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Objectives: This study aimed to develop radiomic models based on low-dose CT
(LDCT) and standard-dose CT to distinguish adenocarcinomas from benign lesions in
patients with solid solitary pulmonary nodules and compare the performance among
these radiomic models and Lung CT Screening Reporting and Data System (Lung-
RADS). The reproducibility of radiomic features between LDCT and standard-dose CT
were also evaluated.

Methods: A total of 141 consecutive pathologically confirmed solid solitary pulmonary
nodules were enrolled including 50 adenocarcinomas and 48 benign nodules in primary
cohort and 22 adenocarcinomas and 21 benign nodules in validation cohort. LDCT and
standard-dose CT scans were conducted using same acquisition parameters and
reconstruction method except for radiation dose. All nodules were automatically
segmented and 104 original radiomic features were extracted. The concordance
correlation coefficient was used to quantify reproducibility of radiomic features between
LDCT and standard-dose CT. Radiomic features were selected to build radiomic
signature, and clinical characteristics and radiomic signature were combined to develop
radiomic nomogram for LDCT and standard-dose CT, respectively. The performance of
radiomic models and Lung-RADS was assessed by area under curve (AUC) of receiver
operating characteristic curve, sensitivity, and specificity.

Results: Shape and first order features, and neighboring gray tone difference matrix
features were highly reproducible between LDCT and standard-dose CT. No significant
differences of AUCs were found among radiomic signature and nomogram of LDCT and
standard-dose CT in both primary and validation cohort (0.915 vs. 0.919 vs. 0.898 vs.
0.909 and 0.976 vs. 0.976 vs. 0.985 vs. 0.987, respectively). These radiomic models had
higher specificity than Lung-RADS (all correct P < 0.05), while there were no significant
differences of sensitivity between Lung-RADS and radiomic models.
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Conclusions: The diagnostic performance of LDCT-based radiomic models to
differentiate adenocarcinomas from benign lesions in solid pulmonary nodules were
equivalent to that of standard-dose CT. The LDCT-based radiomic model with higher
specificity and lower false-positive rate than Lung-RADS might help reduce overdiagnosis
and overtreatment of solid pulmonary nodules in lung cancer screening.
Keywords: radiomics, low-dose computed tomography, lung cancer screening, lung adenocarcinoma, benign
lesion, solid pulmonary nodule
INTRODUCTION

Lung cancer is the leading cause of cancer-related death
worldwide (1–3). Low-dose computed tomography (LDCT)
has been widely recommended for lung cancer screening as it
can reduce the mortality (4, 5), but concerns about the high false-
positive rate of diagnosis and the following overtreatment are
also emerging (4, 6–8). Radiomics, via high-throughput
extraction of features from imaging data, has been applied to
risk prediction, diagnostic discrimination, and disease
progression, and improves decision-making in oncology (9–
11). In recent years, a large number of studies build radiomic
models using either LDCT (12–17) or standard-dose CT data
(18–20) to predict malignancy of solitary pulmonary nodules,
however, one key question that remains unanswered is whether
the performance of LDCT-based radiomic model and underlying
significant features are equivalent to that of standard-dose CT.

Concurrent with the recent prosperities on radiomics, the effect
of scan acquisition parameters on the reproducibility of quantitative
radiomic features aroused concerns of researchers. Studies in
phantom and in vivo demonstrated that scanner variability,
radiation dose, reconstruction method, and slice thickness did
affect the quantification of many radiomic features (21–25).
Therefore, the LDCT-based radiomic model may be not identical
to that of standard-dose CT due to radiation dose reduction even
though the other acquisition parameters are consistent. To study the
effect of radiation dose reduction on radiomic features in vivo, Lo
et al. applied the noise addition methods to simulate dose reduction
conditions (22), while Solomon et al. repeated scan with half
standard dose (23). Their results indicated some texture features
were not reproducible when reducing radiation dose. However, the
reproducibility of radiomic features of solitary pulmonary nodules
between LDCT for lung cancer screening and standard-dose CT
examinations remains unaddressed.

