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Abstract: The human eye gaze plays a vital role in monitoring people’s attention, and various efforts
have been made to improve in-vehicle driver gaze tracking systems. Most of them build the specific
gaze estimation model by pre-annotated data training in an offline way. These systems usually tend
to have poor generalization performance during the online gaze prediction, which is caused by the
estimation bias between the training domain and the deployment domain, making the predicted
gaze points shift from their correct location. To solve this problem, a novel driver’s eye gaze tracking
method with non-linear gaze point refinement is proposed in a monitoring system using two cameras,
which eliminates the estimation bias and implicitly fine-tunes the gaze points. Supported by the
two-stage gaze point clustering algorithm, the non-linear gaze point refinement method can gradually
extract the representative gaze points of the forward and mirror gaze zone and establish the non-linear
gaze point re-mapping relationship. In addition, the Unscented Kalman filter is utilized to track
the driver’s continuous status features. Experimental results show that the non-linear gaze point
refinement method outperforms several previous gaze calibration and gaze mapping methods, and
improves the gaze estimation accuracy even on the cross-subject evaluation. The system can be used
for predicting the driver’s attention.

Keywords: driving environment; gaze tracking; non-linear refinement

1. Introduction

Monitoring a driver’s attention is one of the most vital components of advanced driver
assistance systems (ADASs) which monitor the driver’s status and prevents traffic accidents
from happening when the driver is distracted [1–4]. According to the demand for safe
driving, drivers should maintain sufficient awareness in order to take a series of actions
during the whole driving process. Distraction is always facilitated by driving over long
durations under monotonous conditions or otherwise being “lost in thought”, which could
decrease the driver’s awareness and impair their reaction speed with regard to regaining
control of the vehicle. A better understanding of driver behaviors through driver attention
analysis could promote ADAS to generate optimal control strategies corresponding to the
current driving situation.

Eye gaze is often closely related to driving behaviors and is treated as a vital cue for
detecting the driver’s visual attention. Many remote gaze-tracking-based techniques, which
are based on head and eye pose features extracted from driver videos, have popularly
been used in driving scenarios due to their high user friendliness. Gaze mapping is the
essential step to build the mapping relationship between the driver’s eye gaze features
and the corresponding gaze location for gaze prediction inside or outside the vehicle.
Manual gaze mapping methods necessarily require driver compliance [5,6] and human
cooperation before each session, which adds significant inconvenience for driver eye gaze
tracking systems. Several automatic mapping methods have approached driver gaze zone
estimation utilizing gaze behavior or gaze frequency on specific driving data [7–9], which
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are heavily dependent on the parameter estimation accuracy and fragile to the outliers. This
makes the driver gaze estimation system session-exclusive or person-exclusive, and requires
re-calibration or re-mapping in the setup procedure before each session, which seriously
affects the applicability of the pre-trained gaze model. However, there is little progress that
works on such intrinsic problems in the driver’s gaze estimation system.

This paper presents a domain knowledge-based solution to mapping and tracking the
driver’s predicted eye gaze points to their real location in the naturalistic dual-cameras-
based monitoring system. The driver’s natural mirror-checking actions are used for finding
representative gaze points in the context, which are later generated by progressive cluster-
ing in an automatic manner. The representative gaze points can be treated as known gaze
points for gaze point refinement. The non-linear gaze point refinement treats these repre-
sentative gaze points as known gaze points, builds simple and straightforward re-mapping
for gaze estimation, eliminates the estimation bias related to the session, and makes the
pre-trained gaze model more generalized. The main contributions are as follows:

• A dual-cameras-based driver eye gaze tracking system using non-linear gaze point
refinement is presented for deploying a pre-trained supervised gaze model in the
unconstrained environment. This method makes an initial attempt to reduce the
estimation bias in separate model training. It increases the flexibility of system setup
and does not require any human intervention.

• An effective gaze point non-linear global refinement with two-stage clustering is
presented to extract the typical gaze points by maximizing fixation possibilities.
This method aligns the initial unknown gaze points to specific calibration points
by topology preservation. It is person-independent and can be directly utilized as
post-processing for many pre-trained gaze models.

• Experimental results of real driving scenarios demonstrate that the proposed method
reduces the gaze estimation error of the pre-trained model and even has a better
performance on cross-subject evaluations. It can be used as a simple-but-effective
baseline method for driver gaze calibration or gaze mapping.

The rest of this paper is organized as follows. In Section 2, the driver eye gaze
prediction and gaze calibration works are introduced. Section 3 describes the details of the
proposed driver eye gaze tracking system. In Section 4, several experimental results and
error analysis are given. Section 5 presents a brief conclusion of the proposed system.

2. Related Works

The human head and eye dynamics are fundamental to revealing the drivers’ gaze
points that represent their current visual attention. Therefore, it has been widely used to de-
tect the visual distraction and understand driver behaviors by exploiting the driver’s head
and eye orientation [10]. In early works, several methods and devices were approached for
accurate gaze information in driving environments, such as head-mounted eye trackers.
These trackers are intrusive and costly, and might change driving habits and behavior.
With the advances of the remote driver eye gaze tracking techniques, non-intrusive systems
based on computer vision have been well applied due to their user-friendliness [11].

2.1. Driver’s Eye Gaze Estimation
2.1.1. Feature-Based Systems and Appearance-Based Systems

In vision-based driver behavior monitoring systems, it is acceptable for the driver’s
head orientation regarding as coarse gaze direction [12]. Through a gaze zone estimator,
the probability of the driver gaze direction could be obtained. These estimators classify
the gaze points into partitioned gaze zones that are inside or outside the vehicle, such
as side mirrors, rear-view mirror and windshields. Most of the driver gaze estimation
works build the estimator with facial appearance [13,14], head movement [15–18], or eye
movement [19,20] in a monocular camera system.

