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Abstract: The prenatal period and the first years of life have a significant impact on the health issues
and life quality of an individual. The appropriate development of the immune system and the central
nervous system are thought to be major critical determining events. In parallel to these, establishing
an early intestinal microbiota community is another important factor for future well-being interfering
with prenatal and postnatal developmental processes. This review aims at summarizing the main
characteristics of maternal gut microbiota and its possible transmission to the offspring, thereby
affecting fetal and/or neonatal development and health. Since maternal dietary factors are potential
modulators of the maternal–fetal microbiota axis, we will outline current knowledge on the impact
of certain diets, nutritional factors, and nutritional modulators during pregnancy on offspring’s
microbiota and health.
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1. Introduction

The term “microbiota” defines the entirety of microorganisms that reside in the organs
and tissues of an individual acting mostly commensal or symbiotic [1]. The microbiota
includes bacteria, archaea, fungi, and viruses, from which bacterial microbiota is the best
characterized and most intensively studied component. While the human body hosts
many trillions of bacteria, the gastrointestinal tract is the most densely colonized area, with
bacterial concentrations ranging from 101–103 bacteria/gram tissue in the upper intestine to
1011–1012 bacteria/gram tissue in the colon [2,3]. Analyzing the ratio of intestinal bacterial
phyla, Firmicutes (species, e.g., Clostridiales, Lactobacillus, Enterococcus) and Bacteroidetes
(species, e.g., Bacteroides) make up the majority, with less dominance of the other phyla
Actinobacteria (Bifidobacteria), Proteobacteria (Escherichia coli), Fusobacteria, and Verrucomi-
crobiota [4–6]. In recent years, the human microbiota, especially the intestinal microbiota,
has been recognized as having a major impact on human health, contributing to different
physiological processes. The intestinal bacterial community is thought to participate in the
metabolic, biochemical, and immunological balance of the host organism (summarized in
Figure 1) [7–10].

Since the development of the human gut microbiota begins probably already be-
fore birth, it can be assumed that maternal and gestational factors and environmental
exposures during pregnancy could affect healthy development and composition of fe-
tal/neonatal/infant gut microbiota and thereby offspring’s health issues [11–13].

The focus of this review, therefore, is to summarize the main characteristics of maternal
gut microbiota and its possible consequences on fetal development and offspring’s health.
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Besides genetic and environmental factors, nutrition is a key determinant factor affecting
the composition and function of gut microbiota; therefore, we will discuss the effects of
maternal dietary factors and modulation possibilities on pregnancy microbiota [14,15].
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2. Maternal Gut Microbiota

Pregnancy represents a challenging condition for the maternal organism. To meet
fetal requirements and thereby ensure self-integrity, it must undergo several profound
physiological changes. Maternal adaptation involves primarily endocrine, metabolic, and
immunological changes. During pregnancy, the notable rise of progesterone, estrogen, and
thyroid hormone levels is well known. Metabolic alterations focus on the expanding neona-
tal nutrient and energy demand: food intake, insulin secretion, and lipogenesis will increase
significantly, resulting in a metabolic syndrome-like condition [16]. Immunological changes
are referred to as maternal–fetal immune tolerance: very special and tight regulation of
tolerogenic and proinflammatory immune responses. These immune mechanisms enable
successful implantation, along with sufficient placentation on the one hand and restoration
of maternal antimicrobial immunity on the other [17,18]. In the periphery, healthy human
pregnancy is characterized by a mild systemic inflammatory response [19,20].

In the last decade, it has become obvious that pregnancy affects the composition of
the maternal gut microbiota, indicating another major pregnancy-related maternal change
with possible consequences for fetal/neonatal development. While in the first trimester of
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pregnancy, the intestinal microbiota is comparable to that of healthy, nonpregnant women,
the composition of the gut microbial community changes significantly from the first to the
third trimester [21,22]. From the second trimester onwards, Proteobacteria, Bifidobacteria,
and lactic-acid-producing bacteria (some specific Lactobacillus strains) increase parallel with
the reduction of the number of butyrate-producing bacteria [7]. Overall, the gestational
gut microbiota is characterized by a low alpha diversity index (intraindividual bacterial
diversity) and a high beta diversity index (interindividual bacterial diversity), with the
most prominent changes occurring mainly in the third trimester [11,23–25]. Intestinal
microbiota transfer from pregnant women to germ-free mice revealed functional conse-
quences of changes in gut microbiota during pregnancy [22]. Microbiota-transplanted
mice gained weight and showed impaired glucose tolerance associated with insulin re-
sistance [22]. These data suggest that the described changes in the intestinal microbiota
during pregnancy might contribute to the well-known metabolic changes observed in
pregnant women. Moreover, an increased Proteobacteria ratio is thought to stimulate the
immune system, leading to enhanced local inflammatory responses. Inflammation, in
turn, increases gut mucosa permeability and enables bacterial translocation [22]. This,
at least in part, provides a possible reason for the mild systemic inflammation observed
in the peripheral blood of healthy pregnant women [19,20]. It should be mentioned that
changes in maternal microbiota composition could be influenced by many patient-related
factors (maternal diet, maternal BMI before conception, weight gain during pregnancy, and
metabolic diseases) and also by population level (ethnicity, geographic, and environmental
factors) [7,12–14,19,25–35].

