The remaining studies were classified into one of the seven catego-

ries described in Table 2 (note that “No Filter” probably underestimates 
the number of studies that do not utilize Hardy–Weinberg filtering, as 
studies that do not discuss this would not be included in our search 
results—as we explicitly searched for Hardy–Weinberg associated 
studies).

2.2  |  Simulated data

To investigate the impact of HWE filtering on inference of popu-
lation structure, we used both simulated and empirical data sets. 
For all simulations, we used the SLiM forward genetic simulation 
framework (Haller & Messer, 2016; Messer, 2013) with 10 replicates 
with randomly generated seeds for each simulation. We simulated a 
random genome approximately 104 megabases in length. We con-
ducted two sets of simulations, with either a recombination rate of 1 
× 10−4 (high recombination/low linkage) or of 1 × 10−8 (low recombi-
nation/high linkage) in combination with the “pseudochromosomes” 
option in SLiM to enable independent simulation of 13 autosomal 

chromosomes (Waples et al., 2021). We assumed a sexually repro-
ducing diploid organism. We chose an arbitrary but realistic mutation 
rate of 10−8, and an effective population size of 1000. Age-related 
mortality was implemented with maximum mortality at age seven, 
with density-dependent survival ensuring fluctuation of the popula-
tion size around the effective population size.

A single population was created which evolved for 135,000 gen-
erations (which was three times the number of generations that the 
initial population took to reach coalescence, namely approximately 
45,000 generations), followed by divergence into 12 separate pop-
ulations with an initial census population size of 80. These popu-
lations then evolved for another 15,000 generations with constant 
migration between adjacent populations (Figure S1). During this pe-
riod, populations expanded to an effective population size of 1000. 
Differing migration rates in each scenario adjusted the degree of 
population structure, with the “Marginal” population structure mi-
gration rate at 0.1 (i.e., 0.1 or 10% of a population was transferred 
to the adjacent population/s in each generation, e.g., population 5 
received 10% of population 4 and 10% of population 6), “Low” pop-
ulation structure migration rate at 0.01, “High” population structure 
migration rate at 0.001, and “Extreme” population structure migra-
tion rate at 0.0001. Migration was deterministic, and the number of 
migrant individuals from each population drawn using a Poisson dis-
tribution with a lambda equal to the product of the population size 
and the migration rate. At generation 150,000, 30 individuals were 
sampled randomly from every other adjacent population, resulting 
in a total of 180 individuals being sampled from populations 1, 3, 5, 
7, 9, and 11 (Figure S1).

Panmictic scenarios were created similarly, however rather than 
dividing the population among 12 subpopulations at generation 
135,000 the population underwent a bottleneck to 1000 individu-
als and grew until an Ne of 12,000 was reached. After an additional 
15,000 generations, 180 individuals were randomly sampled and 
carried forth into further analyses. For these panmictic scenarios, 
we evenly split the 180 individuals into six “pseudopopulations”, in 
order to understand the influence of incorrect sample divisions on 
population genetic inference.

Category Definition

HWE Out All Loci were excluded if they were out of HWE in every sample location

HWE Out Any Loci were excluded if they were out of HWE in at least one of the 
sampling locations

HWE Out Some Loci were excluded if they were out of HWE in at least a specific 
absolute number or relative proportion of the locations, but not in 
all locations

HWE Out Combo Loci were excluded if they were out of HWE when samples were pooled 
across all locations

No Filter The study explicitly mentions that no loci were removed due to HWE 
filtering

Unspecified HWE filtering was used, but no specific filtering approach was 
described

Mix A combination of these categories was used

TA B L E  2  Description of categories 
used to group scientific studies based 
on their Hardy–Weinberg filtering 
approaches, “HWE Out Within” was not 
observed among these studies



2604  |    PEARMAN et al.

The resulting VCFs were processed by the program RADinitio, 
which simulates the RADseq process, including restriction enzyme 
digest and sources of error (e.g., sequencing error, variation in read 
depth across alleles) (Rivera-Colón et al., 2021). We used PstI as a 
restriction enzyme, set mean coverage at 10×, and simulated nine 
PCR cycles, a read length of 150 bp, and a mean insert length of 
350 bp with a standard deviation of 35 bp. These settings were 
chosen to ensure computational tractability of the thousands of 
simulations and enable compatibility of SLiM and RADinitio, while 
also choosing realistic RADseq library features. The simulated fastq 
reads were aligned to the reference using BWA v.0.7.17 (Li, 2013; Li 
& Durbin, 2009); we then used SAMtools v1.10 (Li et al., 2009) to 
convert the alignments to sorted bam files. SNPs were called using 
a reference-guided Stacks v2.53 workflow (Rochette et al.,  2019). 
We called Stacks via ref_map.pl using default options: 0.05 as the 
significance level for calling variant sites (var-alpha) and genotypes 
(gt-alpha), PCR duplicates were not removed, paired-end reads and 
read pairing were utilized (i.e., we did not use the rm-pcr-duplicates, 
ignore-pe-reads, and unpaired flags), the minimum percentage 
of individuals in a population required to output a locus was zero 
(−-min-samples-per-pop/−r), and the minimum number of popula-
tions a locus had to be present in was one (−-min-populations/−p). 
We then used the populations module of Stacks to write one random 
SNP from each locus to a VCF file as input for downstream analyses 
(i.e., using the write-random-snp and VCF flags).

2.3  |  Empirical data

In order to test the generality of our simulations against empirical 
data sets, we selected three publicly available data sets as they rep-
resented a range of organisms, with a range of population structure: 
A diversity arrays technology sequencing (DArTseq) data set of a 
New Zealand isopod (Isocladus armatus) (Pearman et al., 2020), and 
two RADseq data sets of the New Zealand fur seal (Arctocephalus 
forsteri) (Dussex et al.,  2018) and the Plains zebra (Equus quagga) 
(Larison et al.,  2021). For the isopod data set, the DArTseq geno-
types were provided by diversityarrays, who generated them using 
their proprietary SNP calling software with a de novo assembly (SRA: 
PRJNA643849, https://osf.io/kjxbm/). For the other two data sets, a 
Stacks workflow similar to the in silico analyses was used to generate 
the SNP genotypes. SRA data (New Zealand fur seal: SRP125920, 
single-end data; and zebra: SRP288329, paired-end data) was ob-
tained (using prefetch) and converted to fastq (using fastq-dump) with 
sratoolkit v2.9.6 (Leinonen et al.,  2011). Metadata associated with 
these data sets (Dussex et al., 2018; Larison et al., 2021) was used 
to generate popmap files. Congeneric genomes were used as refer-
ences, namely Antarctic fur seal for the New Zealand fur seal analy-
ses (GCA_900642305.1_arcGaz3_genomic: Humble et al.,  2018) 
and horse for the zebra analyses (GCF_002863925.1_EquCab3.0_
genomic: Kalbfleisch et al., 2018). The Stacks workflow then followed 
the previously described workflow for the in silico data sets.