Adenocarcinoma is the most prevalent histologic type of lung
cancer (26, 27), making it the most common true-positive finding
in lung cancer screening (4, 5). Granulomas often appear as
spiculated or lobulated solid nodules and are fluorodeoxyglucose
avid, and therefore mimic invasive adenocarcinomas, representing
the most confounding false-positive findings in lung cancer
screening (4, 28). Many investigators attempted to distinguish
granulomas from adenocarcinomas using radiomic features (29–
33), but none of them used low-dose acquisition parameters.
Besides, the radiomic model without including non-specific
inflammation, hamartoma, and other benign lesions might limit
its utility in lung cancer screening.
2

Thus, the present study aimed to develop radiomic models
based on LDCT and standard-dose CT from same subjects to
distinguish adenocarcinomas from benign lesions in patients
with solid solitary pulmonary nodules and compare the
performance among these radiomic models and Lung CT
Screening Reporting and Data System (Lung-RADS). We also
assessed the reproducibility of radiomic features of solid solitary
pulmonary nodules between LDCT and standard-dose
CT examinations.
MATERIALS AND METHODS

Pulmonary Nodules
This study was approved by the Institutional Review Board and
the requirement for informed consent was waived as the data
were analyzed retrospectively and anonymously.

A total of 141 solid solitary pulmonary nodules (72
adenocarcinomas and 69 benign nodules) were consecutively
included in this study from April 2019 and May 2020, according
to the following inclusion criteria: 1) detection of solid solitary
pulmonary nodule without calcification for typical benign lesion;
2) LDCT obtained from lung cancer screening; 3) standard-dose
CT obtained within 24 h after LDCT to evaluate hilar and
mediastinal lymph nodes; 4) pathologically confirmed. The
exclusion criteria were as follows: 1) history of cancer in
previous 5 years; 2) images of poor quality with respiratory
and movement artifacts; 3) nodules with undefined border
resulting in poor segmentation.

We divided the nodules into two independent cohorts according
to a ratio of 7:3 and the date of inclusion. Fifty adenocarcinomas
and 48 benign nodules enrolled between April 2019 and November
2019 constituted the primary cohort, and 22 adenocarcinomas and
21 benign nodules enrolled between November 2019 and May 2020
constituted the validation cohort. The radiologist (HQ, with 7 years
of experience in thoracic radiology) who was blinded to the final
diagnosis performed categorization on nodules according to Lung-
RADS (34).
Image Acquisition
All LDCT and standard-dose CT scans were performed on a 256-
slice multi-detector CT scanner (Brilliance iCT, Philips
Healthcare, Amsterdam, Netherlands), using the following
acquisition parameters: tube voltage of 100 kV and tube
current of 20 or 30 mAs for LDCT, tube voltage of 120 kV and
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tube current of 100 to 250 mAs for standard-dose CT, standard
resolution mode, detector collimation of 128 × 0.625 mm, helical
pitch of 0.915, and gantry rotation time of 0.4 s. All the raw
datasets were then reconstructed using the hybrid iterative
reconstruction method (iDose4, level 6, Philips Healthcare,
Amsterdam, Netherlands) with standard reconstruction filter
for body, slice thickness of 0.625 mm, slice increment of
0.625 mm, field of view of 350 mm × 350 mm, and matrix of
1,024 × 1,024. The estimated effective dose of LDCT scan for all
subjects was 0.68 ± 0.11 mSv (range from 0.40 to 0.93).
Segmentation and Radiomic
Features Extraction
All target nodules were automatically detected and segmented
using uAI platform (United Imaging Healthcare, Shanghai,
China), an artificial intelligence software basing on deep
learning method (35, 36). No manual adjustments of the
segmentation results were performed to avoid inter-observer
and intra-observer variability. The representative segmentation
results were shown in Figure 1. A total of 104 original radiomic
features, including first order, shape, and texture features, were
extracted from the target nodules using an open-source Python
package (PyRadiomics, version 3.0, https://pyradiomics.
readthedocs.io) (37). Further details of radiomic features are
provided in the Supplementary Material.
Quantifying Feature Reproducibility
The concordance correlation coefficient (CCC) was used to
quantify reproducibility of extracted radiomic features between
LDCT and standard-dose CT in the combined primary and
validation cohorts (38). A radiomic feature with CCC ≥ 0.90 was
then defined as a reproducible feature, as previously described
(39–41). The percentage of features in each category with a CCC
of ≥0.85, ≥0.90, and ≥0.95 was calculated, respectively.
Feature Selection and Radiomic
Signature Construction
Features were standardized using z-score normalization and then
selected to build radiomic signature in the primary cohort of
LDCT and standard-dose CT dataset respectively. Firstly, the
Mann-Whitney U test was employed to select the features that
were statistically different between groups (unadjusted P < 0.05), as
the quantitative radiomic features did not have a normal
distribution. Secondly, Spearman correlation analysis and
minimum redundancy-maximum relevance (mRMR) (42) were
sequentially conducted to exclude redundant radiomic features.
Highly correlated features (Spearman correlation coefficient >0.9)
were excluded and the top ranked 10 features were reserved.
Thirdly, the least absolute shrinkage and selection operator
(LASSO) method was used to select the most predictive features
from the primary cohort (43). Finally, multivariate logistic
regression with backward stepwise selection was applied to
construct radiomic score (Rad-score), in which the stopping rule
Frontiers in Oncology | www.frontiersin.org 3
was the likelihood ratio test with Akaike’s information criterion
(44). Rad-score of each patient in was calculated via a linear
combination of the selected features and weighted by the
respective coefficients.