3. Establishment of the Maternal–Fetal Gut Microbiota Axis

The impact of maternal gut microbiota on fetal growth and development represents
a major field of investigations and theories. Two main distinct pathways were proposed
on how gestational intestinal microbiota could exert significant effects on the fetal side
(summarized in Figure 2).
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3.1. Placental Microbiota

One of the theories suggests direct and beneficial effects of bacterial presence assuming
colonization of fetal tissues by maternal microbes in utero, long before birth [11]. Prenatal
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microbial transport from the maternal gastrointestinal tract to the fetus is only a hypotheti-
cal consideration requiring direct evidence in the future. According to actual presumptions,
microbes at the maternal site are translocated somehow from the intestinal epithelium
into the bloodstream and then delivered to the placenta. The bacterial transition could be
facilitated through alteration of maternal gut microbiota composition during pregnancy.
The increasing abundance of the phylum Proteobacteria during pregnancy is thought to
be associated with proinflammatory changes (increased serum endotoxin and zonulin
concentrations, as well as increased fecal calprotectin levels) in the bacterial environment,
enhancing mucosal permeability and microbiota translocation (cellular uptake and occur-
rence of intestinal microbiota members in extraintestinal tissues and maternal circulation
probably resulting in colonization of fetal gut in utero) [36,37].

Regarding the origin of neonatal gut microbiota, there was a consensus about its
postnatal establishment until the last two decades. The uteroplacental unit was considered
as being sterile. Bacterial occurrence was thought to be associated with colonization and
subsequent infection mostly through the ascending way, leading to chorioamnionitis in
most cases. The dogma of the “sterile womb” was widely accepted with the consideration
that this sterile environment would protect the fetus from infections [13,38,39].

Over the last two decades, noncultivational, PCR, and DNA sequencing-based data
have emerged, supporting new theories about maternal–fetal transmission of microbes in
utero [13,40–48]. Convincing animal studies have further supported this route of transmis-
sion. Increased bacterial translocation from the gut to extraintestinal tissues was observed
in pregnant and lactating mice [49]. Orally administered, foreign bacteriophage DNA to
mice was shown to persist in the gastrointestinal tract to penetrate the intestinal epithelium
and could be discovered in fetuses and newborn animals through the transplacental path-
way [50,51]. Moreover, orally inoculated pregnant mice with genetically labeled E. faecium
strain transmitted labeled bacteria to the amniotic fluid and to the fetal gut during preg-
nancy [52,53]. Interestingly, the murine fetus seems to be exposed to viable and cultivable
bacteria in midgestation and to noncultivable bacteria in late gestation [47].

The human placental microbial community was found to be dominated by the major
phylum Proteobacteria. The composition was comparable to the oral microbiota, with the
species of Prevotella and Neisseria suggesting the hematogenic route of seeding from the oral
cavity to the placenta [46]. It is of note that during pregnancy, the viable oral microbiota
increases in number with the parallel rise of the parodontopathogenic strains Porphyromonas
gingivalis and Aggregatibacter actinomycetemcomitans in the subgingival plaque [54,55]. In
pregnant mice, oral infections with Campylobacter rectus and Porphyromonas gingivalis or
Fusobacterium nucleatum resulted in inflammatory placental and fetal complications [56–58].
In humans, pregnant women diagnosed with periodontal disease showed an increased
risk of pregnancy complications. This observation could be interpreted as the result of an
enhanced bacterial transition from the inflamed oral mucosa with increased permeability
to the uteroplacental unit [59–62].

Microbiota studies were not only limited to the investigation of the placenta but
reported physiological bacterial presence in the amniotic fluid, in the umbilical cord, fetal
gut, and also in the meconium [13,21,39,43,63–65]. So far, all of them were considered
sterile before.