2.4  |  SNP filtering

For both in silico and empirical data sets, we filtered data on a minor 
allele count of 2 (such that singletons were removed, but doubletons 
were retained) (Linck & Battey, 2019), call rate of 0.8 (such that sites 
with >20% missing data across individuals were removed) (Rochette 
et al., 2019), and then applied various filtering approaches for SNPs 
departing from HWE (Figure  1). SNPs exhibiting departures from 
HWE corresponding to each filtering scheme (i.e., Out Any, Out 
All, Out Combo, and Out Within) were identified using the func-
tion hw.test in the pegas R package (Paradis, 2010). This function 
uses a ꭓ2 test for departures from expected Hardy–Weinberg pro-
portions. We corrected for multiple testing using a false-discovery 
rate correction (n = 4000, based on the number of loci) (Benjamini & 
Hochberg, 1995), and subsequently removed SNPs exhibiting HWE 
departures using VCFtools.

2.5  |  Data analysis

To examine variance in our parameter estimates, we conducted bi-
nomial sampling (with replacement) from the total number of SNPs in 
each filtered VCF to generate 10 VCF files consisting of 4000 SNPs 
each. To examine population structure, we conducted principal com-
ponent analysis (PCA), FST, and STRUCTURE analyses. PCAs were 
conducted in R 4.02 (R Core Team, 2020), using a genotype matrix 
with scaled genotypes following procedures outlined in Linck and 
Battey (2019) in the adegenet R package (Jombart & Ahmed, 2011). 
PCAs were compared using the PCST metric, which represents 
one minus the ratio of the mean within-population distance to 
total-population distance within a PCA. Higher values of PCST are 
consistent with higher levels of population structure (see Linck & 
Battey, 2019 for an in-depth explanation). Due to equal sample sizes 
among populations, the modelling of RADseq rather than array data 
(Bhatia et al., 2013), and its status as a common FST estimator, we 
used Weir and Cockerham's pairwise FST (Weir & Cockerham, 1984), 
calculated using the R package STaMMP (version 1.6.1), and the 
mean of these pairwise values was used in downstream analyses 
(Pembleton et al., 2013).

STRUCTURE (v 2.3.4) was run using an admixture model with 
no a priori information regarding population structure, using a K of 
6 for our in silico data, or a K equivalent to the number of sampled 
populations for the empirical data sets. STRUCTURE analyses were 
run for 100,000 iterations, with a burnin of 50,000. While conver-
gence is not routinely assessed in STRUCTURE analyses, we as-
sessed this through examining the modality of the log likelihoods 
for each set of analyses. Pairwise comparisons of filters within each 
scenario were tested for significance using Mann–Whitney U tests 
and FDR adjustment (alpha = 0.05) in R 4.02 using rstatix (version 
0.7.0) (Kassambara, 2021; R Core Team, 2020). Figures were created 
using the tidyverse and cowplot packages (Wickham et al.,  2019; 
Wilke, 2020).

https://osf.io/kjxbm/
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In order to elucidate the relationship between observed HWE de-
viations and a Wahlund effect, we regressed the slope of FST against 
FIS, with the expectation that a Wahlund effect would result in a pos-
itive relationship between FIS and FST due to heterozygote deficiency 
(Waples, 2015; Zhivotovsky, 2015). For these analyses, we pooled all 
individuals into a single population, FIS was calculated using hierfstat 
(with FIS = 1-HO/Ht) and regressions were conducted using base R.

3  |  RESULTS

3.1  |  Literature review

Our literature review of 219 scientific publications concerning 
HWE filtering of RADseq data showed that 53.88% of the publica-
tions (n = 118) specified their HWE filtering approach (Figure 2a). 
Overall, 21% of the publications used some intermediate threshold 
(“Out Some”) to filter SNPs departing from HWE, 10.5% used “Out 
Combo”, 10% used “Out Any”, 7.8% explicitly chose not to filter for 
HWE departure and outlined their reasons, and 2.3% used “Out All” 
(Figure 2b; see Table 2 for definition of filtering approaches). The re-
maining 101 publications (46.12% of all publications) did not specify 

the HWE filtering approach in sufficient detail (Figure 2a): 45 pub-
lications (20.6% of all publications) specified only the filtering tool 
they used, whereas the remaining publications (25.6% of all publica-
tions) did not specify any information (“Unspecified”; Figure 2c). If 
the default behaviour of the specified filtering tools is assumed, an-
other 11.9% of all publications (n = 26) used “Out Combo” (Figure 2c). 
Overall, this means that at least 22% of the publications that filtered 
for departure from HWE have most likely used the “Out Combo” ap-
proach, but we expect this proportion to be even higher due to the 
large proportion of unspecified publications. Finally, some publica-
tions (8.7%, n = 19) used filtering tools that explicitly consider popu-
lation stratification in HWE calculations such as Arlequin (Excoffier 
et al., 2005), or Genepop (Rousset, 2008), but the publications did 
not report the exact filtering approach (“Within”, Figure 2c).

3.2  |  In silico data analysis

We found that the two linkage levels we included in our simulations 
lead to minor differences in FST and PCst, with high linkage simula-
tions having marginally higher structure (Figures 3 and 4 and Figures 
S2 and S3). Despite these minor differences, the relative effects of 

F I G U R E  2  (a) Distribution of publications that specified their HWE filtering approach (orange) versus publications that did not specify the 
approach in sufficient detail (grey). (b) the distribution of publications that specified their HWE filtering approach across different filtering 
schemes: “Mix” (mix of the following filters), “no filter” (no HWE filter), “out combo” (loci removed if out of HWE across the pooled data set), 
“out all” (loci removed if out of HWE in each sampling location), “out any” (loci removed if out of HWE in any sampling location), and “out 
some” (loci removed if out of HWE in at least a certain number/relative proportion of sampling locations, but not in all locations). (c) the 
distribution of publications that did not specify Hardy–Weinberg filtering approach and with the default behaviour of the filtering tools used 
(where specified) assumed: “Out combo” (as defined above), “within” (the paper specified that they used population information for HWE 
filtering, but not specifically whether this was “out all”, “out any”, or “out some”) and “unspecified” (the paper did not specify the tool)
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each filtering scheme tended to be consistent across the two linkage 
levels. Therefore, here we focus on the low linkage results, with the 
high linkage results available in the Supporting Information materials.

Measurements of population stratification extracted from PCAs 
(PCST) were affected most strongly by the “Out Any”, “Out Within”, 
and the “Out Combo” filters. For “Out Any” and “Out Within”, we 
observed marginal increases in PCST relative to other filters, and 
these differences were frequently statistically significant with the 
exception of the panmictic scenario (Figure 3a). In this scenario the 
increase was not significant for the low linkage analysis; however, 
it was significant relative to other filters in the high linkage analysis 
(Figure S2).