Wang et al. [21] estimated the driver’s head pose in the depth image by a point-
cloud alignment-based approach, and computed the eye direction in the RGB image by
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appearance-based gaze estimation approach. In this work, the author determined the gaze
zone results by the weighted sum of the head and eye direction. Jha et al. [22] used the
head position and orientation as the input features and built the estimator via Gaussian
process regression (GPR). Lundgren et al. [23] applied both head features and eye features
to train the estimator via the GPR method.

2.1.2. Deep Learning-Based Systems

With the vigorous development of deep learning technology, various attempts have
started being made to achieve eye gaze estimation in the driving environment. All these
deep learning-based methods consist of a facial landmark detection or feature extraction
module connected to the model input. The network is used to fuse the high-dimensional
rich features. Yu et al. [24] fused appearance-based features and geometric information in
the convolutional neural networks (CNNs) for efficient driver gaze prediction. Lyu et al. [25]
trained the CNN model for gaze classification. This work carried out a fusion network that
combined two classification networks. Lollett et al. [26] combined face detection, facial
landmarks detection, eye image post-processing in one system, and classified the extracted
feature vector into the driver’s gaze zone. They tested the model’s robustness in several
challenging driving scenarios, such as non-uniform illumination and face occlusions.

For the dual-cameras-based system, the gaze points are predicted on the dynamic
scene, not just the interior components of the vehicle. The face camera is often fixed
at the windshield or center console to capture the driver’s video in the field of view.
The scene camera is installed behind the driver to mimic the driver’s view and shows the
gaze points in a naturalistic driving environment. Most current driver gaze estimation
research studies have evaluated the predicted accuracy of gaze location regression or gaze
zone classification inside or outside the vehicle. These studies are based on the domain
knowledge in the training dataset and build the gaze model beforehand. It is vulnerable
and inapplicable to the uncertain and complex on-road driving environment. Therefore,
the driver’s gaze tracking system needs a more flexible setup for the subjects about looking
by head movements and eye movements.

2.2. Driver’s Eye Gaze Calibration

Gaze calibration is a significant step in the gaze tracking system, which is employed to
build the relationship between the human eye and the gaze location. The gaze calibration
of driving scenes is usually realized by using typical characteristics of the scene, such
as common components inside the vehicle, or the driving behavior characteristics of the
driver. Some methods bring the calibration features of the indoor scene as additional
prior information.

Fu et al. [7] introduced a calibration method for head pose estimation that regards
the common gaze zones as the calibration points, such as the mirror gaze zone and the
instrument board gaze zone. This method was realized by a self-learning algorithm, and its
parameters can be periodically updated. Through the solving of the relevant coefficients, it
refined the predicted head pose to the real head pose. Yamashiro et al. [8] used less gaze
zone related to the driving behavior as calibration points under specific lane-changing
conditions such as the rear-view mirror gaze zone, one-side mirror gaze zone, and the
forward gaze zone. This method assumes that the data clustering centers should be the
calibration points due to the possibility. This established the mapping relationship through
the transformation of the three calibration points. Yoon et al. [27] introduced a stereo-
camera-based calibration method using one calibration point. This method takes full
advantage of the driver’s prior information collected in the desktop monitor. Yang et al. [5]
utilized a non-linear polynomial method to build the mapping relationship linking the
features to the gaze points. Yuan et al. [9] used six gaze zones related to driver gaze glance
as calibration points. This extracted and clustered more representative gaze features to
build the regression by GPR. Due et al. [6] established the mapping between the driver
view and road view by I-DGAZE model, but the status of the drivers was still varying and
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needed to be fine-tuned by driver-specific gaze calibration. Their results showed that the
gaze mapping or gaze calibration can greatly reduce the error of the trained CNN model.

It is worth noting that the gaze classification accuracy varies significantly between
drivers and that the person-specific driver gaze estimation system obviously makes sense.
To the best of our knowledge, few studies have aimed to implement the gaze mapping
system with person-specific gaze point refinement for a naturalistic driving environment.

3. Proposed Method

The proposed method contains three modules: driver status tracking, pre-trained gaze
model, and non-linear gaze point refinement. For the dual cameras system, the driver
status tracking module infers the status features from the face camera, and the pre-trained
gaze model module maps the features to the gaze points on the scene camera.

In the driver status tracking module, all the relevant driver status is defined and
initialized. The status contains both the signals of the head movement and the eyes
movement. Since the observed measurements have random disturbances to a certain extent,
the Kalman filter is adopted to track and update the measurements. In the pre-trained gaze
model module, the corresponding gaze mapping from the driver status features to the gaze
points is built during the offline training. The model is then used to give the initial gaze
points. At this point, the initial driver gaze tracking system has been built.

In the non-linear gaze point refinement module, the initial gaze points is corrected
to the real locations. Firstly, the candidate gaze points are automatically extracted by
two-stage gaze point clustering. The forward gaze zone center is measured by density peak
clustering. The candidates of the three mirror gaze zones are selected from the maximum
distance points on the time sample fragments. All possible gaze zone centers are found by
Gaussian mixture cluster, and the parameters are updated by the expectation-maximization
algorithm in each gaze zone. Then, based on the known mapping relationships of the
candidate gaze points, a simple non-linear method is adopted to further adjust the gaze
points on the image plane.

The whole framework is running automatically without any manual interpretation.
Within it, the non-linear gaze point refinement module periodically refines and updates
the gaze mapping parameters, making the framework itself an automatic system. Figure 1
illustrates the proposed system. This section describes each module of the system.