With the increasing number of conducted studies suggesting in utero fetal exposure
to maternal microbiota, concerns have been raised regarding the interpretation of their
obtained results [66]. Possible contamination of samples with low microbiota density is
a major issue with data distortion potential. Avoiding contamination is very challenging
since multiple sources exist. For example, laboratory reagents (nucleic acid extraction
kits and PCR reagents) can harbor low concentrations of bacterial DNA, and samples
may be contaminated at the time of or even before collection [67–69]. Using the most
appropriate analysis platform is also another important issue [70]. Whether in utero
exposure of fetal tissues to maternal microbiota members exists is still controversial, and
there is disagreement even among the experts in the field.
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Another argument against the in utero colonization hypothesis is the fact that germ-
free animals are usually generated from non-germ-free pregnancies by embryo transfer
following hysterectomy. This could not be the case if mammalian fetuses were already
contacted by maternal microbiota members during pregnancy [39].

Usually, the intestinal epithelial barrier itself acts as a physiological barrier, even for
the entry of members of the harmless microbiota. Dendritic cells (DCs) can take up bacteria
intracellularly from the gut lumen and transport them first to the lymph nodes locally. From
here, the bacterial spread can also continue widely, e.g., into the bloodstream, resulting
finally in transplacental trafficking [71–73]. This concept of hematogenic maternal intestinal
microbiota translocation to the fetus was strengthened by mouse experiments, where
increased bacterial sequestering in murine mesenteric lymph nodes was demonstrated [49].

Once bacteria arrive at the fetal site, they probably get noticed. One of the most possible
ways of recognizing foreign structures is through toll-like receptors (TLRs). Human TLRs
represent a family of 10 transmembrane proteins. They are located either on the cell surface
or in intracellular vesicles of primary sentinel cells of innate immunity (macrophages,
dendritic cells, and mast cells) in most human tissues [74]. TLRs function as conserved
innate immune receptors, recognizing pathogen-associated molecular patterns (PAMPs)
that are broadly shared by microbes but not by the host itself. There are different types
of TLRs for the recognition of distinct bacterial structures resulting in classical immune
activation and inflammatory response directed against the pathogen [75–77].

Despite comparable expression levels of TLRs on neonatal monocytes, the extent of
activation of the TLR pathway is considerably reduced compared to adults [77]. Reduced
levels of proinflammatory cytokines produced by neonatal monocytes, limited expression
of TLR-associated intracellular signaling proteins, and impaired phosphorylation activity
of TLR-induced protein kinases suggest immature innate immunity and ongoing immune
development in the perinatal period [78,79]. Within this immune milieu, fetal recognition of
maternally derived microbiota members exposed in utero would likely result in inadequate
immune response favoring immune tolerance of the translocated bacteria. Supporting
this concept, recent studies revealed the presence of effector memory T cells in second-
trimester fetal tissues [68,80]. However, it should be mentioned again that the concept
of existing prenatal microbiota before birth is a matter of debate, and it is not widely
accepted. Further studies are needed in the future to clarify the possibility of maternal–fetal
microbiota exchange.

3.2. Effects of Microbiota-Derived Molecules

The second possible pathway of regulating fetal growth and development through the
maternal intestinal microbiota is indirect. It is thought to be mediated by microbiota-derived
metabolites that are transmitted transplacentally to the fetus [81–84]. These soluble factors
are either synthesized endogenously by members of the microbiota or are metabolites of
compounds that are taken up from the intestinal lumen.

One of the most convincing proofs of this concept comes from animal studies. Re-
versible colonization of germ-free murine pregnant females with a nonpathogenic E. coli
strain resulted in changes in the intestinal innate immune system development of the
offspring [85,86]. Proliferation of innate lymphoid cells type 3 (ILC3s), an innate cell popu-
lation critical for intestinal barrier functions and host defense, was observed, suggesting
maternal microbiota-derived aryl hydrocarbon receptor (AhR) ligands [87]. Moreover,
maternal colonization alters the gene expression profile of the offspring’s gut epithelium.
Expression of genes encoding homeostasis, integrity, and differentiation (upregulated gene
networks for cell division and differentiation, mucus and ion channels, metabolism of
xenobiotics, bile acids, complex lipids, and sugars) was modulated in small intestinal
epithelial cells of offspring born to mothers who had experienced reversible colonization
during pregnancy [86].

