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ARTICLE

Mechanistic Models as Framework for Understanding 
Biomarker Disposition: Prediction of Creatinine-Drug 
Interactions

Daniel Scotcher1 , Vikram Arya2 , Xinning Yang2, Ping Zhao2,5, Lei Zhang3 , Shiew-Mei Huang2 , 
Amin Rostami-Hodjegan1,4  and Aleksandra Galetin1,*

Creatinine is widely used as a biomarker of glomerular filtration, and, hence, renal function. However, transporter-mediated 
secretion also contributes to its renal clearance, albeit to a lesser degree. Inhibition of these transporters causes transient 
serum creatinine elevation, which can be mistaken as impaired renal function. The current study developed mechanistic 
models of creatinine kinetics within physiologically based framework accounting for multiple transporters involved in creati-
nine renal elimination, assuming either unidirectional or bidirectional-OCT2 transport (driven by electrochemical gradient). 
Robustness of creatinine models was assessed by predicting creatinine-drug interactions with 10 perpetrators; performance 
evaluation accounted for 5% intra-individual variability in serum creatinine. Models showed comparable predictive perfor-
mances of the maximum steady-state effect regardless of OCT2 directionality assumptions. However, only the bidirectional-
OCT2 model successfully predicted the minimal effect of ranitidine. The dynamic nature of models provides clear advantage 
to static approaches and most advanced framework for evaluating interplay between multiple processes in creatinine renal 
disposition.

Serum creatinine is a widely used clinical biomarker of glo-
merular filtration rate and overall renal function. Current 
guidelines for chronic kidney disease and acute kidney in-
jury define these conditions partly through serum creatinine 
measurements.1,2 In the case of chronic kidney disease, 
serum creatinine is used to calculate estimated glomerular 
filtration rate (eGFR) with equations validated against exog-
enously administered filtration markers (e.g., iothalamate).3,4 

The eGFR often guides optimal drug dose adjustments for 
patients with impaired renal function.5

Creatinine is mostly unbound in plasma,6 supporting the 
use of its plasma clearance as a glomerular filtration rate 
(GFR) marker. Despite the high correlation between GFR and 
creatinine renal excretion clearance, the latter exceeds the 
former at the population level, indicative of active secretion 
mediated by transporters expressed in the proximal tubule 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Serum creatinine can be elevated by drugs that inhibit 
renal transporters that can be incorrectly interpreted as 
kidney injury. In vitro data suggest that creatinine trans-
port by OCT2 is driven by electrochemical gradient, 
supporting bidirectional mechanism of OCT2. Data on 
quantitative contribution of individual transporters to cre-
atinine renal disposition are inconsistent.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Can mechanistic creatinine model enable prediction 
of creatinine-drug interactions? Is bidirectional transport 
of OCT2 an important consideration for creatinine renal 
disposition?

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  Physiologically based creatinine model for prediction 
of creatinine-drug interactions (steady-state and time 
course). The most comprehensive performance evalua-
tion of static and dynamic creatinine models, with consid-
eration of intra-individual variability in serum creatinine.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,  
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  Recommendation to consider bidirectional trans-
port mechanism of OCT2 when assessing OCT2/
MATE-mediated interactions. Physiological structure of 
creatinine model allows extension to patient populations 
and investigation of the intra-individual variability in serum 
creatinine.
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cells.7,8 Net secretion represents on average 9% of creati-
nine renal excretion clearance (CLR) based on inulin as a GFR 
marker in subjects with normal renal function, although this 
contribution varies widely (2–15%) between studies.8 Data 
based on iothalamate and iohexol as alternative GFR markers 
suggest up to 24% and 38% contribution of active secretion 
to creatinine clearance, respectively.9 Current in vitro data on 
creatinine specificity for renal transporters are inconsistent, 
with involvement of organic cation transporter 2 (OCT2) and 
organic anion transporter 2 (OAT2) indicated on the basolat-
eral membrane, and multidrug and toxin extrusion (MATE)1 
and MATE2-K transporters, on the apical (luminal facing) 
membrane of the proximal tubule cells (Table S1). In addition, 
involvement of OAT4 and OCT3 has been proposed.10

The use of creatinine clearance (or its estimate based 
on serum concentration) as biomarker of renal function as-
sumes a parallel change in transporter-related secretion and 
glomerular filtration in the event of kidney injury. The above 
assumption can be violated when the transporter activities 
are modulated for reasons not related to kidney injury re-
sulting in false impression (based on creatinine clearance) of 
renal injury. Several drugs have been associated with tran-
sient elevations in serum creatinine attributed to inhibition of 
transporters involved in creatinine secretion (Figure 1), with 
no serious adverse renal events. Although average increases 

in serum creatinine as a result of renal transporter inhibition 
typically fall below the clinical threshold for acute kidney in-
jury,1 this may not be the case for some individuals. Potential 
for misinterpretation of elevated serum creatinine as a loss of 
renal function in the patient highlights importance of in-depth 
understanding of transporter-mediated creatinine-drug inter-
actions, and ability to predict these a priori.

