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Abstract: Neuropsychiatric diseases and obesity are major components of morbidity and health
care costs, with genetic, lifestyle, and gut microbiome factors linked to their etiology. Dietary and
weight-loss interventions can help improve mental health, but there is conflicting evidence regarding
their efficacy; and moreover, there is substantial interindividual heterogeneity that needs to be
understood. We aimed to identify genetic and gut microbiome factors that explain interindividual
differences in mental health improvement after a dietary and lifestyle intervention for weight loss.
We recruited 369 individuals participating in Digbi Health’s personalized digital therapeutics care
program and evaluated the association of 23 genetic scores, the abundance of 178 gut microbial
genera, and 42 bacterial pathways with mental health. We studied the presence/absence of anxiety
or depression, or sleep problems at baseline and improvement on anxiety, depression, and insomnia
after losing at least 2% body weight. Participants lost on average 5.4% body weight and >95%
reported improving mental health symptom intensity. There were statistically significant correlations
between: (a) genetic scores with anxiety or depression at baseline, gut microbial functions with
sleep problems at baseline, and (b) genetic scores and gut microbial taxa and functions with anxiety,
depression, and insomnia improvement. Our results are concordant with previous findings, including
the association between anxiety or depression at baseline with genetic scores for alcohol use disorder
and major depressive disorder. As well, our results uncovered new associations in line with previous
epidemiological literature. As evident from previous literature, we also observed associations of gut
microbial signatures with mental health including short-chain fatty acids and bacterial neurotoxic
metabolites specifically with depression. Our results also show that microbiome and genetic factors
explain self-reported mental health status and improvement better than demographic variables
independently. The genetic and microbiome factors identified in this study provide the basis for
designing and personalizing dietary interventions to improve mental health.

Keywords: anxiety; depression; insomnia; gut-brain-axis; multi-omic models; non-pharmacological
treatment

1. Introduction

Poor mental health is a significant determinant of health-related quality of life with
implications at individual and population levels. Pharmacological and behavioral inter-
ventions focused on prevention or treatment of individuals suffering from mental health
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disorders have limited efficacy, and many experience relapse [1]. The COVID-19 pan-
demic resurfaced and worsened the mental health crisis and brought awareness to society
of its relationship with obesity and other chronic health conditions [2]. There is a great
need to develop cost-effective interventions that provide significant short- and long-term
therapeutic benefits to individuals suffering from mental health, especially those with
multiple comorbid conditions. Digital therapeutics have gained increased attention as a
strategy to provide care to large numbers of individuals, and emerging evidence suggests
its effectiveness for several chronic diseases [3,4].

There is compelling evidence indicating that genetic and non-genetic factors contribute
to the etiology of mental health disorders [5–7], and also substantial evidence supports
the link between mental health with obesity, digestive, and gut disorders [8–10]. For
instance, two meta-analyses found a higher rate of anxiety and depression among IBS
patients [11,12], and a recent genetic study identified genetic factors linking IBS with
mental health disorders [13]. Another meta-analysis found a bidirectional relationship
between depression and obesity, with depressed individuals having a 37% increased risk of
being obese and obese individuals having an 18% increased risk of being depressed [14].

Recently, extensive epidemiological studies coupled with gut microbiome sequencing
are reinforcing the importance of the gut–brain axis and identifying the gut microbiome
factors underlying it [15]. A gut microbiome and behavioral study found associations
between the gut bacterial taxa and their metabolic functions with depression and quality of
life [16]. The current evidence shows that interindividual variation in the gut microbiome
composition is mainly due to non-genetic factors, i.e., diet, exercise, and medication [17–19]
and, therefore, the gut microbiome primarily contributes to the non-genetic etiology of
mental health, obesity, and digestive disorders. Thus, modulation of the gut microbiome
by dietary and lifestyle interventions is a promising avenue for preventing and treating
mental health (for instance, see [20–24]); however, there is no clear consensus around their
efficacy [25–30]. It is plausible that interindividual differences, mediated by genetic or
non-genetic factors such as the gut microbiome, can explain why some individuals improve
their mental health after weight loss and others do not.

Digbi Health has implemented a personalized digital care intervention that uses its
multi-omics platform to provide dietary and lifestyle recommendations personalized using
genetic and microbiome information. The intervention has been shown to deliver body
weight loss in over 70% of individuals [31], reduction of fasting blood glucose level by
17.55% and an average reduction of HbA1c level by 6.27% [32], and a significant reduction
in the symptomatology of functional gastro-intestinal disorders (FGIDs) [33]. This study
addresses if gut microbiome taxa or functions and genetic markers explain body weight
loss’s effect on mental health. Our results provide evidence for genetics and gut microbiome
factors that drive improvement in mental health after weight loss. They offer an opportunity
to personalize and develop tailored dietary recommendations to tackle obesity and mental
health disorders.