SCFAs are considered to be the main soluble end product of bacterial metabolism, with
a major impact on an individual’s health issues. They are taken up by the gut epithelium
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and transported to the tissues via circulation [88]. During pregnancy, SCFA concentrations
(e.g., levels of acetic acid, propionic acid, butyric and caproic acid) in the cecum increase
significantly [89]. The dominant SCFA in both pregnant women and their babies is acetic
acid [90]. SCFAs act as signaling molecules through G-protein receptors (GPR), mainly
through GPR41 and GPR43 [88]. SCFAs from the maternal gut microbiota can be sensed
through uteroplacental GPR41 and GPR43 receptors [91,92]. A series of murine studies
demonstrated the beneficial effects of SCFAs during embryo development [91–94]. SCFAs
are responsible for increasing free fatty acids’ oxidation and mitochondrial activity in mus-
cle and brown adipose tissue [95]. Their beneficial effect on metabolism, mainly through the
control of insulin levels, was also observed in the fetus [93]. SCFAs have a major impact on
the developing immune system, especially on immune regulatory mechanisms. They may
control and balance immune responses, thereby preventing exaggeratory inflammation
but also autoimmunity. Regulatory T-cell (Treg) proliferation, differentiation, cytokine
synthesis, Foxp3 expression, and anti-inflammatory activities were found to be promoted
by SCFAs [88,94,96].

Another suggested major function of SCFAs in the fetus is the influence of the de-
velopment of the nervous system through GPR41 signaling [93]. Enhanced maternal gut
microbiota occurs at the third trimester of pregnancy, and this is also a critical period
for brain development, such as synaptogenesis, myelination, and development of some
specific areas [97–99]. Increased microbiota-derived metabolites, such as SCFAs, could
have a beneficial effect on neuronal development [99].

The integrity of the intestinal barrier can also be regulated by SCFAs, mainly through
the transcriptional regulation of tight junction-related proteins [100].

Although there is no scientific consensus about whether the developing fetus and the
placenta are sterile, besides alive bacteria, many endogenous microbial compounds (e.g.,
lipopolysaccharide (LPS) or flagellin) can reach fetal tissues and get recognized by innate
pattern recognition receptors, such as TLRs, mentioned above. Murine experiments re-
vealed continuous penetration of different tissues by bacterial structural elements required
for host immune system maturation. In mice, activated T cells can be detected already
in the fetal gut, activation is supposed to be the result of antigen recognition from the
maternal gut microbiota ([101–105]. Therefore, it can be hypothesized that even without
bacterial trafficking, maternal gut microbiota compounds can reach fetal compartments
and provoke recognition. The primitive immune system requires interaction with bacteria
or at least bacterium-derived molecules in order to learn to distinguish the microbiota from
pathogen types in the future [106–109].

4. Effects of Maternal Nutritional Factors on Gut Microbiota and Offspring’s Health

According to epidemiological, clinical, and basic science studies, the offspring’s later
health issues can be linked, at least partly, to adverse preconceptional, gestational. and post-
natal factors, mainly of maternal origin [110]. Regarding the gut microbiota composition
and function, dietary factors could have the most determining potential (Table 1) [111].

4.1. High-Fat Diet and Maternal Obesity

Maternal diet type, weight, and nutritional status have an important effect on the
developing embryo [112]. Maternal influence on the child’s well-being could be exerted via
the intestinal microbiota during pregnancy. This is thought to be regulated at least partly
by nutritional factors [113]. The typical Western diet consists of excessive processed foods,
dietary fat, and sugars. Such a diet promotes excess weight gain and a dysbiotic gut and is
associated with adverse maternal and child health outcomes [113–115]. There are numerous
fetal developmental characteristics associated with maternal obesity: fetal overgrowth,
macrosomia, congenital defects, stillbirth, decreased neonatal Apgar score, preterm delivery,
child morbidity, respiratory complications, and neonatal mortality [116–120].

