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An optimal stratified Simon two-stage design
Deepak Parashar,a* Jack Bowden,b Colin Starr,b Lorenz Wernisch,b

and Adrian Manderb

In Phase II oncology trials, therapies are increasingly being evaluated for their effectiveness in specific populations of interest.
Such targeted trials require designs that allow for stratification based on the participants’ molecular characterisation. A tar-
geted design proposed by Jones and Holmgren (JH) Jones CL, Holmgren E: ‘An adaptive Simon two-stage design for phase 2
studies of targeted therapies’, Contemporary Clinical Trials 28 (2007) 654-661.determines whether a drug only has activity in
a disease sub-population or in the wider disease population. Their adaptive design uses results from a single interim analysis
to decide whether to enrich the study population with a subgroup or not; it is based on two parallel Simon two-stage designs.
We study the JH design in detail and extend it by providing a few alternative ways to control the familywise error rate, in the
weak sense as well as the strong sense. We also introduce a novel optimal design by minimising the expected sample size. Our
extended design contributes to the much needed framework for conducting Phase II trials in stratified medicine. © 2016 The
Authors Pharmaceutical Statistics Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Group-sequential trial designs, in which the data are periodically
assessed to determine whether the trial should continue, can be
far more efficient than trials of a fixed sample size. They help
in minimising the trials’ duration, cost and number of people
exposed to ineffective treatments ([1,2]). The simplest example of
an adaptive trial is a two-stage design introduced for Phase II can-
cer trials by Gehan [3], Fleming [4], Simon [5] and many others
([6,7]). Of particular interest is the Simon two-stage design [5]; it
tests a single treatment with a binary response, and an interim
analysis is used to allow the trial to stop early for futility only.
Simon’s design requires pre-specification of the null response
rate, the desired type I error probability and sufficient power at a
targeted response rate. Assuming the null hypothesis to be true,
it minimises the expected sample size and is, therefore, optimal. If
it minimises the total sample size, then Simon’s design is referred
to as a minimax design.

In recent years, there has been a concerted effort to tailor treat-
ment (especially cancer therapy) to the specific needs of patients,
so that they are most effective. This is the guiding principle under-
lying stratified medicine ([8,9]). A patient’s biomarker(s) (a general
term for a genetic or bio-chemical measurement) are increas-
ingly being used to define the treatment subgroup to which they
should belong. This presents a challenge for clinical trials: conven-
tional (and even adaptive) trial designs aim to estimate a common
treatment effect in the disease population. In the realm of strat-
ified medicine, designs are needed to both assess the clinical
utility of biomarkers as a diagnostic tool to guide treatment, as
well as to estimate a treatment’s effect within each biomarker
subgroup.

Various designs have been proposed for the biomarker tri-
als, for example biomarker-stratified designs, enrichment designs
and the biomarker-strategy designs ([10–18]). The reader is
referred to [19] for a comprehensive review. The execution of
biomarker trials often requires interim monitoring and analysis.

Therefore, it is natural to set them in the context of an adaptive
design. In this paper, we review and extend a biomarker strati-
fied Simon two-stage design proposed by Jones and Holmgren
(JH) [20] in the context of Phase II cancer trials, which is now
briefly described. In the first stage of the JH design, a new therapy
is assessed for its activity (its response rate) simultaneously in
the biomarker-positive and biomarker-negative sub-populations.
The JH design then uses the first stage data to guide whether
to (a) continue to study an unselected (biomarker positive and
negative) population during the second stage, or (b) enrich the
population by enrolling only biomarker-positive subjects. This
design has been used in a Phase II study of HER2-negative breast
cancer [21]. In Section 2, we discuss the JH design framework in
detail. In Section 3, we provide explicit formulae for probabilities
of various positive outcomes and extend the JH framework so
that error rates can be controlled using several new definitions.
In Section 4, we report optimal designs for the various error rate
definitions, and we conclude with a discussion in Section 5.