Driver Status Tracking

Status ExtractionFacial Image

Pre-trained Gaze Model

Status Tracking

Monitoring Image & Defined Gaze Points Pre-trained Model

Dual-cameras-based Driver Eye Gaze Tracking System with Non-Linear Global Refinement

Two-stage

Gaze Point Clustering

Non-linear Gaze Point Refinement

Forward-view zone 

Left-side mirror 

Rear-view mirror 

Right-side mirror 

Typical Topologyical Preservation

Final Gaze Points Non-linear Global Refinement

Figure 1. Overview of the proposed system.
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3.1. Driver Status Tracking

This paper uses a single camera to achieve the signal acquisition of the driver. Since
head position, head rotation, and eye rotation all contribute to driver gaze estimation, this
paper considers all these signals in the driver status model. This is consistent with the
driver’s eye gaze glance in real driving scenarios, as drivers usually move their head and
eyes to focus on the target. To perform the prediction step, the Unscented Kalman filter
is employed.

In this paper, the driver state xk that contains information about the driver’s head
position, head rotation, and gaze direction is introduced as the indicator of the driver’s
visual attention. The properties in the state features make a continent way to determine
the driver’s eye gaze if they were obtained. In practice, the state xk is divided into three

components: head state; left eye state; and right eye state. xk =
[
hT

k , eT
k,l , eT

k,r

]T
, where:

hk =
[

xk, yk, zk, hα
k , hβ

k , hγ
k , ẋk, ẏk, żk, ḣα

k , ḣβ
k , ḣγ

k

]T
,

ek,l =
[
eα

k,l , eβ
k,l , eγ

k,l , ėα
k,l , ėβ

k,l , ėγ
k,l

]T
,

ek,r =
[
eα

k,r, eβ
k,r, eγ

k,r, ėα
k,r, ėβ

k,r, ėγ
k,r

]T
.

(1)

The head position and head rotation are denoted by [xk, yk, zk]
T and [hα

k , hβ
k , hγ

k ]
T .

Furthermore, their corresponding change rates are denoted by [ẋk, ẏk, żk]
T and [ḣα

k , ḣβ
k , ḣγ

k ]
T .

The eye gaze direction of both the left eye and the right eye is independent from the head
rotation and is denoted by [eα

k,l , eβ
k,l , eγ

k,l ]
T and [eα

k,r, eβ
k,r, eγ

k,r]
T . The change rates of the two

eye rotations are given as [ėα
k,l , ėβ

k,l , ėγ
k,l ]

T and [ėα
k,r, ėβ

k,r, ėγ
k,r]

T . The eye model is the same for
the left eye and the right eye, and the gaze directions are the relative eye-in-head rotations.
Therefore, the eye movement is independent from the head movement, and this property
is useful for the gaze estimation process.

In this paper, the corresponding measurement vectors are given as zg
k = [zh

k , ze
k,l , ze

k,r],
where,

zh
k = [xk, yk, zk, hα

k , hβ
k , hγ

k ],
ze

k,l = [eα
k,l , eβ

k,l , eγ
k,l ],

ze
k,r = [eα

k,r, eβ
k,r, eγ

k,r].

(2)

3.1.1. Process Model

This paper uses the following head model and eye model as the process models for the
information processing. In practice, the driver’s head and eyes correspond to the camera
coordinate system, respectively. Hence, the driver’s state can be expressed using the head
status and eye status.

3.1.2. Head Model

Inspired by Ref. [23], a constant velocity model is utilized in the head model. The cur-
rent head pose is determined by the previous head pose, head change rate, and the model
noise. Therefore, the head model is defined as

hk = Ahhk−1 + Bhvk−1, (3)

where vk−1 ∼ N
(

0, Qh
)

is Gaussian model noise. A and B are stated as

Ah =

[
I TsI
0 I

]
, Bh =

[
T2

s
2I

TsI

]
, (4)

where Ts denotes the sampling time.
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3.1.3. Eye Model

The eye movement can generally be categorized into three types: fixation; saccades;
and smooth pursuit. The eye model describes eye motion that either fixates on the target,
quickly changes between fixation points, or smoothly follows the moving target. The corre-
lation between the head movement and the eye movement is considered in the eye model.
The previous method used the gaze signal as the combination of the head pose and gaze
pose; here, in this paper, the eye rotation provided by the eye model is just the gaze pose.
The model describes the eye rotation as the weighted sum of the current eye rotation and
the eye rotation generated by the head model:

ek = λee1
k + (1− λe)e2

k , (5)

where 0 < λe < 1 is the distribution determined by the head model:

e1
k = A1

e e1
k−1 + B1

e vk−1, (6)

where vk−1 ∼ N (0, Qe) is the Gaussian model noise and:

A1
e =

[
TsI
I

]
, B1

e =
[

T2
s

2I

]
, (7)

e2
k = A2

e e2
k−1 + B2

e vk−1, (8)

where,

A2
e =

[
0
I

]
, B2

e =
[

T2
s

2I

]
. (9)

3.1.4. Measurement Model

This part introduces the measurement model as the function of the driver state. As the
process model, the measurement model consists of the head model and eye model.

Head Model: The head position and head rotation is measured in this paper, and the
state vector in the measurement model is defined as

zh
k = Hhk + wk = [I 0]hk + wk (10)

where wk ∼ N
(

0, Rh
)

is the measurement noise.
Eye Model: The eye model uses the three-dimensional gaze direction as the state

variable. The measurement model is stated as

ze
k = ek + wk (11)

where wk ∼ N (0, Re). When the observations are available in the measurement state, its
measurement vector zg

k can be obtained.