The effect of “Out Combo” became apparent with increasing 
population structure, reducing PCST estimates in comparison with 
other filtering approaches at high and extreme levels of population 

structure, but with relatively little effect at lower levels (Figure 3). 
The “No Filter” and “Out All” approaches delivered qualitatively sim-
ilar PCST estimates. This indicates that the “Out Combo” filter re-
duces estimated population structure evident in a PCA in relation 
to the other filtering schemes, while “Out Any” and “Out Within” 
tended to increase estimated structure.

We similarly observed an increasingly strong reduction of 
inferred FST with increasing levels of population structure when 
utilizing the “Out Combo” filtering approach (Figure 4, Figure S3). 
While “Out All” and “No Filter” consistently delivered similar FST 
estimates to each other, we found that “Out Any” and “Out Within” 
led to larger inferred FST values that were similar to each other, 
with the exception of extreme population structure where FST was 
slightly (but significantly) reduced for these filtering approaches. In 
the no population structure scenario (Figure 4a), “Out Within” and 

F I G U R E  3  Distributions of low linkage PCST across HWE filtering approaches and degrees of population structure. (a) Represents no 
population structure (single panmictic population), (b) represents marginal population structure (i.e., high migration, M = 0.1), (c) represents 
low population structure (M = 0.01), (d) represents high population structure (M = 0.001), and (e) represents extreme population structure 
(i.e., low migration, M = 0.0001). Red lines indicate median values, black vertical bars indicate statistically significant comparisons (Mann–
Whitney U tests, FDR adjustment). Y-axis values are arbitrary in order to display the raw data

F I G U R E  4  Distributions of low linkage inferred FST across HWE filtering approaches and degrees of population structure. (a) Represents 
no population structure (single panmictic population), (b) represents marginal population structure (i.e., high migration, M = 0.1), (c) 
represents low population structure (M = 0.01), (d) is high population structure (M = 0.001), and (e) represents extreme population structure 
(i.e., low migration, M = 0.0001). Red lines indicate median values, black vertical bars indicate statistically significant comparisons (Mann–
Whitney U tests, FDR adjustment). Y-axis values are arbitrary in order to display the raw data
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“Out Any” led to larger FST values than other filters, indicating the 
introduction of spurious population structure (Figure 4, Figure S3).

Post hoc calculations of statistical power (Serdar et al.,  2021) 
suggested we had extremely high power to detect differences in 
FST (~100%) between at least one pair of filter regimes within each 
scenario/linkage combination (data not shown). This suggests the 
combination of sample sizes, number of replicates, and effect sizes 
within our data gives adequate power for the purposes of this study 
for example, highlighting the broad impact of different filtering 
schemes on apparent population structure.

For the STRUCTURE analyses, we observed that the “Out 
Combo” filter significantly increased the average nucleotide dis-
tance between inferred population clusters in the panmictic popula-
tion structure scenarios, while also decreasing the inferred amount 
of structure in the high and extreme population structure scenarios 
(Figure 5). “Out Any” and “Out Within” lead to marginal increases 
in nucleotide distances for some population structure scenarios 
(Figure 5), however statistical significance only occurred in some of 
the high linkage scenarios (Figures S4). In almost all cases, we found 
that STRUCTURE runs appeared to reach convergence across repli-
cates (Figures S5 and S6; also indicated by the unimodal distributions 
in Figure 5). The exception to this was the “extreme” population sce-
nario, where it appeared convergence may have been impacted by 
the underlying simulated population structure of 12 populations. We 
reran this scenario with a K of 12, which demonstrated an increase in 
convergence across replicates (Figures S7 and S8).

3.3  |  Empirical data analysis

The results from the empirical data sets were generally concordant 
with those from the simulations. No significant differences were 
observed among filters for PCST in the species with the weakest 

population structure, the New Zealand fur seal (Figure  6a). In the 
species with more pronounced population structure (Plains zebra 
and isopod, Figures 6b–c), the “Out Combo” filter significantly re-
duced PCST in comparison with the other filters. “Out Any” had mar-
ginally higher estimated structure than all other filters in the isopod 
data set (Figure 6c).

Similar results were obtained for FST (Figure 7), where the filter-
ing approaches had only small impacts for the inference of popu-
lation structure in the species with low population structure (New 
Zealand fur seal), while “Out Combo” significantly reduced FST es-
timates for the species with higher levels of population structure 
(Plains zebra and isopod).

The “Out Combo” filtering approach similarly reduced the es-
timated nucleotide distance from STRUCTURE between clusters 
for zebra and isopod (the species with the most marked population 
structure; Figure 8). In addition, the “Out Any” filtering approach led 
to a significant reduction in estimated nucleotide distance in the iso-
pod data set (Figure 8c). In all cases, STRUCTURE runs appeared to 
have reached convergence based on mean log likelihoods (Figure S9).

4  |  DISCUSSION

There are many good reasons to impose a filter for HWE, such as 
removal of loci under extreme selection, paralogues, and sequenc-
ing or library preparation artefacts. Thus, HWE filtering can be 
helpful in standardizing and denoising a data set. However, in this 
study, using both empirical and simulated data sets, we demonstrate 
that filtering SNPs based on HWE can have substantial impacts on 
population genetic inferences. In particular, we found that the “Out 
Combo” filtering approach, where loci that depart from HWE across 
all pooled samples are removed, significantly reduces the amount of 
inferred population structure relative to “No Filter” or other filtering 

F I G U R E  5  Distributions of the low linkage average nucleotide distance between inferred population clusters from STRUCTURE, across 
differing filtering regimes and levels of population structure. (a) Represents a panmictic scenario with no population structure. (b) Represents 
marginal population structure (i.e., high migration, M = 0.1), (c) represents low population structure (M = 0.01), (d) is high population 
structure (M = 0.001), and (e) represents extreme population structure (i.e., low migration, M = 0.0001). Red lines indicate median values, 
black vertical bars indicate statistically significant comparisons (Mann–Whitney U tests, FDR adjustment). Y-axis values are arbitrary in order 
to display the raw data
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approaches. This occurs because this filter leads to the inadvertent 
introduction of a Wahlund effect by not considering any existing 
population structure, with loci important for delineating popula-
tion structure being removed by the HWE filter. Despite the strong 
impact of HWE filtering, our literature review shows that the vast 
majority of scientific publications that report filtering for HWE do 
not include sufficient detail to allow replication of this aspect of 
their analyses. This often occurs because only the filtering tool or 
significance threshold is reported, while population stratification for 
filtering is not defined. When default behaviour of filtering tools is 
assumed, up to 50% of publications may be misapplying HWE filter-
ing (Figure 2), by using the “Out Combo” filtering approach. Some 
commonly used filtering tools such as VCFtools and plink do not con-
sider population structure when calculating deviations from HWE, 
and therefore the reliance on default settings may lead to the re-
moval of the very loci that are informative for population structure. 