2. SUMMARISING JONES–HOLMGREN DESIGN

The purpose of the Jones–Holmgren (JH) design [20] is to assess
the performance of an experimental treatment in a biomarker-
negative population, and potentially a biomarker-positive
population as well. Let the true response rates for the biomarker-
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negative and biomarker-positive sub-populations be p� and pC,
respectively. The null hypotheses are H�0 : p�Dp�0 , HC0 : pCDpC0 ,

and the alternative hypotheses are H�1 : p� D p�1 , HC1 : pC D pC1
where p�1 > p�0 and pC1 > pC0 . This hypothesis setup implies that
any response rate p1 > p0 (i.e. a positive outcome) is considered
effective and warrants further study, that is, a go decision,
whereas any response rate p16p0 is considered ineffective and
constitutes a no-go decision. While this would be true at the
second stage, stopping the study at the first stage as a no-go
tends not to be a conclusion of p16 p0 but rather ruling out
that the response rate is as good as p1. We further fix p�0 DpC0 .
This implies that the biomarker is potentially predictive of treat-
ment effect, rather than a prognostic indicator of underlying
health. For the particular example trial, they consider
pC0 Dp�0 D 0.03, pC1 D 0.15, p�1 D 0.10. An order restriction is
assumed for the response rates, namely, p� 6 pu 6 pC (i.e. pu

is the response rate in the unselected population which is a
weighted average of the response rates in the biomarker-
negative and biomarker-positive sub-populations), and we stick
to this assumption in this paper. The clinical reason behind such
an order restriction is that the biomarker-positive subjects are
expected to be more sensitive to an interventional targeted drug
being developed than the biomarker-negative subjects; this has
been the assumption not only in the example trial considered by
JH but also in a recent biomarker-stratified phase II trial REMA-
GUS 02 [22] for large operable and locally advanced breast cancer
setup according to two parallel two-stage Fleming design [12].

At Stage 1, they begin with two parallel studies (Figure 1),
one in N�1 biomarker-negative participants and one in NC1
biomarker-positive participants (the total sample size of the first
stage is N1 D N�1 C NC1 ). Activity is first assessed in the
biomarker-negative sub-population and, if present, continues
to Stage 2 recruiting a further N2 participants in the unse-
lected population. However, if no activity is indicated in the
biomarker-negative sub-population at Stage 1, they then assess

activity in the biomarker-positive sub-population and in case of
an indication of activity continue to Stage 2 recruiting a further
NC2e participants (subscript e denotes enrichment) in the same
sub-population and subsequently test for a positive outcome or a
go decision.

On the other hand, in the earlier case of recruiting further
participants in the unselected population at Stage 2, that is,
N2 D N�2 C NC2 (where N�2 and NC2 are the number of Stage 2
biomarker-negative and biomarker-positive participants, respec-
tively, and JH assuming the prevalence of marker-positive sub-
jects to be 40%), they test for a positive outcome in the
biomarker-negative sub-population, and in case of sufficient
responders, the treatment is declared effective in the biomarker-
negative sub-population. Note that due to the order restriction,
the treatment can also be immediately declared effective in
the biomarker-positive population, without the need for further
testing. If, however, the treatment is ineffective in the biomarker-
negative population at Stage 2, they then test for a positive
outcome in the biomarker-positive sub-population. Furthermore,
let N�DN�1 CN�2 , NCDNC1 CNC2 , and NCe D NC1 CNC2e. We amend
the JH design in that we allow the trial to stop at Stage 1 if the
required cumulative response of both stages has already been
achieved. It has been shown [23] that a study can stop early for a
go decision if it is designed to test a null hypothesis only.

Let X�1 and XC1 be the number of responders in Stage 1 for
the biomarker-negative and biomarker-positive sub-populations,
respectively. When there is no enrichment, let X�2 and XC2 be the
number of responders in Stage 2 for the biomarker-negative and
biomarker-positive sub-populations, respectively. When there
is enrichment, let XC2e be the number of responders in the
biomarker-positive sub-population in Stage 2. The total numbers
of responders are defined by adding the corresponding respon-
ders in each stage, that is, XC D XC1 C XC2 , X� D X�1 C X�2 and

XCe D XC1 C XC2e .