2. Materials and Methods
2.1. Participant Enrollment, Intervention, and Phenotype Data Collection

Study participants were recruited from February 2020 to October 2021 among those
who achieved 2% or more body weight loss from the date when enrolled in the Digbi
Health personalized digital care program. Participants filled out an online questionnaire
regarding anxiety or depression and sleep problems at baseline. Those who indicated a
positive answer to having either of the conditions, answered questions regarding symptom
intensity at baseline (T0) and follow-up (T1) on a scale from 0 (minimum) to 5 (maxi-
mum). Additionally, at baseline, participants provided information on the presence or
absence of symptoms associated with FGIDs, prescribed and over-the-counter medications
or supplements, alcohol intake, recreational drug usage, and demographic information,
including age, gender, and height. Self-reported medication was used to identify those
taking antidepressants, antianxiolytics, antibiotics, or antimycotics (see Tables S1 and S2).
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Digbi Health’s intervention has been described elsewhere [33]. In a nutshell, per-
sonalization of dietary plans is achieved by analyzing participants’ genetics, gut bacteria,
lifestyle, and demographics. Based on these data, the program encourages participants to
make incremental lifestyle changes focused on reducing sugar consumption and timing
meals to optimize insulin sensitivity, reduce systemic inflammation by identifying possibly
inflammatory and anti-inflammatory nutrients, and increase fiber diversity to improve gut
health. Behavioral changes are implemented with the help of virtual health coaching and
the app, ensuring they are habit-forming.

Subjects self-collected saliva samples using buccal swabs and fecal samples using fecal
swabs using standard methods. DNA genotyping and genotype calling, and processing
of baseline (pre-intervention) fecal samples by 16S rRNA gene amplicon sequencing were
performed at Akesogen Laboratories in Atlanta, GA, USA.

2.2. Data Analyses

The bacterial 16S rRNA gene V3-V4 region was amplified and sequenced on the
Illumina MiSeq platform using 2 × 300 bp paired-end sequencing and sequence reads were
demultiplexed, and ASVs were generated using DADA2 in QIIME2 version 2020.8 [34].
Quality control steps included removal of primers and low-quality bases, removal of hits
to non-bacterial sequences, any ASVs not seen more than once in 10% of samples, and
unassigned taxa at the phylum level [35]. Six samples were excluded from the downstream
analysis due to participants reporting antibiotic consumption. The abundance matrix
was rarefied at even depth (n = 36,000 reads per sample, using 500 iterations) using
QIIME2 [36] and abundances were agglomerated at the genus level, resulting in 178 taxa
across 344 samples. The abundance of microbial functional pathways related to neuroactive
metabolites [16] was calculated with the q2-picrust2 plugin (version 2021.2) in QIIME2 [37]
and the Omixer-RPM package (version 0.3.2) [38]. All raw abundances were centered-log
ratio (CLR) transformed [39].

Probe level DNA genotype call files were formatted in VCF format with QC steps in-
cluding removal of discordant genotypes and left normalization. Beagle version 5.3 [40,41]
was used for phasing and imputation using the 1 KG project as reference panel [42] result-
ing in 13,478,023, chip-genotyped and those variants with imputation r2 ≥ 0.8, that were
used on downstream analyses. For population structure analyses, we calculated the first
20 principal components and estimated genetic ancestry components using the 1 KG project
samples (see Supplementary Methods). We calculated genetic scores for 23 traits selected
because of their comorbidity with obesity, digestive system (IBS and IBD), and mental
health disorders (anxiety and sleep) [43,44] (see Table S3 and Supplementary Methods). All
genetic scores were coded to be interpreted such that a larger genetic score is associated
with increasing inherited genetic predisposition to the condition.