3.2. Pre-Trained Gaze Model

In this paper, the traditional driver gaze estimation algorithm is used to train the
gaze model when getting enough status samples in the dataset. Generally, the linear or
non-linear model regresses the driver status features to specific gaze points on scene image.
The pre-trained gaze model should not be over-fitted and has a balanced performance on
the labelled training dataset and testing dataset. Mathematically, the gaze model can be
written as

gx = fx

(
zg

1 , zg
2 , . . . , zg

k

)
gy = fy

(
zg

1 , zg
2 , . . . , zg

k

) (12)
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where zg
k denotes the k-th obtained status features in the dataset. gx and gy represent the

gaze points in horizontal and vertical directions, respectively. fx(·) and fy(·) are the given
linear or non-linear mappings of the gaze points. In this work, the gaze points are modeled
in two independent directions.

It is worth noting that the robustness of the pre-trained gaze model obviously has a
significant impact on the next step. If the prediction results of the pre-trained model are
particularly poor, it is necessary to add much driver status features to accommodate the
data diversity and train a new gaze model. Our goal is to refine the output of the model
and make it easy to apply. At this point, it is also practical to build an online model as
Ref. [9]. The refinement method works on the online model.

3.3. Non-Linear Gaze Point Refinement

In this section, the main processes of non-linear gaze point refinement are described.

3.3.1. Two-Stage Gaze Point Clustering

Mirror-checking behaviors can be regarded as typical eye glance allocation that benefits
from both head and eye movement. The forward-view gaze zone is the major region of
the driver’s visual attention, which means that the glancing of the mirror gaze zone
goes back and forth from the forward-view gaze zone.Figure 2 gives an example of the
mirror-checking behavior. It will be facilitated to the initial gaze points by supervised
refinement. Previous works having studied the mirror gaze zones’ detection or classification
include [28–31]. In this work, a two-stage gaze point clustering method was adopted to seek
the gaze points of representative mirror gaze zones in continuous naturalistic driving data.

(a)

Left-side

mirror

Rear-view 

mirror

Right-side

mirror

Forward

gaze zone

(b)

Figure 2. Typical eye glance allocation of mirror-checking behavior. (a) Schematic view of eye glance
allocation. (b) Real-world examples in the gaze points space. Intuitively, the glance allocation for
each mirror-checking behavior is discrete. The triangles denote the gaze points when the driver is
facing the frontal area in the vehicle, and the circles, rectangles, and four-pointed stars denote the
features’ trajectory when the driver turns to the left-side mirror, right-side mirror, and rear-view
mirror, respectively. Here, the furthest feature points are used as the representative candidates for the
driving behavior.
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3.3.2. Gaze Points Clustering

The driver maintains their visual attention on the road by moving their head and
eye during the on-road driving, and uses the mirror gaze zones to assist their observation
of the surrounding environment. Thus, most of the gaze points should be fixated on the
forward-view gaze zone. This paper sets the center of the forward-view gaze zone as the
global density center of the initial gaze points which is consistent with the actual situation.
Considering the peak density measurement, the center has the characteristics of the largest
value in the local neighbor density and the smallest value in the point distance. Hence,
the local neighbor density and point distance can be computed by

ρk = ∑
k′

sgn(dkk′ − dc)

δk = min
k′∈Ω−k

dkk′
(13)

where sgn(·) denotes the signum function, its value equals 0, when x is negative; otherwise,
its value equals 1. dkk′ means the distance between the k-th gaze point and k′-th gaze point
in the given space. dc represents the cutoff distance. Mathematically, the center of the
forward-view gaze zone eg

k is the gaze point with max(ρk) and min(δk). Its cluster density
radius is given as τ = λ

|Ω| ∑
k′∈Ω−k̄

dk̄k′ , where |Ω| denotes the data size of the initial gaze

points. λ means the statistical probability of the forward-view gaze zone.

3.3.3. Mirror Gaze Points Clustering

The mirror gaze zones also have a higher local neighbor density, thence previous
works directly clustered the forward-view gaze zone and mirror gaze zones in the same
procedure. This matches the relatively dense distribution of the gaze points during long-
term driving. However, the complexity and uncertainty make the exceptions inevitable. It
is important to increase the effectiveness of the clustering results and improve the speed
of the algorithm. Therefore, this paper filters out the candidate gaze points of the mirror
gaze zone on the segmented data out of the forward-view gaze zone, and further use the
Gaussian mixture clustering method to eliminate the noise.

The original gaze points data are converted to binary status data with directionality B.
These status data indicate whether the gaze point is still in the forward-view gaze zone.
When the data are out, its value is positive; otherwise, its value is negative. The data
beyond a certain distance can be considered as those on mirror-checking action. Here,
the binary status is defined as Bk = sgn(dk̄k′ − τ).

Mirror-checking behavior is a continuous action with processive time samples. The can-
didate gaze point for the single action can be the representative gaze point among the time
samples. In this paper, the time samples are segmented into an importance fragmentM.
Hence, the candidate gaze points e∗k is computed as

g∗k = arg max
gk∈M

dgk̄ gk′ (14)

In this paper, the mirror gaze zones are assumed as the region with high local density
and modeled by a Gaussian mixture model as single two-dimensional distribution for each
mirror gaze zones. The gaze points of each gaze zone are i.i.d. with an underlying density
of p(x). The finite mixture model p(x) is computed as

p(x) =
M

∑
m=1

αmN (gm | µm, Σm) (15)

where µm and Σm are the parameters defined over the density or distribution. αk are the
mixture weights, ∑M

m=1 αm = 1. Here, M is the components number as well as the number
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of the mirror gaze zone. In this scenario, the maximum likelihood is defined and estimated
as follows:

Lml(θml) =
M

∏
m=1

p(gm; θml) (16)

where θml = {µ1, . . . , µM, Σ1, . . . , ΣM}. This cluster is solved by the expectation-maximization
(EM) algorithm to proceed with a posteriori estimation of clustering parameters.