Figure 1. A schematic for the adaptive enrichment stratified design.3
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At Stage 1, k�1 and kC1 are the minimum number of respon-
ders required for each sub-population, to continue the study.
When there is no enrichment, k� and kC are the minimum num-
ber of responders for each sub-population, to declare positive
results. When there is enrichment, kCe is then the minimum num-
ber of responders for the biomarker-positive sub-population at
Stages 1 and 2. All X ’s are binomially distributed, and we have that
k�1 6 k� and kC1 6 kCe .

At the end of the study, there are three possible positive trial
outcomes: rejecting both null hypotheses and claiming efficacy
in the unselected population; rejecting HC0 and claiming efficacy
in the biomarker-positive sub-population without enrichment;
and rejecting HC0 and claiming efficacy in the biomarker-positive
sub-population after enrichment. Each of these three outcomes
are labelled Routes 1, 2 and 3, respectively, in Figure 1.

Note that it is neither a biomarker stratified design (because of
the second stage depending upon rules for the first stage based
on activity in biomarker-positive subjects coupled with activity
in the biomarker-negative subjects) nor an enrichment design
(because the focus is not only biomarker-positive subjects) in
the true sense. Instead, it is an adaptive enrichment design that
enriches the biomarker-positive participants only adaptively con-
ditional on observing a lack of activity in the biomarker-negative
subjects and some activity in the biomarker-positive subjects. The
design can be indexed completely by the 10 design parameters
�

k�1 kC1

�
=
�

N�1 NC1

�
!

�
kCe =NCe

�
j
�

k� kC
�
=
�

N� NC
�

(1)

where parameters to the left of the arrow are the Stage 1 thresh-
olds (k) out of the sample sizes (N), while parameters to the right
of the arrow are the Stage 2 thresholds out of the respective

sample sizes. Therefore, given the aforementioned 10 design
parameters together with the response rate probabilities, the
study is completely pre-specified and ready to be imple-
mented. This leads to simple rules for making decisions at the
interim analysis.

3. CALCULATING THE HYPOTHESIS
REJECTION PROBABILITIES

We now look at the probabilities of rejecting the hypotheses and
hence determine the significance and power for the study design.
It is important to note that the formulae given in the JH paper
[20], Equations (5)–(8) do not take into account the dependence
between Stage 1 results and the Stage 2 tests. The probabilities
for Stage 2 are conditional upon the number of responders at
Stage 1, and so, their product should be summed over i up to the

minimum of
�

N�1 , k� � 1
�
,
�

NC1 , kCe � 1
�

instead of just N�1 , NC1
and so on because the maximum number of responders in Stage
1 will either be the total number of responders at the end of Stage
2 or the numbers recruited at Stage 1, whichever is the minimum.
The formulae given here express the conditional probabilities of
rejecting the hypotheses in both the sub-populations.

The probability of rejecting both hypotheses H�0 and HC0 via
Route 1 (Figure 1), that is, declaring a go decision in the unselected

population, is

R1.p
�/D

0
@

min.N�1 ,k��1/X
iDk�1

P
�

X�2 >k�� i
�

P
�

X�1 D i
�
1
ACP

�
X�1 >k�

�
.

(2)

Note that this formula is different from Equation (5) of [20]. The
first term of (2) represents the probability that the responders
at Stage 2 are greater than or equal to the required respon-
ders at Stage 2 conditional on the cut-off responders at Stage 1,
with appropriate summation as mentioned earlier. The additional
second term in (2) yields the probability that the number of
responders at Stage 1 itself is greater than the cumulative respon-
ders required at the end of the second stage. Note that R1.p�/ is a
monotonically increasing function of p�, the response rate in the
negative population, and also that rejecting both null hypotheses
does not depend on the response in the positive sub-population.

The probability of rejecting HC0 via route 2 (Figure 1),
that is, declaring a go decision in the biomarker-positive
sub-population, is

R2.p
�, pC/DP.XC>kC/

0
@

min.N�1 ,k��1/X
iDk�1

P.X�2 <k�� i/P.X�1 D i/

1
A

(3)

Note that R2.p�, pC/ is a monotonic function of pC but for fixed
pC the function is not monotonic in p� and has a single maxi-
mum, a formula for which is given in the Supporting Information.