The physiologically-based pharmacokinetic (PBPK) mod-
eling approach is widely used for quantitative prediction of 
drug-drug interactions (DDIs).11–13 PBPK models for DDI 
predictions rely upon quantitative translation of in vitro data 
through use of in vitro-in vivo extrapolation (IVIVE). Examples 
of creatinine models and their application to predict effects 
following administration of different drugs have been reported 
in the literature.14,15 In contrast to those examples, the cur-
rent study developed physiologically based creatinine models 
accounting for its synthesis and mechanistic description of 
processes occurring in the renal proximal tubule. These mech-
anistic models incorporated multiple transporters involved in 
creatinine renal elimination, assuming either unidirectional or 
bidirectional OCT2 transport (driven by electrochemical gra-
dient). Accounting for bidirectional transport by OCT2 was 
previously demonstrated as an important consideration in 
PBPK simulation of cimetidine-metformin DDI.16,17 In a com-
panion paper,18 technical details of the stepwise development 

Figure 1 Transient increases in serum creatinine (SCr) observed during administration of specific drugs to subjects with normal renal 
function. Each grey bar represents the mean observed increase in serum creatinine from baseline (measured before administration 
of drug) during drug administration for a particular study; error bars represent SD for that study (see Table S2 for references). Dotted 
line represents the clinical threshold for acute kidney injury (AKI; serum creatinine increase of 0.3 mg/dL compared with baseline).1
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of mechanistic creatinine models and their refinement with clin-
ical creatinine-trimethoprim interaction data are reported.

Following initial model optimization against trimethoprim 
clinical data, critical evaluation of the ability of different 
creatinine models to predict quantitatively creatinine-drug 
interactions with 10 perpetrator drugs was performed. 
This performance evaluation accounted for intra-individ-
ual variability in serum creatinine. To test the robustness 
of creatinine models, perpetrators selected showed differ-
ent inhibitory effect on transporters involved in creatinine 
renal disposition. In addition, the creatinine models were 
compared with respect to their ability to describe the mech-
anisms of creatinine secretion and re-absorption.

METHODS
Initial evaluation of the creatinine-drug interaction 
risk via OAT1, OCT2, and MATEs
Serum creatinine profiles, drug plasma concentration-time 
data, and fraction unbound in plasma (fu,p) for 11 inhibi-
tors were collated and analyzed, as detailed in Scotcher 
et al.18 There was no literature evidence on the direct effect 
of these inhibitors on creatinine synthesis. Literature re-
ported half-maximal inhibitory concentration (IC50) data for 
individual transporters of interest were collated; whenever 
possible in vitro inhibition data obtained with creatinine as 
transporter probe were used (Table 1).

Initial qualitative evaluation of clinical creatinine-drug 
interaction potential was performed using the basic DDI pre-
diction model.19 In brief, compounds’ classification toward 
risk of clinical creatinine interaction were based on proposed 
unbound maximum concentration in plasma (Cmax,u)/IC50 
cutoffs of 0.1 and 0.02 for OCT/OAT and MATE transporters, 

respectively.19,20 Changes in serum creatinine < 5%, asso-
ciated with intra-individual variability in serum creatinine,21 
were classed as “negative.”

Physiological structure of creatinine models
Detailed description of the stepwise development of mech-
anistic kidney models for creatinine and corresponding 
assumptions are reported in a companion paper.18 Two 
models were selected for subsequent performance evalu-
ation of their ability to predict creatinine-drug interactions. 
The workflow of model development and compartmental 
structure of the models are presented in Figure S1 and 
Figure 2. The models differed in describing the mechanism 
of transport by OCT2, assuming either unidirectional up-
take of creatinine via OCT2, or bidirectional transport (net 
membrane permeation) of creatinine via OCT2. The bidi-
rectional-OCT2 model considered the role of membrane 
potential in the electrochemical gradient driven transport 
rate by OCT2, as described in Eqs. 1 and 2:

where Jo→i,OCT2 is the net flux via OCT2 in direction outside 
to inside of cell; CLint,OCT2,preMP is intrinsic clearance of OCT2, 
before impact of membrane potential is applied; Co and Ci 
are concentrations of creatinine outside and inside the prox-
imal tubule cell, respectively; fion,o and fion,i are the ionized 

(1)Jo→i,OCT2=CLint,OCT2,preMP ⋅
N

(

eN−1
) ⋅

(

Co ⋅ fion,o−e
N
⋅Ci ⋅ fion,i

)

(2)N=
z ⋅Φ ⋅F

R ⋅T

Table 1 Summary of perpetrator drug propertiesa

Perpetrator drug Cmax in µM (Dose) fu,p
b

IC50 (µM)c,d

Largest reported %  
change in SCr (Dose)OAT2 OCT2 MATE1 MATE2-K

Cimetidine 12 (1,600 mg/day) 0.824 102.3 36.3 3.78 23.7 25.8 (1,600 mg/day)

DX-619 22.0 (800 mg/day) 0.320 1,000e 0.94 0.82 0.1 32.3 (800 mg/day)