We used logistic regression for binary outcomes and Poisson regression to model
improvement of symptom intensity scores, with the outcome being the intensity at T1
and offset being the intensity at T0 with the HC3 covariance matrix as recommended
elsewhere [45]. In all models, we included as demographic variables FGID: binary, the self-
reported status of the previous diagnosis of a functional gastrointestinal disorder; gender:
binary, male or female; BMI at T0: continuous variable; age: continuous variable; weight
loss: categorical variable, categorized as those with no change, lost 0 to 5%, 5–10%, or more
than 10% of their body weight at T1 in relation to T0; and five principal components (con-
tinuous variable) calculated using the genetic ancestry analyses described previously. On
the logistic models, a regression coefficient greater than zero is interpreted as an increasing
prevalence of self-reported illness with an increasing abundance of microbiome factors
or a higher value of the genetic scores. On the Poisson regression models, a regression
coefficient greater than zero is interpreted as a higher abundance of microbiome factors
or a higher value of genetic scores being associated with less than average improvement
in the outcome. We selected statistically significant results using an FDR ≤ 0.15 [46]. By
performing multivariate analysis using PERMANOVA [47] and linear regression models,
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we tested the effect of potential confounders (medications and alcohol consumption) on
the association of gut microbiome with mental health outcomes. We compared the relative
ability of demographic (D), microbiome (M), and genetic (G) predictors to explain baseline
and improvement on mental health outcomes by building models including only D, D + M,
D + G, and D + M + G variables. These four models were compared using Cox-Snell pseudo
r-squared values corrected by the number of predictors using Pratt’s method [48] with
variability of the pseudo r-squared estimated using bootstrap. Supplementary Methods
provide additional information on each of the methods used in this study.

3. Results
3.1. Data Collection

The study sample consisted of 369 individuals recruited from the Digbi Health research
study cohort who self-reported anxiety/depression or sleep problems when starting Digbi
Health personalized digital care intervention (Figure S1). The study subjects had been on
the intervention on average 88.3 days (median = 64 and std = 67.7 days) by the time they lost
at least 2% body weight. A health questionnaire was provided and answered on average
1.7 days (median = 0 and std = 7.7 days) after receiving it. We obtained microbiome and
genetic data for 344 and 348 individuals, respectively, and 328 submitted both sample types.
We included in the analyses 178 bacterial genera and 42 functional pathways from the gut
microbiome samples, and 23 genetic scores and ancestry from the genetic samples. For the
baseline models of anxiety or depression and sleep problems, all these 328 participants were
studied. For the improvement models, we started with the 147, 148, and 163 individuals
that reported their change in intensity for anxiety, depression, and insomnia, respectively.
Most individuals (>95%) reported improvement or maintenance of symptoms. Only 4%
(6 out of 148) for depression, 2.7% (4 out of 147) for anxiety, and 1.8% (3 out of 163) for
insomnia reported higher scores at T1 compared with T0 (Figure S2 and Table S4). Due
to the small sample size of individuals with worsening symptoms, we excluded them
from additional analyses. Likewise, we also excluded individuals reporting improvements
in 4 and 5 scale points, which were 8 for anxiety, 7 for depression, and 6 for insomnia
(Table S4). Thus, improvement models were based on 135 responses for anxiety, 135 for
depression, and 154 for insomnia.

3.2. Cohort Demographic Characteristics

Table S2 summarizes the demographic variables used in the analyses performed
in the study. The mean BMI of the participants was 34.6, corresponding to obese class
1 individuals and in agreement with the fact that most Digbi Health care digital program
participants undergo a dietary intervention to lose weight. When answering the follow-up
questionnaire, most of the participants (60.4%) lost between 5 to 10% body weight. This
cohort had a high prevalence of individuals with FGIDs (84%) and females (79%). A total of
284 (86%) of the participants reported taking antidepressants (40 or 12%) or antianxiolytics
(244 or 74%) at baseline. Table S4 provides demographic information stratified by the
level of improvement in anxiety, depression, or insomnia at T1 compared with T0. Genetic
ancestry analyses identified the majority of individuals as of European ancestry (43%),
followed by Africans (28%), Americans (20%), East Asians (7%), and Southeast Asians
(1%). We included the first five principal components from the genetic ancestry analysis as
covariates in all analyses.

3.3. Baseline Gut Microbiome and Genetic Factors Are Associated with Mental Health
Improvement after Dietary Intervention

After the dietary and lifestyle intervention, 59% of the 135 individuals studied reported
improving their anxiety symptoms, with 22%, 24%, and 13% reporting improvement in
1, 2, and 3 scale points, respectively, and 41% reporting no improvement. Three genetic
scores, irritable bowel syndrome (IBS), body mass index (BMI), and obstructive sleep apnea
(OSA), were noted to be significantly associated with changes in anxiety (Table 1). IBS cor-
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related with less than average improvement and BMI and OSA with greater than average
improvement in anxiety intensity scores after intervention. Seven bacterial genera were
statistically associated with changes in anxiety. The abundance of four, Dorea, Ruminococ-
caceae_UBA1819, Oscillospiraceae_UCG003, and Eubacterium ventriosum group, correlated
with a less than average improvement, and three, Ruminococcaceae_DTU089, Prevotella, and
Adlercreutzia, with a greater than average improvement in anxiety scores (Table 1). An
increasing abundance of genes of the bacterial functional pathway kynurenine synthesis
(MGB004) was associated with a less than average improvement in anxiety symptoms at
follow-up (Table 1). Tables S5 and S6 and Figures S3 and S4 provide summary statistics
and boxplots of the genetic scores and microbiome factors significantly associated with
improvement of anxiety between T1 and T0.