The probability of rejecting HC0 via Route 3 (Figure 1), that is,
declaring a go decision in the biomarker-positive sub-population
with enrichment, is

R3.p
�, pC/ D P.X�1 < k�1 /

0
B@

8̂
<
:̂

min.NC1 ,kCe �1/X

iDkC1

P.XC2e > kCe � i/P.XC1 D i/

9>=
>;
C P.XC1 > kCe /

1
CA (4)

Formulae (3) and (4) are also different from Equation (6) of [20],
and take into account the conditional probabilities. Equation (4)
has an additional term which represents the probability that,
for the biomarker-positive sub-population, the number of respon-
ders at Stage 1 itself is greater than the required cumulative
responders at both stages. Note that R3

�
p�, pC

�
is a decreasing

function of p� and an increasing function of pC. The probability
of obtaining a positive result in Equation (2) only depends on
the true response rate p� in the negative population, while the
other routes of obtaining a positive result (via Equations (3)
and (4)) depend on the true response rates

�
p�, pC

�
in both

the subgroups.
In order to evaluate these probabilities, we will assume the

responders, X ’s, follow binomial distributions: XC � B.NC, pC/,

X�2 � B
�

N�2 , p�
�
, X�1 � B

�
N�1 , p�

�
, XC2e � B

�
NC2e, pC

�
and

XC1 � B
�

NC1 , pC
�

.

From these functions, we can denote the total probabil-
ity of rejecting HC0 via Routes 2 or 3 as R23

�
p�, pC

�
D

R2
�

p�, pC
�
C R3

�
p�, pC

�
. Also, we can denote the total proba-

bility of rejecting at least one null hypothesis as R123
�

p�, pC
�
D

R1.p�/ C R2
�

p�, pC
�
C R3

�
p�, pC

�
. Using the pre-specified

targeted response rates for each sub-population, p�1 and pC1 ,

we consider three different scenarios: no efficacy, .p�0 , pC0 /;
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Table I. The probability of each positive outcome at three pre-specified real-world scenarios.

Outcomes
Real world No Efficacy Reject H�0 and HC0 Reject HC0

1. No Efficacy
�

p�0 , pC0

�
R0

�
p�0 , pC0

�
True negative R1.p�0 / False positive R23

�
p�0 , pC0

�
False positive

2. Unselected
�

p�1 , p�1
�

R0
�

p�1 , p�1
�

False negative R1
�

p�1
�

True positive R23
�

p�1 , p�1
�

Wrong positive

3. Positive only
�

p�0 , pC1

�
R0

�
p�0 , pC1

�
False negative R1

�
p�0
�

Wrong positive R23

�
p�0 , pC1

�
True positive

Table II. Power, Type I error constraints and the value of V
for each design scenario and rejection decision.

Scenario Reject H�0 and HC0 Reject HC0 Constraint

R1.p�/ R23.p�, pC/

1.
�

p�0 , pC0

�
6 ˛ (2) 6 ˛ (1)

P
6 ˛

2.
�

p�1 , p�1
�

> power (0) Œ � (0) —

3.
�

p�0 , pC1

�
6 ˛ (1) > power (0) —

efficacy in the unselected population,
�

p�1 , p�1
�
; and efficacy in

the biomarker-positive sub-population only,
�

p�0 , pC1

�
. Table I

summarises the probability of positive trial outcomes for each
scenario, where R0

�
p�, pC

�
D 1 � R123

�
p�, pC

�
is the prob-

ability of no positive outcome, that is, not rejecting any of the
null hypotheses.

The notion of Wrong Positives in the aforementioned table is
where one rejects the null hypothesis for the biomarker-positive
sub-population when the effect is in the unselected and where
one rejects both hypotheses when the effect is in the positive
sub-population only.
3.1. Power

The probability of rejecting both null hypotheses for the unse-
lected scenario is R1.p�1 /. In other words, this is the power for the
unselected subgroup via Route 1 assuming the true response was�

p�1 , p�1
�
. The probability of rejecting HC0 only for the biomarker-

positive only scenario is R23

�
p�0 , pC1

�
. In other words, this is the

power of concluding a positive outcome in a biomarker-positive

patient population assuming the true responses are
�

p�0 , pC1

�
.