3.3.4. Typical Topology Preservation

After obtaining the clustered gaze points, the main task is to assign the unsupervised
gaze points with correct gaze zone labels and anchor positions. This paper assigns the
clusters by typical topology preservation. As shown in Figure 2, the eye glance allocation
of the mirror-checking behavior is similar in the gaze points space. At the same time,
the motion of the initial gaze points holds the related position. Based on this observation,
this paper assumes that the representative points of the cluster center has an approximate
position that consists of the annotations on the image plane and the same motions with the
head movement. In this work, the gaze point is uncalibrated and output by the pre-trained
gaze model. Hence, the cost function is given as

Ltp(θtp) = min ∑
j

cos−1

(
gj − g1

)
·
(
hj − h1

)∣∣gj − g1
∣∣∣∣hj − h1

∣∣ (17)

where θtp = {g1, . . . , gJ , h1, . . . , hJ}. g1 and gj are the cluster centers of the forward-view
gaze zone and the mirror gaze zones, respectively. h1 and hj are the head movement
variable of the forward-view gaze zone and the mirror gaze zones, respectively. The loss
function in the gaze points space can be minimized by keeping the similar topological
structure in the physical space. The function formulation is optimized in a particular order
as follows. The points of the left-side mirror and right-side mirror have higher priority.
Because these points have large distances in the opposite directions, they are convenient
to decide. When the cluster centers of the left-side mirror and the right-side mirror are
determined, the cluster center of the rear-view mirror can be naturally assigned. At this
end, the initial gaze points (the gaze points of mirror gaze zones and forward-view gaze
zone) are comprised of assigned labels and can be used to refine the gaze points.

3.3.5. Non-Linear Global Refinement

This paper uses the non-linear global refinement to fine-tune the output of the pre-
trained model. The corrected positions of the initial gaze points have undergone an
unknown transformation relative to the initial values. Therefore, the refinement method
should take care of the accuracy of all gaze zones and achieve the balance of gaze points’
adjustment. The refinement method is computed as

gre f ine
x = f re f ine

x (gx)

gre f ine
y = f re f ine

y
(

gy
) (18)

where gx, gy are the initial gaze points in the horizontal and vertical directions, respectively.

gre f ine
x , gre f ine

y are the corresponding labeled gaze points. f re f ine
x (·) and f re f ine

y (·) are the
non-linear functions of the gaze points. In its simplest form, the non-linear function model
can be f re f ine(·) = ω f (·) + ν, where ω and ν are function parameters.

4. Experiments and Discussions

In this section, we experiment with several pre-trained models to validate the general-
ization ability of the proposed system. Firstly, the driving data collection under naturalistic
conditions is introduced. Then, the pre-trained model and baseline method for comparisons
is given. Subsequently, evaluations of the proposed system are performed. Finally, an ab-
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lation study is given on within-subject evaluation and cross-subject evaluation, and error
analysis is carried out on gaze estimation accuracy.

4.1. Naturalistic Data Collection

To evaluate the proposed system, a dataset for the field study is collected in the
naturalistic driving environment. The face camera was fixed to the bottom of the windshield
and the scene camera was mounted behind the driver. The images captured from the face
camera are 720P high-quality images. The frame rate of the camera video is 30FPS.

The gaze region in front of the driver is partitioned into 36 gaze zones, as shown
in Figure 3. All gaze zones are utilized as an indicator of the coarse gaze directions.
The partitioned gaze zone covers all possible gaze regions in front of the driver to increase
the variance of the head and eye status. The standard data of the driver’s gaze in different
gaze zone were collected in advance to verify the manual calibration gaze error.

Original 1920*1080  120°   16pixel = 1degree
Current 2203*1080 [pixel*pixel] = 137.6875*67.5 [degree*degree]

Six point calibration: 3, 6, 14, 29, 32, 35
Four point calibration: 3, 6, 14, 35

Single point calibration: 14

31

1
2

3

4 5

6
7

89 10

1314
19

24

15
16 17

1820 21 22
2325 26 27 28

29
30

32
33

34

35 36

11 12

Figure 3. Target gaze zone partition of the on-the-road area. Gaze zone 1–36 are the target regions in
the front of the driver.

To facilitate the data collection, yellow markers were pasted into the center of every
gaze zone, which can easily be noticed in the vehicle cabin. The drivers who participated
were asked to look at the marker one after another during the calibration procedure.
In the training and testing data for calibration, the dataset retains five driver subjects’
data. For each subject, the dataset has 720 annotated gaze zone data to train the model,
and another 720 data to test the model. This means 20 annotated data remain for each
gaze zone.

In this dataset, we adopted OpenFace [32] for convenient driver head and eye status
extraction. OpenFace tools achieved stable and reliable performance on the head and gaze
estimation in the collocated video compared with other existing tools. Advances in this area
can benefit the driver gaze analysis and develop more robust solutions [33,34]. Figure 4
shows the face and eye detection results of different gaze zones.