It is well known that the intestinal microbiota is altered profoundly in obese individu-
als. First, there is an increased abundance of the phylum Firmicutes over Bacteroidetes, with
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a reduced microbial diversity [121,122]. Similar findings were observed in rats when diet-
induced obesity modulated gut microbiota composition with a lower relative abundance
of fecal Bifidobacterium spp. and higher relative abundance of Clostridium Clusters XI and
I [123]. Moreover, murine experiments revealed that the obese phenotype can be trans-
ferred to lean germ-free mice via fecal microbiota transplantation [122]. Pregnancy itself
further alters the gut microbiota. Reduced numbers of Bifidobacterium and Bacteroides and
increased numbers of Staphylococcus, Enterobacteriaceae, and Escherichia coli were detected
in overweight compared with normal-weight pregnant women [28,35,120,122]. These
changes in microbiota are thought to be associated with a reduction in butyrate production,
a reduction in hydrogen and methane production, and an increase in mucus degradation
and local inflammation [124]. Maternal adherence to the dietary reference intake of fat
and fiber during pregnancy is thought to be associated with beneficial gut microbiota
composition changes, such as higher gut microbiota richness [125]. Maternal microbiota
alterations may be transferred to the infant already in utero and during birth. Infants
born to obese mothers display a different bacterial microbiota pattern than those born to
lean mothers. These differences last at least one year, showing the long-term impact of
maternal obesity on offspring’s intestinal microbiota [30,41,120,126]. Similar findings were
observed in a primate model, where a high-fat maternal diet (consisting of 36% fat from lard,
butter, animal fat, and safflower oil) modulated the offspring’s intestinal microbiome in
Japanese macaques [127]. The main changes in humans are differences in the abundances
of Bacteroides spp., Enterococcus spp., Acinetobacter spp., Pseudomonas spp., Blautia spp.,
Eubacterium spp., Oscillibacter spp., and Faecalibacterium spp. [43,120,126,128–130]. There
are suggestions that a higher abundance of Lactobacillus spp. and a lower abundance of Bac-
teroides spp. The early infant gut microbiota may predict the risk of obesity and overweight
in childhood [131]. All these findings support the concept of a vicious intergenerational
circle of transferring microbiota patterns related to excessive weight gain and associated
unfavorable metabolic development [102].

Gestational Diabetes Mellitus: A Special Case

Gestational diabetes mellitus (GDM) is a disease of abnormal glucose tolerance result-
ing from insulin resistance and showing its first occurrence during pregnancy. Diagnosis of
the disease primarily based on the oral glucose tolerance test (OGTT) carried out between
24 and 28 weeks is the gold standard [132].

Obesity and gestational GDM share similar metabolic disorder phenotypes. One of
the main suggested mechanisms that could explain insulin resistance and the development
of GDM in pregnancy is an unhealthy diet with high fat, high sugar, and low fiber intake
characteristics [88,133–135]

GDM contributes to changes in the composition of intestinal microorganisms, their
diversity, and disturbed SCFA proportions. Distinct microbiota changes can be observed in
each trimester. There are some investigations focusing on the dynamic changes of maternal
gut microbiota during pregnancy and progression to GDM [136]. The microbiota profile
during pregnancy could be a biomarker for early detection of GDM and predict progression
of the disease [136,137]. A positive correlation was found between the Ruminococcaceae
family and glucose level, with a higher odds ratio for diagnosis of GDM [137]. The main
findings regarding microbiota changes were: increased relative abundance of the families
Ruminococcaceae, Lachnospiraceae, and Enterococcaecea; enrichment of Bacteroides, Blautia,
Collinsella, and Eggerthella bacteria; decrease in the levels of Faecalibacterium; and decrease
in alpha diversity in the GDM groups compared to healthy pregnancy [136]. The func-
tional capacity of the GDM gut microbiota revealed an association with enhancement of
membrane transport of sugars, oxidative stress responses, branched-chain amino acid
transport, and decreased butyrate biosynthesis [136,138]. A possible influence of GDM
on fetal/neonatal microbiota was also studied. The placental microbiota from women
with GDM harbor lower levels of Pseudomonadales order and Acinetobacter genus. More-
over, decreased placental Acinetobacter was associated with a more adverse metabolic and
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inflammatory phenotype [44]. The meconium microbiota of offspring of women with
GDM showed lower alpha diversity and increased E. coli and Lactobacillus abundance [139].
Meconium microbiota of infants born to mothers with diabetes is enriched for the same
bacterial taxa as those reported in the intestinal microbiota of adult patients [140]. Ana-
lyzing microbiota from different body sites immediately after birth varied by the same
trend between the maternal and neonatal microbiota, suggesting the intergenerational
concordance of microbial variations observed in GDM [140].

4.2. Vegetarian Diet

Plant-based and vegetarian eating patterns are very popular nowadays. This diet type
is thought to lower the risk for obesity, cardiovascular disease, cerebrovascular disease, dia-
betes mellitus, and chronic kidney disease [141]. Vegetarian dietary patterns are thought to
alter gut microbiota, with beneficial changes for the host (increased SCFAs synthesis, higher
abundance of Bifidobacteria, Lactobacilli, Roseburia, Ruminococcus, decrease in Proteobacteria
and Firmicutes for instance) [142,143]. Limited information is available regarding gut mi-
crobiota of vegetarian pregnant women. One study found no difference in alpha diversity
but reduced beta diversity of intestinal microbiota in pregnant vegetarians compared to
omnivorous pregnant women [144]. There were also differences in the relative frequency
of several genera in those on a vegetarian diet (decrease in Collinsella and Holdemania and
increases in Roseburia and Lachnospiraceae) [144]. These changes could result in higher SCFA
levels associated with healthier gut mucosa and a lower degree of inflammation. No data
exist about the impact of gut microbiota of pregnant vegetarian women on the health issues
of their offspring [144].