Cobicistat 1.55 (150 mg/day) 0.063 24.1 10.7 4.1 22.5 10.6 (150 mg/day)

Dolutegravir 13.1 (100 mg/day) 0.006 1,000e 8.25 5.8 49.3 16.7 (100 mg/day)

Indomethacin 5.59 (50 mg) 0.060 2.1 1,000 1,000 1,000 0 (150 mg/day)

Pyrimethamine 2.3 (50 mg) 0.112 1,000e 0.93 0.17 0.35 26.1 (75 mg/weekf)

Famotidine (low dose) 0.39 (40 mg/day) 0.724 184 27.9 0.27 7.3 1 (40 mg/day)

Famotidine (high dose) 0.93 (200 mg) 0.724 184 27.9 0.27 7.3 17.9 (800 mg/day)

Ranolazine 6.01 (2,000 mg/day) 0.372 109 7.42 5.56 55.4 20.0g (2,000 mg/day)

Rilpivirine 0.6 (25 mg/day) 0.005 1,000e 0.38 0.25 0.28 10.6 (25 mg/day)

Trimethoprim 6.9 (20 mg/kg/day) 0.510 1,000e 25.8 1.62 0.58 31h (20 mg/kg/day)

Ranitidine 3.72 (300 mg/day) 0.728 1,000e 2.41 5.6 3.4 0 (300 mg/day)

Cmax, maximal plasma concentration; fu,p, fraction unbound in plasma; IC50, half-maximal inhibitory concentration; SCr, serum creatinine.
aReferences listed in Table S3.
bfu,p is average value if reported in multiple studies.
cIC50 values obtained using creatinine as a probe, except for DX-619 (creatinine as probe for OCT2, tetraethylammonium as probe for MATE1 and MATE2-K), 
rilpivirine (metformin as probe for OCT2, MATE1 and MATE2-K), and indomethacin (creatinine as probe for OAT2, metformin as probe for OCT2, MATE1 and 
MATE2-K).
dNo pre-incubation with inhibitor, although other studies suggest pre-incubation effects on IC50 (see Supplemental Material, Section 3).
eNo inhibition observed, IC50 set to 1,000 µM for simulation of creatinine-drug interactions.
fCo-administered with 200 mg dapsone.
gValue falls to 12.0% after adjusting for placebo-control.
hRepresents largest mean value, largest reported change in specific individual was 181%.
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fraction of creatinine outside and inside the proximal tubule 
cell, respectively; z, Φ, F, R, and T are the valence of creat-
inine, the membrane potential, Faraday’s constant, the Gas 
constant, and the absolute temperature, respectively.

Differential equations describing proximal tubule cell 
concentrations for the uptake-OCT2 (Eq. 3) and bidirec-
tional-OCT2 (Eq. 4) models are shown below; the full set of 
model equations is listed in ref. 18

Figure 2 Compartmental structure of model used for simulation of creatinine-drug interactions.18 Blue shaded area presents 
schematic of creatinine mechanistic kidney model. The concentration (Cx (mg/L)) in each xth compartment is a model state, with the 
amount excreted in urine (Ae) also representing a state. The central (reservoir) compartment (subscript c), which represents the blood 
plasma receives, the input function representing creatinine synthesis rate (Rsyn (mg/hour)). Nonrenal clearance (CLnon-renal) represents 
a minor elimination route from the central compartment. The central compartment is linked with the proximal tubule blood/interstitium 
compartment (subscript PT,bi) in a physiologically realistic manner through the proximal tubule blood flow (QPT,blood (L/hour)), and to the 
proximal filtrate (subscript PT,filt) through glomerular filtration rate (GFR (L/hour)). Filtrate flow out of the proximal filtrate is described 
with a flow rate parameter (QPT-U,filt (L/hour)). Passive permeability of creatinine in non-proximal nephron regions, the loop of Henle, 
distal tubule and collecting ducts are described under assumption of first-order re-absorption using fraction reabsorbed (Freab,DT) 
parameter. In proximal tubule cells (subscript PT,c), the roles of passive permeability (transcellular and paracellular) permeability and 
transporters expressed on the basolateral (organic anion transporter 2 (OAT2) and organic cation transporter 2 (OCT2)) and apical 
(multidrug and toxin extrusion protein (MATE) 1 and 2-K) membranes are presented in the purple shaded area. OCT2 was modeled 
as either an uptake transporter or as a bidirectional transporter in variant creatinine models. As a bidirectional transporter, net flux 
by OCT2 is a function of the electrochemical gradient of creatinine and the membrane potential (Em,PT,c (70 mV); see Eqs. 1 and 2). 
The red shaded area shows a one-compartment model used to simulate the plasma concentration of the perpetrator (inhibitor) drug 
(subscript inh), with oral absorption rate constant (Ka) and elimination clearance (CL). The plasma concentration of perpetrator drug, 
along with its half maximal inhibitory concentration (IC50) or inhibitory constant (Ki), is used to drive inhibition of transporter activity in 
the creatinine model (Eq. 5).
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where VPT,c, CPT,c, CPT,bi, CPT,filt, CLPD,trans, CLint,OAT2, 
CLint,OCT2, CLint,OCT2,preMP, CLint,MATE1, CLint,MATE2-K, fion,PT,bi, 
and fion,PT,c are the volume of the proximal tubule cells, the 
concentration of creatinine in the proximal tubule cells, 
blood and filtrate, the transmembrane passive permeability, 
and the intrinsic clearances for OAT2, OCT2 (uptake), OCT2 
(bidirectional, before impact of membrane potential is ac-
counted for), MATE1 and MATE2-K, and the fraction ionized 
of creatinine in the blood/ interstitium and cell, respectively.