The desired power for this trial design is either a high proba-
bility of rejecting both hypotheses for the unselected scenario or
there is a high probability of rejecting the biomarker-positive null
hypothesis for the biomarker-positive only scenario. Allowing for
the smaller of the two powers, we recommend that the overall
power is

min
�

R1
�

p�1
�

, R23

�
p�0 , pC1

��
(5)

3.2. Type I error control

Because we have more than one null hypothesis, the family-
wise error rate (FWER) needs to be controlled. Our family of null

hypotheses is
n

HC0 , H�0

o
, and let V D f0, 1, 2g be the number of

true null hypotheses that are rejected at the end of the adaptive
trial. We require that FWER = P.V > 1/ 6 ˛. Table II shows, for the
three allowable parameter constellations and rejection decisions,
the type I error and power constraints of the proposed design. The
value of V is shown for each case in bold brackets.

Power is defined as in Equation (5), and the Type I error is
given by

R123

�
p�0 , pC0

�
6 ˛. (6)

Equation (6) may make it appear that we are only controlling
FWER in the weak sense, which is when all null hypotheses are
true. However, by doing so, we are also controlling the probabil-
ity of incorrectly rejecting H�0 and correctly rejecting HC0 when

p�Dp�0 and pCD pC0 . This is because R1.p�/ is independent of
the value of pC. Hence, control is also in a strong sense. Note that
nothing is specified about controlling the rate of wrong positives
and we ignore individual weighting of each positive outcome.

3.3. Expected sample size

Let us now define the expected sample size and the associated
optimality criteria for this design. If the trial stops at the first stage,
the sample size is N1. If the trial continues to the second stage,
then the sample size will either be N1 C N2 or N1 C NC2e. The
expected sample size is therefore

E.N/DN1CN2P
�

k�1 6X�1 <k�
�
CNC2eP

�
X�1 <k�1

�
P
�

kC1 6XC1 <kCe

�
.

(7)

Let � be the set of all designs that satisfy the Type I error con-
straint and have sufficient power. Then, the optimal design is an
element of � that has the smallest expected sample size E.N/

under the global null hypothesis
�

p�, pC
�
D
�

p�0 , pC0

�
, where

X1 � B
�

N�1 , k�1 � 1, p�
�

and XC1 � B
�

NC1 , kC1 � 1, pC
�

. Formula

(7) now takes into account early stopping for efficacy. The overall
probability of early termination PET is given by the formula

PETDP
�

X�1 >k�
�
C P

�
X�1 <k�1

� h
P
�

XC1 >kCe

�
CP

�
XC1 <kC1

�i

(8)

4. RESULTS

We now present the results for the operating characteristics due
to JH, as well as our new optimal designs.3
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Table III. Operating characteristics given the design (2 1)/(34 14) ! (5/50) j
(4 4)/(53 27).

E.N/Adaptive /
p�1 pC1 R1.p�1 / R23.p�0 , pC1 / E.N/Simon E.N/Adaptive E.N/Simon

0.03 0.03 0.067 0.012 74.61 65.79 0.881
0.03 0.10 0.067 0.424 85.21 76.91 0.902
0.03 0.15 0.067 0.720 88.36 80.21 0.907
0.10 0.15 0.755 0.720 127.66 80.03 0.626
0.10 0.25 0.755 0.905 129.78 80.44 0.619
0.15 0.30 0.952 0.924 136.99 80.10 0.584

p�0 D pC0 D 0.03, Significance, ˛ D 0.079

Table IV. Optimal designs — controlling FWER at 5% and setting p�0 D pC0 D 0.03.