Importantly, even the implementation of an extremely conservative 
significance level for identifying “problematic” loci will not solve 
the issues of the “Out Combo” filtering approach, as an extreme 
Wahlund effect will be observed in instances of extreme population 
structure—which would naturally draw loci closer to even stringent 
significance levels.

We hypothesized that (1) use of an “Out Combo” filter would 
substantially reduce inferred population structure, and (2) that the 
use of an “Out Any” filter would lead to an increase in inferred popu-
lation structure. Consistent with these hypotheses we found that (1) 
filtering across populations (“Out Combo”) had the greatest effect, 
substantially reducing inferred population structure, and (2) filter-
ing loci that were out of HWE in any population (“Out Any”) had a 
marginal, but consistent effect in increasing the degree of estimated 
population structure in the case of FST inference (but not in the cases 
of STRUCTURE or PCST analyses).

F I G U R E  6  PCST distributions for empirical data sets. (a) Represents New Zealand fur seal data (Arctocephalus forsteri), (b) represents 
plains zebra (Equus quagga), and (c) represents a New Zealand isopod (Isocladus armatus). Red lines indicate the median value for each 
distribution, black vertical bars indicate statistically significant comparisons (Mann–Whitney U tests, FDR adjustment). Species ordered from 
low population structure (New Zealand fur seal) to high population structure (isopod). Y-axis values are arbitrary in order to display the raw 
data

F I G U R E  7  FST distributions for empirical data sets, (a) represents New Zealand fur seal data (Arctocephalus forsteri), (b) represents plains 
zebra (Equus quagga), and (c) represents a New Zealand isopod (Isocladus armatus). Red lines indicate the median value for each distribution, 
black vertical bars indicate statistically significant comparisons (Mann–Whitney U tests, FDR adjustment). Species ordered from low 
population structure (New Zealand fur seal) to high population structure (isopod). Y-axis values are arbitrary in order to display the raw data
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4.1  |  Impact of filtering on different measures of 
population structure

PCST is a nonparametric measure of population structure developed 
by Linck and Battey (2019) to standardize comparisons of PCAs. In 
contrast, FST and nucleotide distance (inferred from STRUCTURE) 
are widely used parametric analyses that have explicit underlying 
biological assumptions.

Contrary to our hypothesis where we assumed the “Out Any” 
filter would strengthen the inference of population structure due 
to the removal of “noisy” loci, we observed little to no effect of this 
filter on PCST in any of our simulations. The lack of effect of “Out 
Any” on PCST may be explained by the fact that PCA (1) makes no 
assumptions about the underlying population structure, (2) is non-
parametric, or (3) that PCST is calculated based on only the first 10 
principal components, thereby limiting the impact of “noisy” loci on 
this metric due to the first 10 principal components capturing only 
the majority of the variation.

In contrast to the PCST results, for two different parametric 
methods—STRUCTURE and FST—different filtering approaches 
strongly impacted inferred estimates of population structure. For in-
ferred FST we observe that, with the exception of the extreme pop-
ulation structure scenario (i.e., low migration [M  =  0.0001]), “Out 
Any” and “Out Within” tended to lead to inference of marginally 
higher structure than other filters, in line with our hypothesis that 
“Out Any” would strengthen inference of population structure. The 
increase in observed FST in these scenarios (low population struc-
ture [M = 0.1] to high population structure [M = 0.001]) is indicative 
that filtering using an “Out Any” approach may increase the ability to 
detect marginal population structure, potentially through increasing 
the signal to noise ratio of loci reflective of underlying population 
structure. This pattern was also observed for the “Out Within” fil-
ter, albeit in a muted fashion (potentially because this filter removed 
fewer of the “noisy” loci). However, the “enhanced” ability to detect 

marginal structure must be viewed with caution as these filters arti-
ficially introduced apparent population structure in our analyses of 
data from a simulated panmictic population.

In contrast, with the exception of marginal population structure 
(i.e., high migration [M  =  0.1]), “Out Combo” resulted in reduced 
inferred population structure in comparison to the other filtering 
approaches. In the marginal population structure scenario, the mi-
gration rate was so high that it is likely that all sampling locations 
could be considered a single population; therefore, any effects “Out 
Combo” had on reducing population structure may be outweighed 
by the increased power to detect HWE deviations as a result of the 
higher sample size.

In the case of STRUCTURE analyses, we used the average of the 
nucleotide distance matrix from the STRUCTURE output as a metric 
to compare analyses, with larger average nucleotide distances be-
tween inferred clusters indicative of greater population structure. 
We found that at lower levels of underlying population structure, the 
filtering approaches had a greater impact on STRUCTURE results, 
with “Out Combo” and “Out Any” both leading to marginally higher 
inferred population structure than the other filters. As population 
structure increased, these effects were reduced and “Out Any” be-
came comparable with other filters, while “Out Combo” increasingly 
reduced the average nucleotide distance between populations.

The observation of a reduction in inferred structure associated 
with filtering across populations (“Out Combo”) can be largely at-
tributed to the introduction of a Wahlund effect, where loci that are 
informative for population structure (i.e., fixed in one population but 
not another) are removed due to exhibition of a reduction in hetero-
zygosity as assessed across the total pooled samples. The attribution 
to a Wahlund effect is further supported by the slopes of regressions 
of FST against FIS (Supporting Information Results, Figures S10 and 
S11), which show the expected patterns found in Waples (2015). The 
observation of an increase in inferred population structure (via FST) 
associated with filtering loci that depart from HWE in any population 

F I G U R E  8  Nucleotide distance distributions for empirical data sets, (a) represents New Zealand fur seal data (Arctocephalus forsteri), (b) 
represents plains zebra (Equus quagga), and (c) represents a New Zealand isopod (Isocladus armatus). Red lines indicate the median value for 
each distribution, black vertical bars indicate statistically significant comparisons (Mann–Whitney U tests, FDR adjustment). Species ordered 
from low population structure (New Zealand fur seal) to high population structure (isopod). Y-axis values are arbitrary in order to show the 
raw data
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(“Out Any”) could possibly be explained by the selection of loci that 
conform best to the a priori population groupings. However, in our 
analyses of simulated panmictic populations, we did not find that 
the “Out Any” filtering approach introduced artificial structure for 
STRUCTURE analyses.

Finally, linkage is known to affect population genetic inferences 
(Waples et al., 2021), something also observed in our data sets, with 
higher linkage simulations having marginally higher estimates of 
both FST and PCST. This result, while noticeable, had no noticeable 
effect on the impacts of different filtering regimes, with relatively 
consistent results across the two linkage levels.