Radiomic Nomogram Construction
Independent factors for differentiating adenocarcinomas from
benign nodules among Rad-score and clinical variables were
identified by inputting significant variables found using
univariate logistic regression analysis. Multivariable logistic
regression analysis was applied to build radiomic nomogram
for LDCT and standard-dose CT respectively, which was a
visualized and individual tool that integrated independent
factors to predict the probability of adenocarcinoma in the
primary cohort.

Performance of Radiomic Signature
and Nomogram
The area under the curve (AUC) of receiver operating
characteristic (ROC) curve was determined to evaluate the
discrimination performance of the radiomic signature and
radiomic nomogram of LDCT and standard-dose CT in both
primary and validation cohorts. The sensitivity, specificity,
accuracy, positive predictive value (PPV), and negative
predictive value (NPV) were also calculated. To evaluate the
calibration performance of radiomic nomogram, calibration
curves were plotted. The Hosmer-Lemeshow (H-L) test was
performed to assess the goodness-of-fit of radiomic nomogram.

Clinical Utility
Decision curve analyses were conducted to estimate the clinical
utility of the radiomic models and Lung-RADS by calculating the
net benefits at a range of threshold probabilities in the combined
primary and validation cohorts (45).
Statistical Analysis
Statistical analysis was performed by R software (version 4.0.0,
http://www.r-project.org), SPSS software (version 19.0, https://www.
ibm.com), and MedCalc (v. 18.21, https://www.medcalc.org). The
chi-squared test was used to compare the differences in gender, and
group comparisons of age was performed using independent sample
t-test. P < 0.05 was considered statistically significant.

The performance of Lung-RADS was also evaluated. The
ROC of Lung-RADS was performed in both primary and
validation cohorts according to that nodules of category 4A,
4B, and 4X were labeled as malignancy while category 2 and 3 as
benign nodules. The corresponding sensitivity, specificity,
accuracy, PPV, and NPV were calculated. Then comparisons
of AUCs among radiomic models and Lung-RADS were
performed using the Delong test in the primary and validation
cohorts (46). In these pairwise models with significant difference
in AUC, further comparisons of sensitivity and specificity were
performed using the McNemar test in the combined cohort (47).
Analyses were corrected for multiple comparisons using the false
discovery rate (FDR) method (48).
February 2021 | Volume 10 | Article 634298
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RESULTS

Clinical Characteristics
The baseline clinical-pathologic characteristics, including
gender, age, Lung-RADS category, and histologic subtype of
benign nodules in the primary and validation cohorts are listed
in Table 1. There was no difference in gender between the
adenocarcinoma group and the benign group in the primary or
Frontiers in Oncology | www.frontiersin.org 4
validation cohorts. Significant differences were found in age
between the two groups in primary and validation cohorts
(P = 0.003 and P < 0.0001, respectively).
Feature Reproducibility
The reproducibility of radiomic features between LDCT and
standard-dose CT regarding different feature categories is
A