4.3. Artificial Sweeteners

In the United States, non-nutritive sweeteners (e.g., sucralose, aspartame, acesulfame-
K) are very popular in the daily diet. This is probably due to the growing awareness of
sugar’s negative impact on health effects [33,145]. Although several artificial sweeteners
almost do not contact the colonic microbiota itself, they seem to change the composition of
the gut bacterial community [33]. Based mainly on animal experiments, artificial sweeten-
ers have been shown to alter gut microbiota composition, affecting certain bacterial taxa
of adults, as well as their offspring (increase in Bacteroides, Lactobacillus, and Clostridiales,
depletion of Akkermansia muciniphila). Furthermore, they increase body weight in parallel
with activation of energy metabolism bacterial genes involved in carbohydrate absorption,
glycolysis, and sugar transport [146–151]. Bacterial proinflammatory mediator genes were
also shown to increase [147]. Akkermansia muciniphila, found depleted in the microbiota after
sweetener administration, is a useful bacterium associated with normal weight, balanced
serum glucose levels, and intestinal anti-inflammatory effects [33,152–154]. Meanwhile,
human results also support the concept of adverse effects of artificial sweeteners on off-
spring’s gut microbiota. Regular intake of artificial sweeteners of women resulted in a
higher BMI of one-year-old infants, suggesting that an altered infant gut microbiota could
partly account for it since differences of some microbiota-associated metabolites could favor
weight gain [155].

4.4. Alcohol

Alcohol consumption during pregnancy and its possible consequences on the es-
tablishment of intestinal microbiota is, besides artificial sweeteners, another less studied
factor. It is well known that regular gestational alcohol use during pregnancy has also been
associated with various disorders in neonates [156,157]. Chronic and significant alcohol
consumption affects gastrointestinal mucosal integrity and consecutively gut microbiota
composition [158–160]. It was shown to be associated with decreased intestinal microbiota
members such as Roseburia, Faecalibacterium, Blautia, Bacteroides, and Lachnospiraceae, low
levels of butyrate-producing Clostridiales, Bifidobacterium, and Lactobacillus, increased gut
permeability, and inflammation [161–164]. This different microbiota pattern results in
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enhanced alcohol metabolism and local inflammation [161]. In a study with pregnant
mice, reduced Bacillus bacteria were observed after ethanol exposure [165]. Little is known
about the impact of gestational alcohol consumption on pre- and neonatal microbiota. In
one human study, in newborns with mothers admitting alcohol use during pregnancy, an
increased ratio in the Megamonas genus was observed in the gut microbiota [166]. Interest-
ingly, Megamonas was shown to be associated with major depressive disorders, and it is well
known that maternal alcohol use affects newborns’ cognitive and behavioral development
such as depression and autism [167–169].

Table 1. Effects of maternal dietary factors on offspring’s microbiota composition.

Author, Year Study Population Investigated Fetal
Side Microbiota Method Main Findings

Maternal High-Fat diet, Obesity

Collado et al., 2010
[30]

Infants of obese
mothers (n = 16) vs.

infants of
normal-weight mothers

(n = 26)

Infant fecal samples at
1 and 6 months of age

FISH
qPCR

Higher weights of mothers were
correlated with higher
concentrations of Bacteroides,
Clostridium, and Staphylococcus,
and lower concentrations of the
Bifidobacterium group prevalence
of Akkermansia muciniphila,
Staphylococcus, and Clostridium
difficile groups were lower in
infants of normal-weight
mothers

Galley et al.
2014 [126]

Children of obese
(n = 26) vs. nonobese

mothers

Fecal samples from
children 18–27 months

of age

16S ribosomal
RNA (rRNA)
sequencing)

Effects of maternal obesity on
offspring’s gut microbiota were
stronger among children of
mothers of higher
socioeconomic status
Higher alpha and beta diversity
in children of obese vs.
nonobese mothers
Children born to obese vs.
nonobese mothers had greater
abundances of Parabacteroides
spp. and Oscillibacter spp., as
well as lower Blautia spp. and
Eubacterium spp.