4.2  |  Comparison to empirical data

The patterns observed in our simulated data were generally also ob-
served in empirical data sets. Specifically, “Out Combo” tended to 
reduce the inferred amount of population structure for the Plains 
zebra and New Zealand isopod—both of which have generally high 
population structure in all other analyses, while for the New Zealand 
fur seal, no effect of “Out Combo” was observed—consistent with 
our observations of low population structure in the simulated data 
sets. However, some discrepancies were observed—for FST, the 
Plains zebra data set showed reduced inferred population structure 
in the case of the “Out Any” and “Out Within” filtering approach—
contrasting with an increased FST in the simulations with compara-
ble population structure. We further found a significant reduction 
in STRUCTURE-inferred average nucleotide distance for the New 
Zealand isopod when comparing the “Out Any” filter approach with 
“No Filter” or “Out All”, while our comparable simulations showed no 
effect of this filter on inferred population structure via STRUCTURE. 
The discrepancies between the simulated and empirical analyses 
probably arise from the fact that simulations do not encapsulate the 
full complexity of real populations. Our simulations do not consider 
selection, while, for example, the isopod data set was based on mor-
photypes thought to be under selection (Pearman et al., 2020; Wells 
& Dale, 2018).

4.3  |  Conclusions and recommendations

We conclude that, despite being a widely used filtering approach, 
filtering across populations (“Out Combo”) is inappropriate and 
leads to reduced levels of inferred population structure—especially 
when population structure is high. Removing loci exhibiting HWE 
departures in any population (“Out Any”), or removing loci from 
populations in which they depart from HWE (“Out Within”) can 
marginally increase the ability to detect population structure in 
data sets; however, this structure is probably artificially intro-
duced through reliance on an a priori sampling scheme. The impact 
of removing loci that exhibit departures in every single popula-
tion (“Out All”) is similar to not filtering at all (“No Filter”). Thus, 
we suggest that authors conduct thorough exploratory analyses 
before applying HWE filters, and in general avoid the use of an 

“Out Combo” filter. Instead, the application of either a “No Filter” 
or “Out All” regime should be considered. While “Out Any” is more 
likely to detect population structure, authors should consider the 
trade-off between the number of loci lost through application 
of this filter relative to the information gained. Additionally, au-
thors should consider the risk of introducing spurious structure 
into their data sets through relying on “Out Any” or “Out Within” 
filters. Finally, based on lack of convergence in the STRUCTURE 
runs at extreme population structure, alongside the effects of 
“Out Any” in increasing population structure, we strongly caution 
authors to avoid solely relying on sampling schemes as a proxy for 
population stratification information.

AUTHOR CONTRIBUTIONS
William S. Pearman and Alana Alexander conceived the study. 
William S. Pearman, Lara Urban, and Alana Alexander designed the 
research and analysed the data. William S. Pearman wrote the article 
with input from both Lara Urban and Alana Alexander.

ACKNOWLEDG EMENTS
We would like to acknowledge the helpful conversations we 
have had with Olin Silander, Sarah Wells, and members of both 
the NZ Molecular Ecology community, and the Gemmell Lab who 
helped inform this paper, as well as the helpful contributions of 
Georgia Tsambos and Ben Haller both of whom helped in the trou-
bleshooting of the simulations. We gratefully acknowledge com-
ments from Dr Nick Barton, Dr Robin Waples and an additional 
anonymous reviewer that greatly improved this manuscript. We 
would also like to acknowledge the authors of the empirical stud-
ies who both generated the original data sets and also made these 
easily accessible and reproducible. W. Pearman was funded by a 
University of Otago Doctoral scholarship. L. Urban was funded 
by an Alexander von Humboldt Research Fellowship, a Revive & 
Restore Science Catalyst Fund and the University of Otago. A. 
Alexander was funded by a Rutherford Postdoctoral Research 
Fellowship, Genomics Aotearoa, and the University of Otago. 
The authors wish to acknowledge the use of New Zealand eSci-
ence Infrastructure (NeSI) high performance computing facilities 
for this research and specifically D. Senanayake for assistance 
with compute implementation. New Zealand's national facilities 
are provided by NeSI and funded jointly by NeSI's collaborator 
institutions and through the Ministry of Business, Innovation & 
Employment's Research Infrastructure programme. URL https://
www.nesi.org.nz. Open access publishing facilitated by University 
of Otago, as part of the Wiley - University of Otago agreement via 
the Council of Australian University Librarians.

CONFLIC T OF INTERE S T
The authors have no conflicts of interest to declare.

DATA AVAIL ABILIT Y S TATEMENT
All R scripts and SLIM scripts are in: https://github.com/wpear​
man19​96/HWE_Simul​ations References for included datasets are 
available in the Methods section.

https://www.nesi.org.nz
https://www.nesi.org.nz
https://github.com/wpearman1996/HWE_Simulations
https://github.com/wpearman1996/HWE_Simulations


    |  2611PEARMAN et al.

OPEN RE SE ARCH BADG E S

This article has earned an Open Data, for making publicly avail-
able the digitally-shareable data necessary to reproduce the re-
ported results. The data is available at DOI https://github.com/
wpearman1996/HWE_Simulations.

ORCID
William S. Pearman   https://orcid.org/0000-0002-7265-8499 
Lara Urban   https://orcid.org/0000-0002-5445-9314 
Alana Alexander   https://orcid.org/0000-0002-6456-7757 

R E FE R E N C E S
Ahrens, C. W., Jordan, R., Bragg, J., Harrison, P. A., Hopley, T., Bothwell, 

H., Murray, K., Steane, D. A., Whale, J. W., Byrne, M., Andrew, 
R., & Rymer, P. D. (2021). Regarding the F-word: The effects 
of data filtering on inferred genotype-environment associa-
tions. Molecular Ecology Resources, 21(5), 1460–1474. https://doi.
org/10.1111/1755-0998.13351

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. 
(2016). Harnessing the power of RADseq for ecological and evo-
lutionary genomics. Nature Reviews Genetics, 17(2), 81–92. https://
doi.org/10.1038/nrg.2015.28

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery 
rate: A practical and powerful approach to multiple testing. 
Journal of the Royal Statistical Society Series B (Methodological), 
57(1), 289–300.