B

C

D

FIGURE 1 | Representative segmentation results and texture feature maps of nodules. (A, C) A 43-year-old female with a granuloma, (B, D) A 75-year-old male
with an adenocarcinoma. From left to right: (A, B) segmentation in low-dose CT, neighboring gray tone difference matrix, gray-level run length matrix, gray-level
cooccurrence matrix. (C, D) segmentation in standard-dose CT, neighboring gray tone difference matrix, gray level size zone matrix.
February 2021 | Volume 10 | Article 634298
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presented in the Supplementary Material. Shape and
neighboring gray tone difference matrix (NGTDM) features
were most reproducible (100%), followed by first order features
(n = 16/18, 89%). Besides, 57% gray-level cooccurrence matrix
(GLCM, n = 12/21), 50% gray level size zone matrix (GLSZM, n
= 8/16), and 43% gray level dependence matrix (GLDM, n = 6/
14) features were reproducible. Gray-level run length matrix
(GLRLM) features were least reproducible (n = 5/16, 31%).

Feature Selection and Radiomic
Signature Construction
The process of feature selection is presented in the Supplementary
Material. Finally, three features in LDCT (GLCM_DifferenceVariance,
GLRLM_RunEntropy, and NGTDM_Strength) and two features in
standard-dose CT (GLSZM_ZoneEntropy and NGTDM_Strength)
were selected in the primary cohort. The representative maps of
these texture feature were shown in Figure 1. The calculation
formulas of Rad-score basing on these features with nonzero
coefficients are presented in the Supplementary Material.
Distributions of the Rad-score in the adenocarcinoma and benign
groups in the primary and validation cohorts are shown in the
Supplementary Material.
Frontiers in Oncology | www.frontiersin.org 5
Radiomic Nomogram Construction
According to univariate logistic regression analysis, age, Rad_score
of LDCT, and Rad_score of standard-dose CT were significant
independent differentiators of adenocarcinomas and benign
nodules (Table 2), and they were integrated to develop the
radiomic nomograms for predicting the probability of
adenocarcinoma of LDCT and standard-dose CT respectively
(Figures 2A, B). The calculation formulas of radiomic nomogram
are presented in the Supplementary Material.
Performance of Radiomic Signature,
Radiomic Nomogram, and Lung-RADS
The ROC curves of radiomic models and Lung-RADS are shown
in Figure 3. The AUC, sensitivity, specificity, accuracy, PPV, and
NPV of each model are shown in Table 3.

The calibration curves of the radiomics nomogram of LDCT and
standard-dose CT for the probability of adenocarcinoma
demonstrated good agreement between prediction and observation
in the primary and validation cohorts (Figures 2C, D). The H-L
test yielded non-significant results in the both primary and
validation cohorts of LDCT (P = 0.650 and 0.998) and standard-
TABLE 2 | Univariate and multivariate logistic regression analysis of factors for differentiating adenocarcinomas from benign nodules in the primary cohort.

Variables Odds ratio 95% confidence interval P

Univariate logistic regression
Age 1.085 1.035–1.137 0.0008
Gender 1.199 0.537–2.680 0.658
Rad_score of low-dose CT 2.718 1.718–4.302 <0.0001
Rad_score of standard-dose CT 2.718 1.785–4.410 <0.0001

Multivariate logistic regression
Low-dose CT Rad_score 2.601 1.643–4.118 <0.0001

Age 1.052 0.990–1.117 0.104
Standard-dose CT Rad_score 2.638 1.713–4.061 0.088

Age 1.053 0.992–1.118 <0.0001
February 2021 | Volume 10 | Article
Rad_score, radiomic score.
TABLE 1 | Characteristics of adenocarcinomas and benign nodules in the primary and validation cohorts.