4.2. Pre-Trained Models and Baseline Methods

In addition to the dataset, we evaluated the proposed method with the common
pre-trained model, Gaussian process for regression (GPR) [23,35], partial linear square
regression (PLSR) [14], non-linear square regression (NLSR). All these models were in-
dividually trained on the training dataset for different drivers. The GPR method builds
the probabilistic model by taking the prior of the function space as the Gaussian process
and carries out the solution according to the Bayesian inference. Here, the parameters of
GPR are similar to Ref. [9]. The PLSR method trains the regression model on the principle
component by projecting the variables into new space. Here, the components’ value of
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the PLSR model is 4, which is the same as that of the calibration gaze zones. Inspired by
Ref. [5], a single NLSR model is utilized for non-linear estimation to link the inputs and
output. For each driver, we trained the GPR model, PLSR model, and NLSR model for
pre-trained model evaluation. Here, several calibration methods are used as the baseline
method for gaze prediction comparisons, including Gaussian process mapping (GPM),
homography transform projection (HTP). The GPM method builds the mapping relation-
ship as performed in Ref. [9], and the HTP method treats the gaze point refinement as a
homography transform from the primary image plane to the final image plane.

Figure 4. The driver status extraction results of all the partitioned gaze zone. The first row shows
the results of GZ1∼GZ6. The second row shows the results of GZ7∼GZ12. The third row shows the
results of GZ13∼GZ18. The fourth row shows the results of GZ19∼GZ24. The fifth row shows the
results of GZ25∼GZ30. The last row shows the results of GZ31∼GZ36. GZ: Gaze Zone.

Here, the experiments are conducted on within-subject evaluation, cross-subject evalu-
ation, and normal evaluation. Within-subject evaluation means that testing and training
are performed on the same driver subject’s data and the total number of experiments is
5(subject)× 1(experiment/subject) = 5(experiments). While the cross-subject evaluation
means that training on one driver subject’s data and testing on another driver subject’s data,
the total number of experiments is 5(subject)× 4(experiment/subject) = 20(experiments).
For the normal evaluation without specific instructions, the testing is on all driver sub-
ject’s data and the total number of experiments is 5(subject)× 5(experiment/subject) =
25(experiments).

4.3. Gaze Point Prediction Results

This section compares the proposed method with the baseline methods on the pre-
trained models. The dataset consists of the driver status for each gaze zone, with labels of
pixel-level gaze points and annotations of the gaze zone index. The locations of the gaze
zones are labeled on the image coordinate axis. For the particular driver, the proposed
method will gradually revise the gaze points and build the refinement of the gaze model.

The gaze estimation error is calculated in the perspective of the direction angle view
and image pixel view. The ground-truth values are provided by the labeled anchors of
gaze zone centers. The size of the scene image is 2200× 1080, and the relevant angle of the
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full field-of-view is 137.5◦ × 67.5◦. All the gaze estimation methods are measured by the
absolute mean error of both the horizontal and vertical directions of eye gaze.

Table 1 presents the absolute mean error on a different calibration method. The pro-
posed method achieves better results with a more than 1.4 degree error drop on all pre-
trained models. Among them, the HTP method has a relatively large estimation error which
may establish incorrect mapping in all possible solutions of the image plane. The HTP
method can especially not obtain an output on several GPR model evaluations. At this
point, the mean error of the HTP method is computed on the positive solution. The pro-
posed method with the PLSR model has the best gaze estimation accuracy and largest
accuracy improvement.

Table 1. Absolute mean error (degree) on different calibration methods and pre-trained models.
GPM: Gaussian process mapping, HTP: homography transform mapping.

Calibration Method GPR Model PLSR Model NLSR Model Average

wo/Calibration 7.74 8.97 8.09 8.27
GPM 7.16 8.37 8.20 7.91
HTP 17.98 17.63 16.99 14.45

Ours 6.39 6.13 6.59 6.37

Figure 5 gives the absolute mean error for each gaze zone. The proposed method
decreases the estimation error on more than two-thirds of the gaze zone. Among them,
the error distribution of each gaze zone is relatively flat on the results of the PLSR model.
In this table, the HTP method is ignored due to the unstable results on each gaze zone.
Although the error decrease level varies among gaze zones, all gaze zones adjacent to the
calibration gaze zones achieve a lower gaze prediction error.

Gaze Zone
4 5 7 8
9 10 6 12 13

14 15 11 17 18
2 16 34

1 19 20 21 22 23 36
3 24 25 26 27 28 35

29 31 33
30 32

NLSR model (wo/Calibration)
5.94 6.63 11.66 16.89 
5.32 6.42 6.04 10.27 11.36 
4.53 5.25 8.18 12.16 12.34 

11.11 8.38 6.54 
14.50 4.60 5.73 7.74 9.87 8.68 7.99 

6.77 6.32 6.56 7.99 8.11 8.59 5.07 
3.01 5.34 9.85 
9.29 6.02 

NLSR model (GPM)
8.99 9.40 13.28 12.72 
5.66 7.39 3.10 9.83 9.45 
1.84 4.79 8.24 8.10 8.44 

6.39 8.02 3.85 
10.20 3.67 6.27 7.27 9.84 6.71 5.63 

2.24 7.61 9.23 9.99 10.10 8.35 2.80 
10.54 11.11 13.24 
14.79 16.11 

NLSR model (Ours)
5.30 5.86 10.93 15.17 
4.81 5.16 2.31 8.56 10.04 
3.11 3.53 6.99 8.92 9.11 

9.26 6.27 5.60 
12.50 3.24 5.10 5.61 8.64 5.56 6.73 

3.12 5.89 6.31 6.43 7.55 7.28 2.90 
2.91 4.13 9.37 
8.41 4.74 

(a)

4 5 7 8
9 10 6 12 13
14 15 11 17 18

2 16 34
1 19 20 21 22 23 36

3 24 25 26 27 28 35
29 31 33
30 32

GPR model (wo/Calibration)
12.42 13.18 14.02 12.42 
9.10 10.08 12.11 9.00 8.49 
6.46 7.58 9.99 7.38 7.17 