Mueller et al, 2016
[128]

Neonates (n = 18) born
vaginally (5 to

overweight mothers),
neonates (n = 56) by

elective C-section (26 to
overweight mothers)

Second-day fecal
samples from neonates

16S ribosomal
RNA (rRNA)
sequencing

Compared to neonates delivered
vaginally to normal-weight
mothers, microbiota of neonates
born to overweight or obese
mothers were enriched in
Bacteroides and depleted in
Enterococcus, Acinetobacter,
Pseudomonas, and
Hydrogenophilus

Gestational Diabetes Mellitus

Hu et al., 2013
[140]

Newborns (n = 23): 5
from mothers with DM,

5 from mothers with
GDM, 13 from mothers

with no diabetes

Meconium samples
16S ribosomal
RNA (rRNA)
sequencing

The phylum Bacteroidota and the
genus Parabacteriodes were
enriched in the meconium in the
DM group compared to the
nondiabetes group
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Table 1. Cont.

Author, Year Study Population Investigated Fetal
Side Microbiota Method Main Findings

Bassols et al., 2016
[44,155]

Placentas from women
with GDM (n = 11) and

from control women
(n = 11)

Placenta
16S ribosomal
RNA (rRNA)
sequencing

Pseudomonadales and
Acinetobacter showed lower
relative abundance in women
with GDM compared to control
Increase in placental
Acinetobacter ratio was associated
with a more adverse metabolic
and inflammatory phenotype

Wang et al., 2018
[139]

Pregnant women and
their neonates with and

without GDM

Oral, pharyngeal,
meconium, and

amniotic fluid samples

16S ribosomal
RNA (rRNA)
sequencing

In the amniotic fluid of the GDM
group, a lower relative
abundance of Anoxybacillus and
a higher relative abundance of
Corynebacterium were detected
In the meconium of the GDM
group, a lower relative
abundance of Corynebacterium
and a higher relative abundance
of Enterobacter were detected
Microbes varied by the same
trend between the maternal and
neonatal microbiota

Vegetarian Diet

None

Artificial Sweeteners

Laforest-Lapointe
et al., 2021

[155]

Infants (n = 100)
selected based on

maternal sweetener
consumption during

pregnancy
(50 nonconsumers and

50 daily consumers)

Infant fecal samples at
3 and 12 months of age

16S ribosomal
RNA (rRNA)
sequencing

Maternal sweetener
consumption did not differ
between clusters reflecting the
maturation of gut microbiota but
was associated with
community-level shifts in
infant’s gut bacterial taxonomy
structure and depletion of
several Bacteroides sp. in a
certain cluster
Nine bacterial taxa from
Bacteroides sp. were enriched or
depleted at high levels of
maternal sweetener
consumption at 12 months
of age.
Daily maternal sweetener
consumption is associated with
higher infant weight and altered
microbiota composition

Alcohol Consumption

Wang et al., 2021
[166]

Pregnant women and
their neonates with

(n = 10) and without
(n = 19) alcohol
consumption

Fecal samples of
newborns within 48 h

16S ribosomal
RNA (rRNA)
sequencing

A positive relationship showed
between Megamonas and
newborns with maternal alcohol
consumption
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5. Modulation of Maternal Gut Microbiota for Offspring’s Benefits

Given the proven impact of maternal microbiota on fetal health and development
perinatally and postnatally, modulation of gestational dysbiosis could have prophylactic
potential regarding noncommunicable diseases such as obesity, immunoinflammatory
disorders, and neurocognitive complications. Since modification of the microbiota can be
carried out easily, prenatal maternal oral pro- and/or prebiotic treatment could represent a
safe, effective, and cheap interventional tool for disease prevention of the offspring.

5.1. Probiotics

Probiotics are live, beneficial microorganisms found in certain foods and supplements.
They are thought to help to restore the physiological balance of the intestinal microbiota
community. Most probiotic intervention studies are restricted to the use of Lactobacilli and
Bifidobacteria strains. The beneficial effects of these strains are complex. They promote
colonization resistance, limit mucosal adherence of pathogens, strengthen mucosal integrity,
and enhance local immune defense, thereby reducing inflammation [170].

Most studies in the field of probiotics in pregnancy have focused on either the clinical
outcome in pregnant women or in their offspring. Controversy exists regarding the pre-
ventive and useful effects of probiotics on the development of immune-mediated allergic
disorders. While several clinical trials revealed the beneficial effect of maternal probiotics
on lowering the risk of allergic conditions [171–182], others failed to confirm an advantage
of probiotic treatment [183–186]. Regarding obesity, perinatal probiotic treatment could
modify the growth pattern of the child by restricting excessive weight gain during the first
years of life. Probiotic effects on GDM occurrence and symptoms have been intensively
studied, with promising results [183–190].