Bhatia, G., Patterson, N., Sankararaman, S., & Price, A. L. (2013). 
Estimating and interpreting FST: The impact of rare variants. 
Genome Research, 23(9), 1514–1521. https://doi.org/10.1101/
gr.154831.113

Carlsson, J. (2008). Effects of microsatellite null alleles on assign-
ment testing. Journal of Heredity, 99(6), 616–623. https://doi.
org/10.1093/jhere​d/esn048

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & 
Lee, J. J. (2015). Second-generation PLINK: Rising to the chal-
lenge of larger and richer datasets. Gigascience, 4, 7. https://doi.
org/10.1186/s1374​2-015-0047-8

Chapuis, M.-P., & Estoup, A. (2007). Microsatellite null alleles and estima-
tion of population differentiation. Molecular Biology and Evolution, 
24(3), 621–631. https://doi.org/10.1093/molbe​v/msl191

Choquet, M., Smolina, I., Dhanasiri, A. K. S., Blanco-Bercial, L., Kopp, M., 
Jueterbock, A., Sundaram, A. Y. M., & Hoarau, G. (2019). Towards 
population genomics in non-model species with large genomes: 
A case study of the marine zooplankton Calanus finmarchicus. 
Royal Society Open Science, 6(2), 180608. https://doi.org/10.1098/
rsos.180608

Cooke, T. F., Yee, M.-C., Muzzio, M., Sockell, A., Bell, R., Cornejo, O. E., 
Kelley, J. L., Bailliet, G., Bravi, C. M., Bustamante, C. D., & Kenny, 
E. E. (2016). GBStools: A statistical method for estimating allelic 
dropout in reduced representation sequencing data. PLoS Genetics, 
12(2), e1005631. https://doi.org/10.1371/journ​al.pgen.1005631

Cumer, T., Pouchon, C., Boyer, F., Yannic, G., Rioux, D., Bonin, A., & 
Capblancq, T. (2021). Double-digest RAD-sequencing: Do pre- and 
post-sequencing protocol parameters impact biological results? 
Molecular Genetics and Genomics, 296(2), 457–471. https://doi.
org/10.1007/s0043​8-020-01756​-9

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. 
A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, 
G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011). 

The variant call format and VCFtools. Bioinformatics, 27(15), 2156–
2158. https://doi.org/10.1093/bioin​forma​tics/btr330

De Meeûs, T. (2018). Revisiting FIS, FST, Wahlund effects, and null al-
leles. Journal of Heredity, 109(4), 446–456. https://doi.org/10.1093/
jhere​d/esx106

DeWoody, J., Nason, J., & Hipkins, V. (2006). Mitigating scoring errors in 
microsatellite data from wild populations. Molecular Ecology Notes, 
6, 951–957. https://doi.org/10.1111/j.1471-8286.2006.01449.x

Dussex, N., Taylor, H. R., Stovall, W. R., Rutherford, K., Dodds, K. G., 
Clarke, S. M., & Gemmell, N. J. (2018). Reduced representation 
sequencing detects only subtle regional structure in a heavily ex-
ploited and rapidly recolonizing marine mammal species. Ecology and 
Evolution, 8(17), 8736–8749. https://doi.org/10.1002/ece3.4411

Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An 
integrated software package for population genetics data analysis. 
Evolutionary Bioinformatics, 1, 117693430500100000. https://doi.
org/10.1177/11769​34305​00100003

Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of popula-
tion structure using multilocus genotype data: Linked loci and cor-
related allele frequencies. Genetics, 164(4), 1567–1587.

Galla, S. J., Forsdick, N. J., Brown, L., Hoeppner, M. P., Knapp, M., 
Maloney, R. F., Moraga, R., Santure, A. W., & Steeves, T. E. (2019). 
Reference genomes from distantly related species can be used for 
discovery of single nucleotide polymorphisms to inform conserva-
tion management. Genes, 10(1), 9. https://doi.org/10.3390/genes​
10010009

Garnier-Géré, P., & Chikhi, L. (2013). Population subdivision, Hardy–
Weinberg equilibrium and the Wahlund effect. eLS. https://doi.
org/10.1002/97804​70015​902.a0005​446.pub3

Graham, C. F., Boreham, D. R., Manzon, R. G., Stott, W., Wilson, J. Y., & 
Somers, C. M. (2020). How “simple” methodological decisions af-
fect interpretation of population structure based on reduced rep-
resentation library DNA sequencing: A case study using the lake 
whitefish. PLoS One, 15(1), e0226608. https://doi.org/10.1371/
journ​al.pone.0226608

Gruber, B., Unmack, P. J., Berry, O. F., & Georges, A. (2018). Dartr: An R 
package to facilitate analysis of SNP data generated from reduced 
representation genome sequencing. Molecular Ecology Resources, 
18(3), 691–699.

Haller, B. C., & Messer, P. W. (2016). SLiM 2: Flexible, interactive forward 
genetic simulations. Molecular Biology and Evolution, 34(1), 230–
240. https://doi.org/10.1093/molbe​v/msw211

Hendricks, S., Anderson, E. C., Antao, T., Bernatchez, L., Forester, B. 
R., Garner, B., Hand, B. K., Hohenlohe, P. A., Kardos, M., Koop, B., 
Sethuraman, A., Waples, R. S., & Luikart, G. (2018). Recent advances 
in conservation and population genomics data analysis. Evolutionary 
Applications, 11(8), 1197–1211. https://doi.org/10.1111/eva.12659

Hohenlohe, P. A., Amish, S. J., Catchen, J. M., Allendorf, F. W., & Luikart, 
G. (2011). Next-generation RAD sequencing identifies thousands 
of SNPs for assessing hybridization between rainbow and west-
slope cutthroat trout. Molecular Ecology Resources, 11(s1), 117–122.

Humble, E., Dasmahapatra, K. K., Martinez-Barrio, A., Gregório, I., 
Forcada, J., Polikeit, A. C., Goldsworthy, S. D., Goebel, M. E., 
Kalinowski, J., Wolf, J. B. W., & Hoffman, J. I. (2018). RAD sequenc-
ing and a hybrid Antarctic fur seal genome assembly reveal rapidly 
decaying linkage disequilibrium, global population structure and 
evidence for inbreeding. G3: Genes, Genomes, Genetics, 8(8), 2709–
2722. https://doi.org/10.1534/g3.118.200171

Jombart, T., & Ahmed, I. (2011). Adegenet 1.3-1: New tools for the anal-
ysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071.

Kalbfleisch, T. S., Rice, E. S., DePriest, M. S., Walenz, B. P., Hestand, M. 
S., Vermeesch, J. R., O'Connell, B. L., Fiddes, I. T., Vershinina, A. 
O., Saremi, N. F., Petersen, J. L., Finno, C. J., Bellone, R. R., McCue, 
M. E., Brooks, S. A., Bailey, E., Orlando, L., Green, R. E., Miller, D. 
C., … MacLeod, J. N. (2018). Improved reference genome for the 
domestic horse increases assembly contiguity and composition. 