7.22 7.94 6.78 
11.44 5.25 6.42 5.68 5.06 5.16 7.03 

2.68 4.65 5.66 4.28 2.50 2.96 7.63 
5.24 5.48 8.10 
11.08 11.16 

GPR model (GPM)
8.99 11.92 10.23 8.03 
6.28 8.85 7.80 4.97 4.67 
3.75 6.22 7.01 3.38 3.93 

3.98 6.08 3.37 
9.94 3.84 4.91 4.60 2.81 4.48 10.36 

4.64 7.28 7.99 7.81 4.98 5.09 7.27 
11.10 10.19 12.31 
13.77 15.02 

GPR model (Ours)
8.88 9.93 9.75 8.27 
6.07 6.28 8.44 5.02 3.95 
2.31 3.97 6.36 3.28 3.76 

4.75 4.46 4.96 
10.74 4.53 3.64 3.18 2.66 3.88 8.36 

5.25 6.68 5.97 4.77 4.49 3.98 6.72 
8.23 9.74 10.12 
14.13 12.44 

(b)

4 5 7 8
9 10 6 12 13
14 15 11 17 18

2 16 34
1 19 20 21 22 23 36

3 24 25 26 27 28 35
29 31 33
30 32
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11.10 10.19 12.31 
13.77 15.02 
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5.25 6.68 5.97 4.77 4.49 3.98 6.72 
8.23 9.74 10.12 
14.13 12.44 

(c)
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3 24 25 26 27 28 35
29 31 33
30 32

GPR model (wo/Calibration)
12.42 13.18 14.02 12.42 
9.10 10.08 12.11 9.00 8.49 
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(d)

4 5 7 8
9 10 6 12 13
14 15 11 17 18

2 16 34
1 19 20 21 22 23 36

3 24 25 26 27 28 35
29 31 33
30 32

PLSR model (wo/Calibration)
9.57 9.91 11.96 10.35 
7.98 8.97 10.39 9.46 9.92 
7.10 8.03 8.87 7.46 9.28 

8.95 8.96 8.26 
8.24 7.53 8.22 8.69 8.60 8.34 10.25 

9.95 9.47 10.07 10.11 9.75 7.77 7.97 
6.06 7.40 7.68 
12.58 8.75 

PLSR model (GPM)
10.86 12.23 12.44 12.94 
6.46 8.19 5.75 8.59 5.90 
2.91 6.29 7.34 4.98 4.72 

6.07 7.31 4.80 
9.77 3.39 4.81 5.92 4.16 6.00 10.35 

3.76 6.97 7.81 8.82 6.36 6.37 5.56 
13.56 12.97 14.11 
22.53 20.40 

PLSR model (Ours)
5.95 6.65 7.34 7.43 
5.01 5.88 5.86 7.57 4.21 
3.82 5.01 5.72 3.76 4.85 

6.33 6.74 4.07 
5.42 4.71 6.30 6.96 4.05 5.90 6.11 

7.24 7.37 7.98 8.45 6.23 5.33 5.06 
4.08 6.71 6.39 
11.57 8.60 

(e)

4 5 7 8
9 10 6 12 13
14 15 11 17 18

2 16 34
1 19 20 21 22 23 36

3 24 25 26 27 28 35
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6.06 7.40 7.68 
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PLSR model (GPM)
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6.46 8.19 5.75 8.59 5.90 
2.91 6.29 7.34 4.98 4.72 

6.07 7.31 4.80 
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13.56 12.97 14.11 
22.53 20.40 

PLSR model (Ours)
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(f)

Figure 5. Cont.
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4 5 7 8
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14 15 11 17 18

2 16 34
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29 31 33
30 32

PLSR model (wo/Calibration)
9.57 9.91 11.96 10.35 
7.98 8.97 10.39 9.46 9.92 
7.10 8.03 8.87 7.46 9.28 

8.95 8.96 8.26 
8.24 7.53 8.22 8.69 8.60 8.34 10.25 

9.95 9.47 10.07 10.11 9.75 7.77 7.97 
6.06 7.40 7.68 
12.58 8.75 

PLSR model (GPM)
10.86 12.23 12.44 12.94 
6.46 8.19 5.75 8.59 5.90 
2.91 6.29 7.34 4.98 4.72 

6.07 7.31 4.80 
9.77 3.39 4.81 5.92 4.16 6.00 10.35 

3.76 6.97 7.81 8.82 6.36 6.37 5.56 
13.56 12.97 14.11 
22.53 20.40 

PLSR model (Ours)
5.95 6.65 7.34 7.43 
5.01 5.88 5.86 7.57 4.21 
3.82 5.01 5.72 3.76 4.85 

6.33 6.74 4.07 
5.42 4.71 6.30 6.96 4.05 5.90 6.11 

7.24 7.37 7.98 8.45 6.23 5.33 5.06 
4.08 6.71 6.39 
11.57 8.60 

(g)
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9 10 6 12 13
14 15 11 17 18

2 16 34
1 19 20 21 22 23 36

3 24 25 26 27 28 35
29 31 33
30 32

NLSR model (wo/Calibration)
5.94 6.63 11.66 16.89 
5.32 6.42 6.04 10.27 11.36 
4.53 5.25 8.18 12.16 12.34 

11.11 8.38 6.54 
14.50 4.60 5.73 7.74 9.87 8.68 7.99 

6.77 6.32 6.56 7.99 8.11 8.59 5.07 
3.01 5.34 9.85 
9.29 6.02 

NLSR model (GPM)
8.99 9.40 13.28 12.72 
5.66 7.39 3.10 9.83 9.45 
1.84 4.79 8.24 8.10 8.44 