MATE transport is proton gradient driven and was assumed 
to mediate efflux under in vivo physiological conditions.22 
Passive permeability in proximal tubule and re-absorption 
in remaining tubular regions of nephron were initially imple-
mented by IVIVE of in vitro apparent permeability data scaled 
by corresponding tubular surface areas; subsequently, this pa-
rameter was also optimized by clinical data.18

Nakada et al. (2018) reported a static model for describing 
trimethoprim-creatinine interaction and related changes in 
serum creatinine concentrations and creatinine CLR.14 This 
one-compartment model accounted for processes of filtra-
tion, secretion, and re-absorption, but lacked physiological 
complexity of the models in the current study. In order to 
benchmark models and their predictive performance,23 the 
Nakada model was also considered in comparative per-
formance evaluation in the current study (implementation 
details in Supplementary Material, Section 5).

The plasma concentration-time profiles of all perpetrator 
drugs were described using one-compartment or two-com-
partment pharmacokinetic models, as described in ref. 18 
(Figure S2 for dolutegravir, as an example). For famotidine, 
different pharmacokinetic models were required for the high 
and low doses. The inhibitory effect of perpetrator drugs 
on OAT2, OCT2, MATE1, and MATE2-K transporters in up-
take-OCT2 model is described by Eq. 5, adapted from ref. 
24 and using in vitro data listed in Table 1. Analogous equa-
tion was applied by replacing transporter intrinsic clearance 
(CLint) in Eq. 5 with net flux rate (J; see Eqs. 1 and 2) for 
OCT2 in the OCT2-bidirectional model, but using Eq. 5 for 
OAT2, MATE1, and MATE2-K. Equivalent equation was ap-
plied for simulation of creatinine-drug interactions with the 
Nakada model (see Eq. S3).

where CLint,i,inh(t) is the intrinsic clearance of the ith trans-
porter at time t after accounting for inhibition, CLint,i is the 
intrinsic clearance of ith transporter (see Eqs. 3 and 4), Cp,j(t) 
is the plasma concentration of perpetrator j at time t, fu,p,j is 
the fraction unbound in plasma for perpetrator j, and IC50,i,j 
is the unbound concentration of perpetrator j causing 50% 
inhibition of transporter i.

Creatinine-drug interactions were simulated following 
the study designs described in respective clinical studies. 
Simulations were performed for a nominal duration of 96 
hours to ensure steady-state serum creatinine concentra-
tions in the simulation before initiating administration of 
perpetrators.

Evaluation of predictive performance of creatinine 
mechanistic models
Creatinine physiologically based models developed in the 
current study were optimized by creatinine-trimethoprim 
clinical interaction data to recover creatinine CLR; use of 
CLR data alone (without perturbation by interaction) were 
insufficient.18 The creatinine-trimethoprim interaction data 
were excluded from the evaluation of the model perfor-
mance, consistent with PBPK modeling best practices.24–28 
Predictive performance of unidirectional or bidirectional 
OCT2 creatinine models was evaluated by assessing the 
number of data points within prediction limits Eqs. S4–S7. 
Where individual serum creatinine concentration data were 
reported, mean values were also calculated to evaluate 
prediction success. Predictive performance was evalu-
ated using either (a) maximum change (single perpetrator 
administration) or steady-state changes (repeated admin-
istration) in serum creatinine, or (b) complete profiles of 
creatinine-drug interactions, where these were reported. 
The latter case included data following withdrawal of drug 
(i.e., serum creatinine returning to baseline).

Commonly applied twofold limits were modified to ac-
count for intra-individual variability in baseline serum 
creatinine concentration (limits Eqs. S4–S7). Consideration 
of stricter prediction limits was adapted from Guest et 
al.29 to ensure appropriate distinction of true-negative and 
false-negative interaction prediction (i.e., when observed 
percentage change in serum creatinine concentration is 
close to 0%). The limits coalesce when the observed change 
is 0% and approach the traditional twofold limits with more 
pronounced interaction. These new prediction limits con-
sidered intra-individual percentage coefficient of variation in 
baseline serum creatinine concentration (CVI). The EuBIVAS 
Project recently reported CVI of 4.4% and 4.7% based on 
enzymatic and alkaline picrate methods, respectively,21 and 
CVI of 4.7% was used in the current study.