Characteristic Primary cohort (n = 98) Validation cohort (n = 43)

Adenocarcinoma (n = 50) Benign (n = 48) P Adenocarcinoma (n = 22) Benign (n = 21) P

Gender 0.69 0.55
Female 22 19 9 11
Male 28 29 13 10

Age (years) 61.32 ± 1.30 53.96 ± 1.44 0.0003 65.45 ± 1.70 53.33 ± 1.59 <0.0001
Lung-RADS category
2, 3 2 27 0 14
4A, 4B, 4X 48 21 22 7

Histologic subtype
Inflammation 17 10
Granulomas 17 7
Hamartoma 6 1
PSP 5 0
Other benign entities 3 3
Age is shown in means ± standard deviation, and the other data are the number of nodules. Granulomas are caused by Mycobacterium tuberculosis, Cryptococcus neoformans, and other
unspecified conditions. Other benign entities include intrapulmonary lymph node, fibroplasia, and lymphoid hyperplasia. Lung-RADS, Lung CT Screening Reporting and Data System;
PSP, pulmonary sclerosing pneumocytoma.
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dose CT (P = 0.151 and 0.988), which suggested no departure from a
perfect fit.

According to the DeLong test, the AUCs of the radiomic models
were higher than that of Lung-RADS in the primary and validation
cohorts (all correct P < 0.05), while there were no significant
differences among the radiomic models (Table 4). The McNemar
test results further showed the radiomic models had higher
specificity than Lung-RADS in the combined cohort (all correct P
< 0.05), while there were no significant differences of sensitivity
between Lung-RADS and radiomic models (Table 5).

Clinical Utility
The results of decision curve analyses for the radiomic models
and Lung-RADS are presented in Figure 4. The decision curves
showed that the model of radiomic signature of low-dose CT,
radiomic nomogram of low-dose CT, radiomic signature of
standard-dose CT, and radiomic nomogram of standard-dose
CT added more net benefit than Lung-RADS in differentiating
adenocarcinomas from benign nodules within the range of the
threshold probability of 0.02 to 0.84, 0.02 to 0.85, 0.02 to 0.74,
and 0.02 to 0.79, respectively.
DISCUSSION

In the present study, we investigated the ability of radiomic models
based on LDCT and standard-dose CT to distinguish
adenocarcinomas from benign lesions in patients with solid solitary
pulmonary nodules. We found the AUCs of LDCT-based radiomic
Frontiers in Oncology | www.frontiersin.org 6
models were equivalent to that of standard-dose CT. All the radiomic
models showed higher specificity than the Lung-RADS approach,
which was consistent with previous report (12, 17). We also assessed
the reproducibility of radiomic features of solid solitary pulmonary
nodules between LDCT and standard-dose CT examinations in vivo.
Generally, shape and first order features weremore reproducible than
texture features except for NGTDM features.

Radiologists usually stratify pulmonary nodules in lung cancer
screening by interpreting characteristics such as location,
attenuation, diameter, volume, and margin. The differential
diagnosis of solitary solid nodules may be more difficult than that
of sub-solid nodules. More than 90% of pathologically confirmed
sub-solid nodules were malignant in China (49), while the
malignancy rate of solid nodules was 66.6% in previous study
(50) and 51.1% in our study. Several possible reasons may lead to
the overtreatment of solid nodules in China. First, with high
tuberculosis incidence in this country, indeterminate solid nodules
caused by granulomas or other inflammations were usually larger
than 8 mm with irregular shape and border. These benign nodules
had overlapping characteristics with adenocarcinomas in location,
size, andmorphology (51–53). Thus, the Lung-RADS categorization
of these benign nodules were equal to or beyond 4A, resulting in low
specificity. The radiomic models developed in this study had higher
specificity and lower false-positive rate in distinguishing
adenocarcinomas from benign lesions than the Lung-RADS, and
they might help clinicians avoid choosing too aggressive approach.
Second, 41 of 69 benign nodules in this study were categorized as
Lung-RADS 2 or 3, and they were all pathologically confirmed by
surgery. The result indicated the great fear of missing malignant
A B

DC

FIGURE 2 | Developed radiomic nomograms and calibration curves for predicting the probability of adenocarcinoma. (A) Radiomic nomogram of low-dose CT.
(B) Radiomic nomogram of standard-dose CT. (C) Calibration curve of radiomic nomogram of low-dose CT. (D) Calibration curve of radiomic nomogram of
standard-dose CT. Rad_score, radiomic score.
February 2021 | Volume 10 | Article 634298
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nodules for both patients and surgeons in China, especially in the
cancer hospital. Because the medical environment of China tends to
favor cautiousness from both patients and clinicians (54).