https://github.com/wpearman1996/HWE_Simulations
https://github.com/wpearman1996/HWE_Simulations
https://orcid.org/0000-0002-7265-8499
https://orcid.org/0000-0002-7265-8499
https://orcid.org/0000-0002-5445-9314
https://orcid.org/0000-0002-5445-9314
https://orcid.org/0000-0002-6456-7757
https://orcid.org/0000-0002-6456-7757
https://doi.org/10.1111/1755-0998.13351
https://doi.org/10.1111/1755-0998.13351
https://doi.org/10.1038/nrg.2015.28
https://doi.org/10.1038/nrg.2015.28
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1101/gr.154831.113
https://doi.org/10.1093/jhered/esn048
https://doi.org/10.1093/jhered/esn048
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1093/molbev/msl191
https://doi.org/10.1098/rsos.180608
https://doi.org/10.1098/rsos.180608
https://doi.org/10.1371/journal.pgen.1005631
https://doi.org/10.1007/s00438-020-01756-9
https://doi.org/10.1007/s00438-020-01756-9
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/jhered/esx106
https://doi.org/10.1093/jhered/esx106
https://doi.org/10.1111/j.1471-8286.2006.01449.x
https://doi.org/10.1002/ece3.4411
https://doi.org/10.1177/117693430500100003
https://doi.org/10.1177/117693430500100003
https://doi.org/10.3390/genes10010009
https://doi.org/10.3390/genes10010009
https://doi.org/10.1002/9780470015902.a0005446.pub3
https://doi.org/10.1002/9780470015902.a0005446.pub3
https://doi.org/10.1371/journal.pone.0226608
https://doi.org/10.1371/journal.pone.0226608
https://doi.org/10.1093/molbev/msw211
https://doi.org/10.1111/eva.12659
https://doi.org/10.1534/g3.118.200171


2612  |    PEARMAN et al.

Communications Biology, 1, 197. https://doi.org/10.1038/s4200​
3-018-0199-z

Kassambara, A. (2021). Rstatix: Pipe-friendly framework for basic statisti-
cal tests (0.7.0) [Computer software]. https://CRAN.R-proje​ct.org/
packa​ge=rstatix

LaCava, M. E. F., Aikens, E. O., Megna, L. C., Randolph, G., Hubbard, C., 
& Buerkle, C. A. (2020). Accuracy of de novo assembly of DNA se-
quences from double-digest libraries varies substantially among 
software. Molecular Ecology Resources, 20(2), 360–370. https://doi.
org/10.1111/1755-0998.13108

Lachance, J. (2009). Detecting selection-induced departures from 
Hardy–Weinberg proportions. Genetics, Selection, Evolution, 41(1), 
15. https://doi.org/10.1186/1297-9686-41-15

Larison, B., Kaelin, C. B., Harrigan, R., Henegar, C., Rubenstein, D. I., 
Kamath, P., Aschenborn, O., Smith, T. B., & Barsh, G. S. (2021). 
Population structure, inbreeding and stripe pattern abnormalities 
in plains zebras. Molecular Ecology, 30(2), 379–390. https://doi.
org/10.1111/mec.15728

Leinonen, R., Sugawara, H., & Shumway, M. (2011). The sequence 
read archive. Nucleic Acids Research, 39, D19–D21. https://doi.
org/10.1093/nar/gkq1019

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs 
with BWA-MEM. ArXiv Preprint ArXiv (Vol. 1303, p. 3997).

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with 
burrows-wheeler transform. Bioinformatics, 25(14), 1754–1760. 
https://doi.org/10.1093/bioin​forma​tics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., 
Marth, G., Abecasis, G., Durbin, R., & 1000 Genome Project Data 
Processing Subgroup. (2009). The sequence alignment/map for-
mat and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.
org/10.1093/bioin​forma​tics/btp352

Linck, E., & Battey, C. J. (2019). Minor allele frequency thresholds 
strongly affect population structure inference with genomic data 
sets. Molecular Ecology Resources, 19(3), 639–647.

Mastretta-Yanes, A., Arrigo, N., Alvarez, N., Jorgensen, T. H., Piñero, D., 
& Emerson, B. C. (2015). Restriction site-associated DNA sequenc-
ing, genotyping error estimation and de novo assembly optimiza-
tion for population genetic inference. Molecular Ecology Resources, 
15(1), 28–41. https://doi.org/10.1111/1755-0998.12291

Meirmans, P. G., & Hedrick, P. W. (2011). Assessing population structure: 
FST and related measures. Molecular Ecology Resources, 11(1), 5–18. 
https://doi.org/10.1111/j.1755-0998.2010.02927.x

Messer, P. W. (2013). SLiM: Simulating evolution with selection and link-
age. Genetics, 194(4), 1037–1039. https://doi.org/10.1534/genet​
ics.113.152181

O'Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M., & Portnoy, 
D. S. (2018). These aren't the loci you're looking for: Principles of 
effective SNP filtering for molecular ecologists. Molecular Ecology, 
27(16), 3193–3206. https://doi.org/10.1111/mec.14792

Paradis, E. (2010). Pegas: An R package for population genetics with 
an integrated–modular approach. Bioinformatics, 26(3), 419–420. 
https://doi.org/10.1093/bioin​forma​tics/btp696

Pearman, W. S., Wells, S. J., Silander, O. K., Freed, N. E., & Dale, J. 
(2020). Concordant geographic and genetic structure revealed by 
genotyping-by-sequencing in a New Zealand marine isopod. Ecology 
and Evolution, 10(24), 13624–13639. https://doi.org/10.1002/
ece3.6802

Pemberton, J. M., Slate, J., Bancroft, D. R., & Barrett, J. A. (1995). 
Nonamplifying alleles at microsatellite loci: A caution for parentage 
and population studies. Molecular Ecology, 4(2), 249–252. https://
doi.org/10.1111/j.1365-294x.1995.tb002​14.x

Pembleton, L. W., Cogan, N. O. I., & Forster, J. W. (2013). StAMPP: An R 
package for calculation of genetic differentiation and structure of 
mixed-ploidy level populations. Molecular Ecology Resources, 13(5), 
946–952.

Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, Á., & 
Lareu, M. V. (2013). An overview of STRUCTURE: Applications, pa-
rameter settings, and supporting software. Frontiers in Genetics, 4. 
https://doi.org/10.3389/fgene.2013.00098

Pritchard, J. K., Wen, W., & Falush, D. (2010). Documentation for 
STRUCTURE software: Version 2.3. http://cites​eerx.ist.psu.edu/
viewd​oc/downl​oad?doi=10.1.1.323.9675&rep=rep1&type=pdf

R Core Team (2020). R: A language and environment for statistical com-
puting. In R foundation for statistical computing https://www.R-
proje​ct.org/

Rivera-Colón, A. G., Rochette, N. C., & Catchen, J. M. (2021). Simulation 
with RADinitio improves RADseq experimental design and sheds 
light on sources of missing data. Molecular Ecology Resources, 21(2), 
363–378. https://doi.org/10.1111/1755-0998.13163

Rochette, N. C., Rivera-Colón, A. G., & Catchen, J. M. (2019). Stacks 2: 
Analytical methods for paired-end sequencing improve RADseq-
based population genomics. Molecular Ecology, 28(21), 4737–4754. 
https://doi.org/10.1111/mec.15253