Models of creatinine and perpetrator drugs, described as 
systems of ordinary differential equations, were implemented 
in Simulink version 8.9 (R2017a), The MathsWorks (Natick, 
MA), using a variable-step numerical solver. The exact solver 
was automatically selected by the Simulink software, but was 
typically ode15s (numerical differentiation formulas). Solver 
settings were not changed from the default values, with the ex-
ception that relative tolerance was set to 1/100,000. Simulation 
data were exported to Matlab R2017a, The MathsWorks for 
statistical analyses and generation of figures.

(3)

VPT,c

dCPT,c

dt
=CPT,bi

⋅ (CLPD,trans+CLint,OAT2+CLint,OCT2 ⋅ fion,PT,bi)

+CPT,filt ⋅CLPD,trans−CPT,c

⋅ (2 ⋅CLPD,trans+CLint,MATE1+CLint,MATE2 − K)

(4)

VPT,c

dCPT,c

dt
=CPT,bi ⋅ (CLPD,trans+CLint,OAT2)−CLint,OCT2,preMP

⋅

NPTC

(eNPTC −1)
⋅ (eNPTC

⋅CPT,c ⋅ fion,PT,c−CPT,bi ⋅ fion,PT,bi)

+CPT,filt ⋅CLPD,trans−CPT,c

⋅ (2 ⋅CLPD,trans+CLint,MATE1+CLint,MATE2 − K)

(5)CLint,i,inh (t)=
CLint,i

1+
Cp,j (t)⋅fu,p,j

IC50,i,j
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RESULTS
Data collation
Clinical and in vitro inhibition data (Tables 1 and 2) were 
collated for trimethoprim, cimetidine, DX-619, cobicistat, 
dolutegravir, pyrimethamine, famotidine, ranolazine, and ril-
pivirine; these drugs were associated with renal transporter 
inhibition leading to changes in serum creatinine concen-
tration. In addition, the data set included indomethacin and 
ranitidine, which exhibited minimal effect on serum creat-
inine (Table 1). In total, 193 measurements of changes in 
serum creatinine from 28 studies were collated, with the 
percentage change in serum creatinine ranging from −3.5% 
to 181%.

Qualitative evaluation of the creatinine-drug 
interaction risk via OAT2, OCT2, and MATEs
A qualitative approach for evaluation of renal transporter 
DDI risk was initially applied. In vitro transporter IC50 data 
obtained with creatinine as a transporter probe were used 
where available to overcome any potential substrate-depen-
dent inhibition issues associated with OCT2/MATEs (Table 1). 
In this preliminary analysis, most drugs that caused transient 
elevated serum creatinine were correctly identified for subse-
quent follow-up clinical evaluation, with Cmax,u/IC50 exceeding 
cutoff of 0.02 for MATE1 (Figure 3). However, false-positive 
(e.g., ranitidine and lower dose famotidine) and false-negative 
(e.g., cobicistat) outcomes were evident, consistent with pre-
vious analysis performed with metformin IC50 data.30 Similar 
trend was noted for MATE2-K, with weaker relationship for 
OCT2 and no apparent trend for OAT2 (Figure 3).

Quantitative model-based prediction of creatinine-
drug interactions
Physiologically based kidney models for creatinine were 
developed and accounted for the roles of transporters and 
passive permeability via transcellular and paracellular routes 

in the proximal tubule.18 In contrast to previous modeling 
attempts,14,15,31 mechanistic creatinine models developed 
here explicitly defined the proximal tubule cell compart-
ment, including membrane localization of OAT2 and OCT2 
(basolateral) and MATE1 and MATE2-K (apical) transporters 
(Figure 2). In addition, the role of the resting membrane po-
tential on transport rate and direction was considered for 
OCT2, as described previously for metformin.17,32

Stepwise approach in creatinine model development is 
illustrated in Figure S1. Initial proteomic-informed IVIVE 
of CLint underestimated creatinine CLR by up to 14%. 
Therefore, clinical trimethoprim-creatinine data (76 measure-
ments from six studies) were used to refine some of the key 
model parameters, while retaining relative contributions of 
each transporter to overall proximal tubule uptake and efflux 
as in the IVIVE approach. In the uptake-OCT2 model, OAT2 
and OCT2 had similar contributions to creatinine transport-
er-mediated uptake in the proximal tubule (46% and 54%, 
respectively), whereas MATE2-K (76%) had larger contribu-
tion than MATE1 (24%) to transporter-mediated efflux (Table 
S6). The total transporter uptake CLint,u was 67-fold greater 
than total transporter efflux CLint,u. Relative transporter 
activities for the bidirectional-OCT2 model were concen-
tration-dependent, with maximum contribution of OCT2 of 
54% to creatinine uptake under basolateral-cellular sink 
conditions (i.e., concentration inside cell  << concentration 
outside cell); at the other extreme, under cellular-basolateral 
sink conditions, OCT2-mediated efflux dominated over up-
take by OAT2.