Limited data are available on the mechanism of action and on the effect of probiotics
on the maternal–fetal gut microbiota axis. There is good evidence that maternally derived
probiotic bacteria can colonize the gastrointestinal tract of infants and persist there for
1–2 years [176,181,191–196]. However, another study revealed that the probiotic strain
Lactobacillus rhamnosus GG increased the infant gut colonization by Bifidobacterium spp, but
not by itself when administered to mothers in late pregnancy. This suggests that probiotics
may promote fetal seeding with other bacteria, probably through the action of bacterial
metabolites [197]. There is also the possibility that different probiotic bacteria could have
different abilities to be transferred from the mother to the infant [173]. Furthermore,
maternal dietary probiotic intake led to the modulated expression of TLR-related genes
in the placenta and fetal intestinal tract, interfering thereby with fetal immune system
development [175]. Since there is no consensus about the real impact of maternal probiotic
intake on fetal gut microbiota composition and health issues, further investigations are
needed [169].

5.2. Prebiotics

Prebiotics are food compounds that promote the growth and/or activity of beneficial
microorganisms. The most common example is oligosaccharides resistant to digestion
in the small intestine. Modulating maternal gut microbiota through the administration
of prebiotics during pregnancy could be a safer alternative than probiotic consumption,
as suggested by animal experiments [198]. In a mouse model of atopic dermatitis, pre-
natal maternal supplementation with a fructo-oligosaccharide modulated the intestinal
microbiome of the offspring and suppressed the increase in clinical skin severity score and
scratching behavior in offspring [199]. Prebiotic oligofructose treatment of diet-induced
obese pregnant rats was found to reduce maternal energy uptake, reduce gestational weight
gain, and prevent increased adiposity in dams and their offspring [122]. A high-fiber diet of
mice led to marked suppression of allergic airways disease in the offspring’s, which could
be mediated in utero via modulation of maternal gut microbiota [82]. Only few studies
exist reporting offspring’s modulated gut microbiota and health benefits from maternal
prebiotic intake in mice [198–202].
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6. Conclusions

Studies of germ-free animals revealed that the absence of a healthy microbiota is
associated with deficits in immune and neuronal development, impaired stress adaptation,
and metabolic dysfunction later in life [83,86,203,204]. This observation was supported
by plenty of human studies describing altered microbiota composition and dysbiosis as
possible etiologic factors of several noncommunicable diseases in humans. Thus, the
establishment and maintenance of a healthy microbiota are crucial for human health.
Among the human microbiota at different body sites, the intestinal microbiota is thought to
be the most important concerning health effects.

The main source of a newborn’s intestinal microbiota is the maternal gut. During the
last decade, it has become obvious that maternal commensal microbes or their products are
transferred to the fetus through the placenta in utero and/or postnatally. There they affect
the composition of the fetal/neonatal intestinal microbial community. The establishment of
a healthy early gut microbiota in life has long-lasting effects on the offspring’s metabolism
and immune system and lowers the risk of developing a range of diseases later in life.
Therefore, it is conceivable that any factors that affect the establishment of a healthy
gut microbiota in the newborn/infant can potentially have a long-term impact on the
offspring’s health. Maternal dietary factors could have a significant impact on the maternal–
fetal microbiota axis, and modulation of dysbiotic gut microbiota may be beneficial both
for the mother and also for her baby.

7. Future Directions

Despite convincing results discussed in this review, knowledge on some critical points
and major events is still missing in this field. The possibility of an in utero translocation
of maternal gut microbiota to the fetus should be further investigated, and phases of the
process should be determined. Further investigations are needed to explore the complex
association between early gut microbiota composition and its long-term effects on adult
health issues. Determination of key bacteria or bacterial shifts in the background of certain
noncommunicable diseases would be a major step forward.

Beneficial effects of prenatal pro- and prebiotic treatment on offspring’s health were
also shown, although it requires detailed studies regarding the type, the dosage, and the
timing of pro-/prebiotic intake during pregnancy. Furthermore, there are some investi-
gational microbiome therapeutics, which may have preventive potential on the maternal
transfer of dysbiotic microbiota to the fetus/newborn.

Healthy maternal diet has a significant impact on healthy maternal gut microbiota,
which, in turn, affects the formation of the fetal/newborn intestinal microbiota. However,
this is only the beginning. Maintenance of eubiosis is critical for long-lasting beneficial
effects in terms of preventing noncommunicable diseases. As postnatal development of the
child proceeds, the role of the mother’s bacteria becomes less important, and environmental
factors occur. However, a good start in life ensured by the maternal gut microbiota remains
always a major health determining factor.
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