This study also addressed a very important question that radiomic
models based on LDCT and standard-dose CT had equivalent
diagnostic performance to differentiate adenocarcinomas from
benign lesions in solid nodules. NGTDM_Strength was highly
reproducible and thus the common significant texture feature
Frontiers in Oncology | www.frontiersin.org 7
related to benign nodules in both LDCT and standard-dose CT
models. Higher value of NGTDM_Strength indicates an image with
slower change in intensity but larger coarse differences in gray level
intensities. It suggested benign nodules weremore homogeneous than
adenocarcinomas. Besides, the other significant texture features
related to adenocarcinomas included GLCM_DifferenceVariance
and GLRLM_RunEntropy in LDCT model and GLSZM_Zone
Entropy in standard-dose CT model. They all indicated that
A B

FIGURE 3 | Receiver operating characteristic (ROC) curves of the radiomic models and Lung CT Screening Reporting and Data System (Lung-RADS) for
differentiating adenocarcinomas from benign nodules. (A) Primary cohort. (B) Validation cohort.
TABLE 3 | Diagnostic performance the radiomic signature and radiomic nomogram of low-dose CT and standard-dose CT, and Lung-RADS for differentiating
adenocarcinomas from benign nodules in the primary and validation cohorts.

AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV

Primary cohort
Radiomic signature
of low-dose CT

0.915
(0.859–0.972)

0.860
(43/50)

0.854
(41/48)

0.857
(84/98)

0.860
(43/50)

0.854
(41/48)

Radiomic nomogram
of low-dose CT

0.919
(0.861–0.977)

0.920
(46/50)

0.854
(41/48)

0.888
(87/98)

0.868
(46/53)

0.911
(41/45)

Radiomic signature
of standard-dose CT

0.898
(0.833–0.963)

0.940
(47/50)

0.792
(38/48)

0.867
(85/98)

0.825
(47/57)

0.927
(38/41)

Radiomic nomogram
of standard-dose CT

0.909
(0.946–0.972)

0.840
(42/50)

0.896
(43/48)

0.867
(85/98)

0.894
(42/47)

0.843
(43/51)

Lung-RADS 0.761
(0.685–0.837)

0.960
(48/50)

0.562
(27/48)

0.765
(75/98)

0.696
(48/69)

0.931
(27/29)

Validation cohort
Radiomic signature
of low-dose CT

0.976
(0.944–1.000)

0.864
(19/22)

0.857
(18/21)

0.860
(37/43)

0.864
(19/22)

0.857
(18/21)

Radiomic nomogram
of low-dose CT

0.976
(0.941–1.000)

0.909
(20/22)

0.905
(19/21)

0.907
(39/43)

0.909
(20/22)

0.905
(19/21)

Radiomic signature
of standard-dose CT

0.985
(0.960–1.000)

0.955
(21/22)

0.905
(19/21)

0.930
(40/43)

0.913
(21/23)

0.950
(19/20)

Radiomic nomogram
of standard-dose CT

0.987
(0.965–1.000)

0.909
(20/22)

0.952
(20/21)

0.930
(40/43)

0.952
(20/21)

0.909
(20/22)

Lung-RADS 0.833
(0.730–0.937)

1.000
(22/22)

0.667
(14/21)

0.837
(36/43)

0.759
(22/29)