Following successful recovery of the observed creatinine 
CLR, creatinine models were applied to predict creatinine-drug 
interactions with 10 perpetrator drugs. The inhibitory effects 
on OAT2, OCT2, MATE1, and MATE2-K were considered 
using corresponding in vitro IC50 data. Impact of complete 
transporter inhibition on the simulated steady-state creati-
nine concentrations in plasma and proximal tubule cell and 

Table 2 Summary of perpetrator drug pharmacokinetic modelsa

Perpetrator drug

Pharmacokinetic model parametersb

CL (L/hour) V2
c (L) ka (1/hour) Q (L/hour) V3

c (L) Km (µM) Vmax (µmol/hour)

Cimetidine 39.20 115.80 1.57 – – – –

DX-619 9.00 114.80 – – – – –

Cobicistat 10.00 67.40 0.49 – – – –

Dolutegravir 0.65 9.09 4.73 0.43 3.08 – –

Indomethacin 3.77 7.71 1.86 2.24 19.30 – –

Pyrimethamine 1.14 137.18 2.04 – – – –

Famotidine (low dose) 60.74 89.46 0.27 – – – –

Famotidine (high dose) 116.00 715.00 1.14 – – – –

Ranolazine 22.40 110.00 0.06 – – 4.80 128.6

Rilpivirine 8.84 142.83 0.19 11.96 311.62 – –

Trimethoprim 3.78 97.82 4.37 – – – –

Ranitidine 33.40 135.00 0.72 – – – –

CL, clearance, Cp, plasma concentration; ka, absorption rate constant, Km, Michaelis constant, Q, inter-compartment clearance, Vmax, maximum rate of 
elimination, Vx, volume of compartment indicated by subscript x.
aReferences listed in Table S3.
bSee ref. 18 for full description and equations of the models, in brief, these are (i) a one-compartment model with linear elimination, (ii) a two-compartment 
model with linear elimination, and (iii) a one-compartment model with linear and nonlinear (Michaelis-Menten kinetics) elimination.
cV2 and V3 represent the volumes of the central (plasma) and peripheral compartments, respectively.
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proximal tubule cell-to-plasma partition coefficient was 
investigated; summary of different scenarios and their ef-
fect on rate-determining step in creatinine disposition is in 
Table S7. The data for trimethoprim were not included in 
model performance evaluation to separate the “model de-
velopment” and “verification” data sets and ensure robust 
evaluation. Three models were considered in this analysis, 
namely the uptake-OCT2 and bidirectional-OCT2 mechanis-
tic creatinine models as described above, and a mechanistic 
static model reported in the literature (“Nakada model”).14

For the first time, the evaluation of prediction success 
of creatinine-drug interactions accounted also for the 5% 
intra-individual variability in serum creatinine.21 The newly 
developed prediction limits allowed apparently negative 
changes in creatinine concentrations observed in some 
instances (likely arising from intra-individual variability) to 
be considered in the evaluation of model predictive per-
formance (Supplementary Material, Section 7). The need 
for more restrictive limits than those used generally for DDI 
prediction arises from smaller observed changes in serum 
creatinine (typically not exceeding ~  30% increase) than 
considered clinically relevant for metabolism or transporter 
DDIs. The ability of the mechanistic creatinine models to 
predict changes in creatinine CLR could not be assessed for 

all creatinine-drug interactions investigated due to limited 
availability of clinical data.

Based upon maximum or steady-state change in serum 
creatinine data, the uptake-OCT2 model (59%) and Nakada 
model (61%) had similar overall predictive performance 
when considering the percentage of serum creatinine data 
(n = 117 measurements) within prediction error limits, with 
slightly worse performance of the bidirectional-OCT2 model 
(51%; Table 3). Overall trends remained when all creatinine 
data were included in the analysis (i.e., consideration of pro-
files of serum creatinine changes including potential return 
to baseline; Figure S3 and Table S8). The uptake-OCT2 
model had slightly better predictive performance for drugs 
that caused > 15% elevation in serum creatinine, for exam-
ple, DX-619 and cimetidine. Uptake-OCT2 and mechanistic 
static model by Nakada predicted a false-positive interaction 
for ranitidine (up to 35% increase in serum creatinine at the 
highest dose), in contrast to no changes in serum creatinine 
reported clinically. Such false-positive prediction for raniti-
dine was not apparent with the bidirectional-OCT2 model. 
Regardless of the model used, an overall underprediction 
of the magnitude of interaction was evident (Figure 4 and 
Figure S4), in particular for cobicistat, dolutegravir, ranola-
zine, and rilpivirine.