R1.p�1 / R23.p�0 , pC1 / Optimal design
p�1 pC1 Significance (unselected) (positives) PET E.N/ .k�1 kC1 /=.N

�
1 NC1 /! .kCe =NCe / j .k

�kC/=.N�NC/

0.10 0.10 0.048 0.800 0.800 0.623 110.2 (3 2)/(44 34)! (7/104) j (9 4)/(135 53)
0.10 0.15 0.049 0.801 0.801 0.653 77.9 (2 2)/(32 21)! (6/67) j (7 3)/(106 29)
0.10 0.25 0.050 0.800 0.800 0.571 60 (2 1)/(34 8)! (4/29) j (6 2)/(87 9)
0.15 0.15 0.050 0.802 0.801 0.611 46.9 (2 1)/(20 12)! (4/43) j (6 2)/(66 21)
0.15 0.25 0.046 0.803 0.802 0.561 32.5 (1 1)/(12 7)! (4/28) j (4 2)/(43 11)
0.15 0.35 0.045 0.801 0.800 0.615 27.8 (1 1)/(11 5)! (3/15) j (4 2)/(47 7)
0.25 0.25 0.045 0.802 0.801 0.695 18.5 (1 1)/(6 6)! (3/24) j (3 2)/(23 13)
0.25 0.40 0.038 0.802 0.801 0.742 13.5 (1 1)/(6 4)! (2/9) j (3 2)/(23 5)

4.1. Jones–Holmgren tables revisited

In Table III, we show the route probabilities (corresponding to
power and Type I error rates calculated using Formulae (2)–(4))
and expected sample sizes for the same parameter constellations
as in Table I of Jones and Holmgren [20]. Note that the power
in the biomarker-positive sub-population differs when calculated
using our formulae. We also explicitly give the expected sample
sizes, both due to the two parallel Simon two-stage design
E.N/Simon (defined in Appendix A of [20]) as well as the adaptive
design E.N/Adaptive.

For power, let us consider the targeted response rates pC1 D
0.15, p�1 D 0.10 from Table III. The probability of rejecting both
hypotheses (i.e. Route 1) is 75.5%, which is the same as that
obtained by JH. Now, the probability of rejecting HC0 (i.e. Routes
2 and 3) is quoted in JH as 17.5% making the overall power of
93% as per their definition (Equations (7) and (8) of [20]) of adding
these rejection probabilities at different response rates. However,
using the formulae as described in the preceding section yields
a probability of 72%, and we claim the power of their design is
therefore 72% (the minimum of the two rejection probabilities),
that is, less than the desirable 80%.

In the next subsection, we exhibit the optimal designs obtained
using the formulae given in the previous section.

4.2. Optimal designs

In the previous section, we have already explained what we mean
by optimal designs. A point to note is that Simon’s optimal design
is under the assumption that the null hypothesis is true. Of late,
there has also been interest in generating optimal design strate-
gies under the alternative hypothesis [23–25]; however, we shall

not delve into this aspect in the current paper. Note that the
expected sample sizes obtained in Table III are not optimal. This
is in contrast to our method for obtaining the designs where
we choose the one with the smallest expected sample size and
present the associated design parameters. Table IV below gives
optimal designs for various different sets of the targeted response
probabilities and controlling the FWER. The null hypotheses set
p�0 D pC0 D 0.03.

The optimal designs were calculated by an exhaustive search
over the 10-dimensional design parameter space. This space is
very large, containing up to 1017 possible designs for the larger
trials needed for low-targeted responses. To make the compu-
tation tractable, the search space was pruned wherever possi-
ble, using strictly logical (i.e. non-heuiristic). For example, the
power in the unselected population can be calculated using only
four parameters, and if the power is too small, we do not need
to iterate over the remaining six. This can reduce the search
space by perhaps three orders of magnitude, depending on
the parameters.

The program was run using a Graphics Processing Unit, or GPU,
similar to the graphics card in many high-end computers. A GPU
contains several hundred small processors and is suitable for mas-
sively parallelisable problems, like this one, where each possible
design can be calculated in parallel. The GPU provides a gain
in speed of between 5 times and 50 times, depending on the
parameters used. These techniques reduced the program exe-
cution time to between 30 s and 24 h, with the longer times
required when the expected sample size (and hence the search
space) was large. The maximum size of the search space needs
to be configured by the user, but it is easy to set a search space
sufficiently larger than the proposed optimal design to be confi-
dent that it is indeed the true optimum. The code is available at
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the weblink http://www.mrc-bsu.cam.ac.uk/published-research/
additional-material/.