1.000
(14/14)
February 2021 |
 Volume 10 | Article
Unless otherwise specified, numbers in the parentheses were used to calculate percentages. Lung-RADS, Lung CT Screening Reporting and Data System; AUC, area under curve; CI,
confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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adenocarcinomas had more heterogeneity than benign nodules in
the texture patterns. The shape and first order features, representing
the morphology and attenuation characteristics, were highly
reproducible as radiation dose changed. However, they were not
included in LDCT or standard-dose CT models, suggesting the
deficiency of traditional image features to stratify the indeterminate
solid nodules.
Frontiers in Oncology | www.frontiersin.org 8
We acknowledged several limitations in this study. First, this was
a single-center retrospective study with relatively small sample size.
The advantage was the standardization of acquisition parameters,
avoiding potential confounding variability caused by heterogeneous
parameters and image preprocessing (21, 25). Further multi-center
study with larger datasets is needed to validate the reported
radiomic models. Second, only pathologically confirmed nodules
FIGURE 4 | Decision curves of the radiomic models and Lung CT Screening Reporting and Data System (Lung-RADS). The decision curves showed that the model
of radiomic signature of low-dose CT, radiomic nomogram of low-dose CT, radiomic signature of standard-dose CT, and radiomic nomogram of standard-dose CT
added more net benefit than Lung-RADS in differentiating adenocarcinomas from benign nodules within the range of the threshold probability of 0.02 to 0.84, 0.02 to
0.85, 0.02 to 0.74, and 0.02 to 0.79, respectively.
TABLE 4 | Comparisons of area under the curves among the radiomic models and Lung-RADS in the primary and validation cohorts.

Pairwise comparison Primary cohort Validation cohort

Z P Z P

Lung-RADS vs. Radiomic signature of low-dose CT 4.012 0.0001* 2.643 0.0082*
Lung-RADS vs. Radiomic nomogram of low-dose CT 4.123 <0.0001* 2.679 0.0074*
Lung-RADS vs. Radiomic signature of standard-dose CT 3.329 0.0009* 2.732 0.0063*
Lung-RADS vs. Radiomic nomogram of standard-dose CT 3.713 0.0002* 2.798 0.0051*
Radiomic signature of low-dose CT vs. Radiomic nomogram of low-dose CT 0.354 0.7236 <0.001 0.999
Radiomic signature of low-dose CT vs. Radiomic signature of standard-dose CT 1.058 0.2903 0.707 0.4794
Radiomic signature of low-dose CT vs. Radiomic nomogram of standard-dose CT 0.385 0.7003 0.928 0.3534
Radiomic nomogram of low-dose CT vs. Radiomic signature of standard-dose CT 1.037 0.2998 0.599 0.5492
Radiomic nomogram of low-dose CT vs. Radiomic nomogram of standard-dose CT 0.663 0.5075 0.841 0.4003
Radiomic signature of standard-dose CT vs. Radiomic nomogram of standard-dose CT 1.019 0.3084 0.402 0.6877
February 2021
 | Volume 10 | Articl
*Differences are significant at P < 0.05 corrected with false discovery rate. Lung-RADS, Lung CT Screening Reporting and Data System.
TABLE 5 | Comparisons of sensitivity and specificity between Lung-RADS and radiomic models in the combined cohort.

Pairwise comparison Sensitivity Specificity

X2 P X2 P

Lung-RADS vs. Radiomic signature of low-dose CT 4.900 0.0269 12.042 0.0005*
Lung-RADS vs. Radiomic nomogram of low-dose CT 0.167 0.6831 9.375 0.0022*
Lung-RADS vs. Radiomic signature of standard-dose CT 1.500 0.2207 14.087 0.0002*
Lung-RADS vs. Radiomic nomogram of standard-dose CT 4.900 0.0269 16.962 <0.0001*
*Differences are significant at P < 0.05 corrected with false discovery rate. Lung-RADS, Lung CT Screening Reporting and Data System.
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were enrolled and nodules with undefined border resulting in poor
segmentation were excluded, leading to potential selection bias.
Third, nodule segmentation was performed with an artificial
intelligence software basing on deep learning method and the
underlying parameters were inherently in black box. The
advantage of automatic segmentation method was high
reproducibility, avoiding inter-observer and intra-observer
variability that resulting from manual segmentation.

In conclusion, the diagnostic performance of radiomic
models based on LDCT and standard-dose CT to differentiate
adenocarcinomas from benign lesions in solid pulmonary
nodules were equivalent. These radiomic models had higher
specificity and lower false-positive rate than Lung-RADS. The
LDCT-based radiomic model might be an effective tool for
reducing overdiagnosis and overtreatment of solid pulmonary
nodules in lung cancer screening.
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