Figure 3 Comparison of Cmax,u/IC50 with observed % change in serum creatinine (SCr) for 11 perpetrators. IC50 values are for OCT2 
(a), OAT2 (b), MATE1 (c), and MATE2-K (d). Clinically observed percentage change in serum creatinine, Cmax, fu,p, and in vitro IC50 
(creatinine as substrate where available) data were obtained from literature (Table 1 and Table S4). Cmax, maximum concentration 
of drug in plasma; Cmax,u, maximum unbound concentration of in plasma; fu,p, fraction unbound in plasma; IC50,MATE1, half maximal 
inhibitory concentration for MATE1 transporter; MATE1, multidrug and toxin extrusion 1. ‡Cmax,u/IC50 threshold correspond to those 
proposed for potential drug-drug interaction risk evaluation of 0.1 (OCT2 and OAT2) or 0.02 (MATE1 and MATE2-K).19,20
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DISCUSSION

Transient increase in serum creatinine is commonly ob-
served as a result of transporter-mediated interactions, 

in particular, via OCT2/MATE inhibition. Despite this, cre-
atinine is not deemed as the most sensitive endogenous 
biomarker for these transporters.33 However, considering 
its wide use as a biomarker of renal function, ability to 

Figure 4 Predictions of creatinine-drug interactions for steady-state or maximal percentage change in serum creatinine (SCr) data using 
the uptake-OCT2 model (a), and bidirectional-OCT2 model (b). For studies with repeated administration of perpetrator, percentage 
change in serum creatinine data at steady-state were included; for studies with single administration of the perpetrator drug, or for 
which steady-state was not reached, the maximal percentage change value was included. Prediction error limits (dashed lines) are 
described by Eqs. S4–S7. Open circles indicate observed data reported as mean, with the area of the circle proportional to the number 
of subjects in the relevant clinical study, crosses indicate individual data. Inset figures show the central tendency for the observed data.
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correctly predict and differentiate renal transporter inter-
action from reduced renal function due to drug-induced 
kidney injury is important. The current study developed 
a physiologically based creatinine model incorporating 
multiple processes in the proximal tubule in a mecha-
nistic manner. The primary goal was the assessment of 
the creatinine models’ ability to predict creatinine-drug 
interactions via different renal transporters (individual or 
combined).

Predictive performance of creatinine models
The current analysis represents the most systematic eval-
uation of creatinine models to-date; models investigated 
differed in their complexity and physiological description 
of proximal tubule. This evaluation showed overall com-
parable predictive performance of static and dynamic 
models when assessing maximum steady-state effect of 
perpetrators on serum creatinine. Ability of current mod-
els to predict correctly minor (< 10%) changes in serum 
creatinine is seen as an advantage to less mechanistic 
approaches that may result in false-positive outcomes. 
A mechanistic creatinine model that featured bidirec-
tional OCT2 transport was the only model that correctly 
predicted negligible interaction between ranitidine and 
creatinine (Table 3). Consideration of the electrochemi-
cal gradient driving force for OCT2 transport is consistent 
with previously reported metformin PBPK model,16,17 in 
vitro data demonstrating an effect of membrane potential 
on creatinine accumulation (Table S1), and in vitro data 
reporting efflux transport of tetraethylammonium and 
acetylcholine by OCT2.34,35 Despite current limited num-
ber of perpetrators to test this model, OCT2 transport 
driving force is seen as an important consideration for 
complex interactions with dual OCT2/MATE inhibitors, in 
particular in cases when inhibitor’s intracellular concen-
tration may be higher than in plasma.

Although the overall predictive ability of the mechanistic 
static and dynamic models was comparable when predicting 
steady-state effect of perpetrators, additional criteria should 
be considered in model evaluation. The mechanistic dy-
namic models allowed quantitative integration of creatinine 
renal disposition, interrogation of mechanistic assumptions, 
and identification of knowledge gaps and uncertainties (in 
fraction transported, permeability data, and tubular re-ab-
sorption). All above is consistent with quantitative systems 
pharmacology approach (i.e., a useful model is one that 
permits new mechanistic insight to be gained).36 In addi-
tion, dynamic models allowed simulation of time course of 
changes in serum creatinine, together with newly proposed 
prediction limits that accounted for intra-individual variability 
in serum creatinine for the evaluation of prediction success 
of biomarker interactions.

Rate-determining step and contribution of specific 
transporters in creatinine renal disposition
Current modeling efforts identify uptake via OCT2 and OAT2 
as rate-determining processes driving creatinine disposi-
tion in the proximal tubule cells. Despite underprediction 
of creatinine active secretion by bottom-up proteomics-in-
formed IVIVE (limitations discussed in ref. 18), current study 

provides the most robust to-date estimate of the relative 
creatinine transport clearances for OCT2, OAT2, MATE1, 
and MATE2-K and passive permeability to support model 
development (Table S6). Consequences of complete 
inhibition of individual transporters on proximal tubule cell-
to-plasma partition coefficient and rate-determining step in 
creatinine disposition are summarized in Table S7. Many 
clinical creatinine-drug interactions can be rationalized by 
inhibition of MATEs alone (Figure 3), and role of this trans-
porter is supported by clinical genotyping studies (Table 
S9). Likewise, OCT2 genotype data support its role in cre-
atinine renal disposition (Table S9), together with in silico 
structural modeling of creatinine interactions with variants 
of OCT2.37 Conversely, confidence toward the in vivo role 
of OAT2 is limited by inconsistent in vitro uptake data from 
OAT2-transfected cell lines,38 limited genetic variability, and 
lack of drugs known or expected to inhibit OAT2 in vivo.