The designs in Table IV have been obtained by fixing the sig-
nificance level to be at most 5% and power to be at least 80%.
Comparing the example trial pC D 0.15, p� D 0.10 used by JH
from Table III with E.N/SimonD 127, we find that our optimal
designs for these response rates offer a substantial efficiency in
terms of the expected sample sizes of 78. According to our defini-
tion, this design also has a smaller expected sample size than the
design suggested by Jones and Holmgren that had insufficient
power. Our designs yield even smaller expected sample sizes as
we increase the desired response rates to be much higher than
the null response rates of 3%. All across Table IV, the probabil-
ity of declaring a go decision for the unselected population at
Stage 1 remains very low with P

�
X�1 > k�

�
D 5.04 � 10�4 being

the maximum.

The rejection probability functions are plotted in Figure 2 for
the design from the first row of Table IV, (3 2)/(44 34)! (7/104) j
(9 4)/(135 53).

As shown earlier, the function R2. / is non-monotonic in p�

but monotonic in pC. Using our design-finding software, one
can obtain a plethora of optimal designs by varying the null and
the desired response rate probabilities. A selection of these is
available at the aforementioned URL.

5. DISCUSSION

In this article, we have taken the design of Jones and Holmgren
and provided alternative definition of power and choice of Type
I error controls. Additionally, we introduce an extension of their
work to provide designs that are optimal, in the sense that we
are minimising the expected sample size. A selection of optimal

Figure 2. The rejection probabilities for each route.

Table V. Comparison summary of JH and our work

JH design Our version

Adaptive enrichment with futility stopping Adaptive enrichment with futility and go-decision stopping
Rejection probabilities not conditional on Stage 1 results Rejection probabilities conditional on Stage 1 results
Formula for total probability of rejecting at least one null, R123 has terms evaluated at same response rates
R123, has terms evaluated at different response rates
Overall power: R123 Overall power: min.R1, R23/

Characterises the operating characteristics of the Aims to control the type I and type II error rates, and
procedure without explicit control of Types I and II several options for weak and strong FWER exist
error rates
Method used to obtain designs: Fix design parameters and Method used to obtain designs: Fix Type I error and power
investigate the operating characteristics of procedure until constraint; algorithmic search yields optimal designs
a satisfactory design is found

Underlying assumptions common to both: p�0 DpC0 (no prognostic effect), p�1 6pC1 (order restriction)
JH, Jones and Holmgren.3
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designs are provided in the Supporting Information including the
computer code to create any design required. We demonstrated
that our optimal design was more efficient than Jones and Holm-
gren’s original, and also it gave a 60% reduction in the expected
sample size compared to the parallel Simon two-stage design.
Table V summarises our work against that of Jones and Holmgren.

The underlying assumption p�0 D pC0 may signify that there
is no prognostic effect. Because a trial design cannot distinguish
a prognostic biomarker from a predictive one, we assume that
the biomarker is predictive. However, the biomarker could be
prognostic too, but we have not attempted to evaluate this. The
optimal designs obtained in our paper are, however, robust to
deviations from this assumption because in our programme code
one can a priori specify the different values of p�0 and pC0 .

Another major assumption of the Jones and Holmgren design
is the order restriction on the parameter space, that is, the
response for the biomarker-positive sub-population is bigger
than in the biomarker-negative sub-population. One implication
of this is when the H�0 hypothesis is rejected then both are
rejected without using the information in the biomarker-positive
sub-population, which represents an inefficient use of the data.
Another, more fundamental issue is that even if expert scien-
tific opinion suggest biomarker status rigidly dictates treatment
response, the assumption could be wrong. Note that if the order
restriction is relaxed then an additional wrong positive error may
occur. This is the case of only rejecting HC0 for the additional

scenario of an effect in the negative subgroup only .p�1 , pC0 /.
It is widely known that single-arm trials may be subject to selec-