Rousset, F. (2008). genepop’007: A complete re-implementation of 
the genepop software for windows and Linux. Molecular Ecology 
Resources, 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.​2007.​
01931.x

Selechnik, D., Richardson, M. F., Hess, M. K., Hess, A. S., Dodds, K. G., 
Martin, M., Chan, T. C., Cardilini, A. P. A., Sherman, C. D. H., Shine, 
R., & Rollins, L. A. (2020). Inherent population structure determines 
the importance of filtering parameters for reduced representation 
sequencing analyses. BioRxiv, 2020(11), 14.383240. https://doi.
org/10.1101/2020.11.14.383240

Serdar, C. C., Cihan, M., Yücel, D., & Serdar, M. A. (2021). Sample size, 
power and effect size revisited: Simplified and practical approaches 
in pre-clinical, clinical and laboratory studies. Biochemia Medica, 
31(1), 27–53. https://doi.org/10.11613/​BM.2021.010502

Sethuraman, A., Gonzalez, N. M., Grenier, C. E., Kansagra, K. 
S., Mey, K. K., Nunez-Zavala, S. B., Summerhays, B. E. W., 
& Wulf, G. K. (2019). Continued misuse of multiple test-
ing correction methods in population genetics-A wake-up 
call? Molecular Ecology Resources, 19(1), 23–26. https://doi.
org/10.1111/1755-0998.12969

Shafer, A. B. A., Peart, C. R., Tusso, S., Maayan, I., Brelsford, A., Wheat, 
C. W., & Wolf, J. B. W. (2017). Bioinformatic processing of RAD-seq 
data dramatically impacts downstream population genetic infer-
ence. Methods in Ecology and Evolution, 8(8), 907–917. https://doi.
org/10.1111/2041-210X.12700

Wang, K.-S., Liu, M., & Paterson, A. D. (2005). Evaluating outlier loci and 
their effect on the identification of pedigree errors. BMC Genetics, 
6(Suppl 1), S155. https://doi.org/10.1186/1471-2156-6-S1-S155

Waples, R. S. (2015). Testing for Hardy–Weinberg proportions: Have 
we lost the plot?. Journal of Heredity, 106(1), 1–19. https://doi.
org/10.1093/jhere​d/esu062

Waples, R. S., Waples, R. K., & Ward, E. J. (2021). Pseudoreplication in 
genomic-scale data sets. Molecular Ecology Resources, 22(2), 503–
518. https://doi.org/10.1111/1755-0998.13482

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the 
analysis of population structure. Evolution, 38(6), 1358–1370.

Wells, S. J., & Dale, J. (2018). Contrasting gene flow at different spatial 
scales revealed by genotyping-by-sequencing in Isocladus armatus, 
a massively colour polymorphic New Zealand marine isopod. PeerJ, 
6, e5462. https://doi.org/10.7717/peerj.5462

Whitlock, M. C. (2011). G'ST and D do not replace FST. 
Molecular Ecology, 20(6), 1083–1091. https://doi.
org/10.1111/j.1365-294X.2010.04996.x

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., 
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, 
M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., 
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome 

https://doi.org/10.1038/s42003-018-0199-z
https://doi.org/10.1038/s42003-018-0199-z
https://cran.r-project.org/package=rstatix
https://cran.r-project.org/package=rstatix
https://doi.org/10.1111/1755-0998.13108
https://doi.org/10.1111/1755-0998.13108
https://doi.org/10.1186/1297-9686-41-15
https://doi.org/10.1111/mec.15728
https://doi.org/10.1111/mec.15728
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1111/1755-0998.12291
https://doi.org/10.1111/j.1755-0998.2010.02927.x
https://doi.org/10.1534/genetics.113.152181
https://doi.org/10.1534/genetics.113.152181
https://doi.org/10.1111/mec.14792
https://doi.org/10.1093/bioinformatics/btp696
https://doi.org/10.1002/ece3.6802
https://doi.org/10.1002/ece3.6802
https://doi.org/10.1111/j.1365-294x.1995.tb00214.x
https://doi.org/10.1111/j.1365-294x.1995.tb00214.x
https://doi.org/10.3389/fgene.2013.00098
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.323.9675&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.323.9675&rep=rep1&type=pdf
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1111/1755-0998.13163
https://doi.org/10.1111/mec.15253
https://doi.org/10.1111/j.1471-8286.2007.01931.x
https://doi.org/10.1111/j.1471-8286.2007.01931.x
https://doi.org/10.1101/2020.11.14.383240
https://doi.org/10.1101/2020.11.14.383240
https://doi.org/10.11613/BM.2021.010502
https://doi.org/10.1111/1755-0998.12969
https://doi.org/10.1111/1755-0998.12969
https://doi.org/10.1111/2041-210X.12700
https://doi.org/10.1111/2041-210X.12700
https://doi.org/10.1186/1471-2156-6-S1-S155
https://doi.org/10.1093/jhered/esu062
https://doi.org/10.1093/jhered/esu062
https://doi.org/10.1111/1755-0998.13482
https://doi.org/10.7717/peerj.5462
https://doi.org/10.1111/j.1365-294X.2010.04996.x
https://doi.org/10.1111/j.1365-294X.2010.04996.x


    |  2613PEARMAN et al.

to the Tidyverse. Journal of Open Source Software, 4(43), 1686. 
https://doi.org/10.21105/​joss.01686

Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations 
for “ggplot2” (1.1.1) [computer software]. https://cran.r-proje​ct.org/
web/packa​ges/cowpl​ot/index.html

Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114–138.
Zhivotovsky, L. A. (2015). Relationships between Wright's FST and FIS 

statistics in a context of Wahlund effect. Journal of Heredity, 106(3), 
306–309. https://doi.org/10.1093/jhere​d/esv019

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Pearman, W. S., Urban, L., & 
Alexander, A. (2022). Commonly used Hardy–Weinberg 
equilibrium filtering schemes impact population structure 
inferences using RADseq data. Molecular Ecology Resources, 
22, 2599–2613. https://doi.org/10.1111/1755-0998.13646

https://doi.org/10.21105/joss.01686
https://cran.r-project.org/web/packages/cowplot/index.html
https://cran.r-project.org/web/packages/cowplot/index.html
https://doi.org/10.1093/jhered/esv019
https://doi.org/10.1111/1755-0998.13646

	Commonly used Hardy–­Weinberg equilibrium filtering schemes impact population structure inferences using RADseq data
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Literature review
	2.2|Simulated data
	2.3|Empirical data
	2.4|SNP filtering
	2.5|Data analysis

	3|RESULTS
	3.1|Literature review
	3.2|In silico data analysis
	3.3|Empirical data analysis

	4|DISCUSSION
	4.1|Impact of filtering on different measures of population structure
	4.2|Comparison to empirical data
	4.3|Conclusions and recommendations

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	OPEN RESEARCH BADGES

	REFERENCES