Accurate estimation of fraction transported is a general 
challenge associated with development of PBPK models for 
transporter substrates. Overlapping substrate specificity19,33 
and inconsistencies in in vitro data between laboratories 
(Table S1) contribute to this. The latter may be due to dif-
ferences in transporter expression in specific transfected 
cell lines, proportion of transporter protein located in plasma 
membrane (vs. intracellular pool), and/or proteomic meth-
ods used. Use of different cell culture/assay conditions may 
also affect transporter functional activity; for example, in 
vitro creatinine transport studies use varying levels of gluta-
mate in culture medium despite its proposed relevance for 
OAT2 uptake transport in vitro. Furthermore, net observed 
transmembrane effects may be a poor reflection of the ac-
tivity of individual transporter(s), as several transporters may 
be acting in opposing and/or parallel directions. As such, 
quantifying transport rates, and fraction transported by a 
particular transporter from observed “net effect” data (e.g., 
in vivo CLR) may be challenging without clear understand-
ing of the rate-determining step or availability of selective 
transporter inhibitors.12 In silico cell models may assist with 
delineation of relevant kinetic parameters/processes, but 
typically rely upon availability of rich data.39

Does creatinine undergo tubular re-absorption?
Optimized apparent permeability in the uptake-OCT2 
(29 cm/s × 10−6) and bidirectional-OCT2 (14 cm/s × 10−6) 
creatinine models were order of magnitude greater 
than average reported in vitro apparent permeability 
(1.15 cm/s × 10−6). This trend was evident also in the static 
Nakada model, which required a fraction re-absorbed 
of 34% to recover creatinine-trimethoprim interaction 
data; value that was much higher than <  10% predicted 
by available mechanistic re-absorption models.40 So far, 
limited evidence supports possibility of saturable tubu-
lar reabsorption of creatinine,41 whereas reports of urine 
flow dependent CLR or creatinine-to-inulin clearance ratio 
have inconsistent findings.42–44 One potential candidate for 
creatinine tubular re-absorption is OAT4 expressed on the 
apical membrane of the proximal tubule,45 although rele-
vant in vitro data to support this are equivocal.10,15 OCT2 
may also mediate creatinine re-absorption at the basolat-
eral membrane of proximal tubule cells, particularly under 
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conditions of MATE inhibition. Potential role of OCT2 in cre-
atinine re-absorption is supported also by finding that the 
bidirectional-OCT2 model improved the prediction of neg-
ligible clinical creatinine-ranitidine interaction compared 
with other models (Figures 3 and 4). Consideration of ac-
tive tubular re-absorption may refine existing models and 
high estimates of passive re-absorption currently required 
in all models to recapitulate the observations.

Although creatinine is commonly considered as com-
pletely unbound in plasma, scarce primary studies are 
available,6 whereas a creatinine binding site of albumin has 
been reported.46 An additional consideration is that the 
blood-to-plasma concentration ratio of 1 was assumed in 
the model due to lack of supporting data. Creatinine is OAT2 
substrate (expressed in red blood cells), and showed satu-
rable uptake into human red blood cells.47 Given the scarcity 
of measured fu,p and blood-to-plasma ratio data, and their 
importance in the models, measurements using modern 
techniques would be beneficial.

Relevance of renal disposition of MATE inhibitors
The underprediction trend seen for certain interactions in 
the current data set may be a reflection of the pragmatic 
approach that relied on simulated plasma concentra-
tions of inhibitors to drive transporter inhibition. This 
assumption may not be correct for inhibitors of MATE 
transporters, which face the intracellular space and tu-
bular filtrate rather than plasma.48 Mechanistic modeling 
of cellular perpetrator concentrations was beyond the 
scope of the current study, and challenged by information 
gaps on whether the perpetrators themselves are sub-
strates for renal transporters (Table S10). A preliminary 
approach was applied to estimate the unbound proxi-
mal tubule luminal (i.e., filtrate) to plasma concentration 
ratio (Kp,uu,filtrate) of perpetrators (Table S10). Although 
improvement of underprediction was seen in the case of 
famotidine (Kp,uu,filtrate = 9.5), it also led to overprediction 
of interaction for ranitidine (Kp,uu,filtrate  =  15.8), highlight-
ing a need for further refinement and consideration of 
mechanistic models of perpetrator renal disposition for 
evaluation of such interactions.

In conclusion, the current study evaluated physiologically 
based creatinine models for prediction of transporter-me-
diated creatinine-drug interaction. Increasing evidence 
of OCT2 bidirectional transport mechanism supports its 
consideration in the model. The physiological structure of 
the models has added advantage over static methods; it 
allows simulations of dynamics of creatinine-drug interac-
tions over time, investigation of the interplay of transporter 
processes and provides an excellent platform for investi-
gation of the intra-individual and interindividual variability 
in serum creatinine. Considering knowledge gaps in cre-
atinine renal disposition highlighted here, it is important to 
refine and re-evaluate the mechanistic model when new 
data become available. In contrast to static models, the 
physiological basis of the mechanistic creatinine model 
allows its future application to specific populations (e.g., 
impaired renal function) and corresponding evaluation 
of transporter-mediated interaction risk in this patient 
cohort.
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