tion bias and any treatment response being due to the patient
population rather than the effect of treatment. Additionally, for
the stratified single-arm trials, a positive result might mean that
the biomarker is a prognostic biomarker rather than a predictive
biomarker. A randomised trial will be needed to confirm pre-
dictive ability; however, a single-arm trial is much smaller and
could be valuable within a drug development plan. Recent liter-
ature [26–28] on single-arm trials in oncology continues to pro-
vide early indication of effectiveness of the interventional drug,
for example, in the evaluation of cytotoxic treatment resulting
in tumour reduction. Given that the goal of single-arm trials is
hypothesis testing, they screen out ineffective drugs quickly and
cheaply. Such trials are also of benefit where the goal is to pri-
oritise which, if any, experimental regimen should progress to
Phase III when there is no a priori information to favour one. Use-
ful contexts include Phase II selection designs (of two or more
parallel single-arm studies) when selecting among new agents,
among different schedules or doses. An extension of our work
would lead to a randomised adaptive enrichment with endpoints
being response, progression-free survival or overall survival. It
is worth comparing this with other adaptive enrichment design
approaches. In [29], Wang et al. adaptation is about sample size
and futility stopping, and the testing leads to a mixture of treat-
ment effects thus making the trial results challenging to interpret.
Jenkins et al. [30] use endpoints at the interim and the end of the
trial that are different but correlated. Their adaptation pertains
to selection of treatment arms, while in our enrichment design,
the trial continues seamlessly either in the biomarker-positive
sub-population or in the general unselected population based
on the data obtained at Stage 1 with a single overall primary
endpoint.

For the original Simon two-stage design, the function of reject-
ing the null hypothesis, say R. /, was monotonic. This allows the
null hypothesis to be specified as an interval H0 : p 6 p0 rather

than a single-point null hypothesis. Also, it meant that there is suf-
ficient power for any response greater than the target response.
However, in our stratified version, R2.p�, pC/ is a non-monotonic
function, and hence, R123.p�, pC/ is non-monotonic. Therefore,
the specification of a range null hypothesis H�0 : p 6 p�0 is difficult
because either of the error rates could increase or decrease, and
so, the theory may not be robust, and the designs thus obtained
may not be reliable. However, it is possible to see from the plots
in Figure 2 that there is a region of ‘null’ responses that have suf-
ficient FWER control and sufficient power is obtained for a wide
range of targeted responses. At this point, it is worth comparing
our hypotheses setup with that of Zhong [31] where he formu-
lates the null hypothesis H0 : p D pc with pc being the minimal
effective response rate, and the alternative hypotheses are Hn

1 :

p < pc , Hg
1 : p > pc signifying a no-go decision and a go deci-

sion, respectively. However, we cannot have such inequalities in
our alternative hypotheses for the stratified design because of the
reasons of non-monotonicity mentioned previously.

When obtaining our optimal designs, we did not attempt to
control the rate of wrong positives, and we ignored the individ-
ual weighting of each positive outcome. Of course, one may wish
to do so. In the Supporting Information, we discuss several alter-
native methods of error control and present alternative tables
of optimal designs that flow from them. This is available at the
aforementioned URL.

It might not be possible to plan the enrolment of precise
numbers of biomarker-positive and of biomarker-negative partic-
ipants. In future work, we plan to expand our algorithm to com-
pute optimal designs providing overall sample sizes only without
the need to find fixed number of biomarker-positive or negative
samples. Effectively, the algorithm needs to integrate out all pos-
sibilities of biomarker-positive and negative sample sizes given
an overall size. Because our algorithm is combinatorial in nature,
essentially enumerating all possible scenarios, such integration
can be easily incorporated. That is, given a fixed prevalence
rate in addition to the other parameters described earlier, the
algorithm will provide a design not in terms of biomarker-positive
and negative sample sizes but overall sample sizes. Such exten-
sion is easily incorporated by keeping track of modified expected
sample size calculations based on the binomial distribution using
the biomarker prevalence rate. A branch and bound approach for
small probability regions of the combinatorial space will allow us
to cut down the search space.

A subtle point is that absolute fulfilment of false positive and
false negative constraints can no longer be guaranteed. If only
total sample sizes are given, even with non-extreme biomarker
prevalence rates, low numbers of biomarker-positive or negative
sample sizes with high error rates are possible, if unlikely.
However, exploiting the low probability of such cases, guarantees
can be provided for the proposed designs to breach error rate
constraints with only a small and user defined probability.
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