6.39 8.02 3.85 
10.20 3.67 6.27 7.27 9.84 6.71 5.63 

2.24 7.61 9.23 9.99 10.10 8.35 2.80 
10.54 11.11 13.24 
14.79 16.11 

NLSR model (Ours)
5.30 5.86 10.93 15.17 
4.81 5.16 2.31 8.56 10.04 
3.11 3.53 6.99 8.92 9.11 

9.26 6.27 5.60 
12.50 3.24 5.10 5.61 8.64 5.56 6.73 

3.12 5.89 6.31 6.43 7.55 7.28 2.90 
2.91 4.13 9.37 
8.41 4.74 

(h)
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6.77 6.32 6.56 7.99 8.11 8.59 5.07 
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10.20 3.67 6.27 7.27 9.84 6.71 5.63 

2.24 7.61 9.23 9.99 10.10 8.35 2.80 
10.54 11.11 13.24 
14.79 16.11 

NLSR model (Ours)
5.30 5.86 10.93 15.17 
4.81 5.16 2.31 8.56 10.04 
3.11 3.53 6.99 8.92 9.11 

9.26 6.27 5.60 
12.50 3.24 5.10 5.61 8.64 5.56 6.73 

3.12 5.89 6.31 6.43 7.55 7.28 2.90 
2.91 4.13 9.37 
8.41 4.74 

(i)
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(j)

Figure 5. Absolute mean error (degree) on different gaze zones: (a) gaze zone partition; (b) GPR
model without calibration; (c) GPR model with GPM method; (d) GPR model with the proposed
method; (e) PLSR model without calibration; (f) PLSR model with GPM method; (g) PLSR model
with the proposed method; (h) NLSR model without calibration; (i) NLSR model with GPM method;
and (j) NLSR model with the proposed method. Compared with the related pre-trained models
without calibration, the pre-trained models with GPM method or the proposed method have reduced
the estimation error on gaze zones.

4.4. Ablation Study and Error Analysis

This section studies the effect of various gaze zone calibration data. Table 2 gives the
ablation study results calibrated with different gaze zone data. It shows that the calibration
method without the right-mirror gaze zone data has the largest estimation error. This
suggests that the right-mirror gaze zone is important in the calibration data since it is the
only calibrated gaze point at the right side. The proposed method with scattered calibration
points outperforms the method with concentrated calibration points and significantly
reduces the prediction error.

Table 2. Absolute mean error (degree) of gaze estimation performance on different calibrated gaze
zones. wo/means without the calibration data from the given gaze zone. Front: GZ14; Left: GZ3;
Middle: GZ6; Right: GZ35; wo/Calibration: without any calibration.

Calibration Method GPR Model PLSR Model NLSR Model Average

wo/Front 8.71 6.26 6.78 7.25
wo/Left 6.70 5.96 6.62 6.42

wo/Middle 7.00 6.50 6.80 6.77
wo/Right 11.09 9.22 7.21 9.17

Ours 6.39 6.13 6.59 6.37

Tables 3 and 4 show the within-subject performance and cross-subject performance
of the proposed method. As can be observed, all methods have poorer performance on
the cross-subject evaluation than on within-subject evaluation. The proposed method can
reduce the gaze estimation error in both cross-subject and within subject evaluations. There
is no significant difference on the results of the proposed method with the GPR model.
The mean error on cross-subject evaluation is less than 7 degrees. The gaze error of the
proposed method on within-subject evaluation using the PLSR model is approximately
five degrees. In the driving scenarios, the gaze tracking system has a somewhat large error
tolerance, which is sufficient.
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In addition, the error analysis on the horizontal and vertical directions of the image
plane is given for further validation. As shown in Figure 6, all pre-trained models benefit
from the proposed method, and have a large error reduction after gaze point refinement.
In Figure 6, each block represents a five degree angle in the horizontal and vertical directions
of the image plane. The difference values with the positive effect of the pre-trained model
with the proposed method are denoted by colors. Based on this statistic analysis, the gaze
estimation error of the three mirror gaze zone is significantly decreased among consecutive
gaze zones, whose maximum accuracy improvement can reach 15 degrees. This is effective
for driver gaze refinement.

Table 3. Absolute mean error (degree) of within-subject performance on different calibration methods.
GPM: Gaussian process mapping; HTP: homography transform mapping.

Calibration Method GPR Model PLSR Model NLSR Model Average

wo/Calibration 6.99 5.26 5.67 5.97
GPM 6.77 8.13 7.30 7.40
HTP 7.49 10.79 5.67 7.98

Ours 6.19 5.04 5.67 5.63

Table 4. Absolute mean error (degree) of cross-subject performance on different calibration methods.
GPM: Gaussian process mapping, HTP: homography transform mapping.

Calibration Method GPR Model PLSR Model NLSR Model Average

wo/Calibration 7.93 9.90 8.69 8.84
GPM 7.26 8.43 8.45 8.05
HTP 20.78 19.34 19.81 19.98

Ours 6.44 6.40 6.82 6.55
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Figure 6. Cont.
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Figure 6. Error reduction of the pre-trained model in the horizontal and vertical directions of the
image plane, the proposed method with (a) GPR model; (b) PLSR model; and (c) NLSR model. Each
block is a square with angles of 5× 5. The color of the block indicates the increase level of the gaze
estimation accuracy.

5. Conclusions

This paper implements a gaze tracking and mapping system for monitoring driver eye
gaze using a face camera and a scene camera. The proposed system applies a non-linear
gaze point refinement mechanism to automatically facilitate the gaze prediction of the
pre-trained model. Extensive experiments show the potential usage of several gaze models,
and give the effectiveness of the proposed method. Future works should further investigate
the impact of gaze estimation variance in long-term experiments, and apply it in the deep
learning-based gaze estimation method.
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