Table 1. Variables associated with improvement of anxiety between T1 and T0. N samples correspond
to the number of samples included in the analyses. In the case of microbiome analysis, it corresponds
to the number of samples with an abundance greater than zero. IBS = irritable bowel syndrome,
BMI = body mass index, OSA = obstructive sleep apnea, and FDR = false discovery rate. Beta and
‘beta se’ correspond to the regression coefficient and its standard error, respectively. p-value of
statistical test evaluating beta 6= 0.

Variable N Samples Beta * Beta Se p-Value FDR

Genetics

IBS 135 0.248 0.0788 0.0016 0.015

BMI 135 −0.218 0.0704 0.0018 0.015

OSA 135 −0.232 0.0869 0.0075 0.04

Microbial Taxa

Dorea 118 0.250 0.081 0.0017 0.071

Ruminococcaceae UBA1819 76 0.305 0.102 0.0028 0.071

Ruminococcaceae DTU089 64 −0.385 0.133 0.0039 0.071

Prevotella 51 −0.128 0.045 0.0043 0.071

Oscillospiraceae UCG003 65 0.418 0.148 0.0048 0.071

Eubacterium ventriosum group 97 0.238 0.0931 0.011 0.13

Adlercreutzia 77 −0.469 0.190 0.014 0.15

Microbial Functions

MGB004: Kynurenine synthesis 135 0.383 0.131 0.0033 0.14
* A value of beta > 0 indicates increasing values of the microbiome or genetic variable are associated with less
than average improvement and a value of beta < 0 that the improvement is greater than average.

After the dietary and lifestyle intervention, 51% of the 135 individuals studied reported
improving their depression symptoms, with 21%, 21%, and 9% reporting improvement in 1,
2, and 3 scale points, respectively, and 49% reporting no improvement. Two genetic scores
were directly associated with a greater than average decrease in intensity scores, OSA and
AUD, and height was associated with a less than average improvement (Table 2). Nine
bacterial genera and four functional pathways were associated with improvement in depres-
sion intensity, eight of which were associated with less than average improvement and five
with greater than average improvement (Table 2). Tables S5 and S7 and Figures S5 and S6
provide summary statistics and boxplots of the genetic scores and microbiome factors
significantly associated with improvement of depression between T1 and T0.
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Table 2. Variables associated with improvement of depression between T1 and T0. N samples
correspond to the number of samples included in the analyses. In the case of microbiome analysis, it
corresponds to the number of samples with an abundance greater than zero. OSA = obstructive sleep
apnea, AUD = alcohol use disorder, and FDR = false discovery rate. ‘Beta’ and ‘beta se’ correspond
to the regression coefficient and its standard error, respectively. p-value of statistical test evaluating
beta 6= 0.

Variable N Samples Beta * Beta Se p-Value FDR

Genetics

OSA 135 −0.235 0.088 0.0075 0.12

AUD 135 −0.218 0.096 0.023 0.14

Height 135 0.168 0.076 0.027 0.14

Microbial Taxa

Clostridium innocuum group 52 0.183 0.060 0.0022 0.132

Oscillospiraceae UCG003 68 0.283 0.0991 0.0043 0.132

Anaerostipes 132 0.202 0.0751 0.0071 0.132

Eubacterium ventriosum group 98 0.196 0.0746 0.0086 0.132

Lactobacillus 70 −0.189 0.0751 0.011 0.132

Negativibacillus 71 0.279 0.114 0.014 0.132

Prevotella 52 −0.116 0.0475 0.015 0.132

Oscillibacter 125 0.178 0.0732 0.015 0.132

Actinomyces 70 −0.508 0.211 0.016 0.132

Microbial Functions

MGB053: Butyrate synthesis II 135 0.849 0.260 0.0011 0.043

MGB015: p-Cresol synthesis 135 0.972 0.341 0.0044 0.078

MGB026: Nitric oxide synthesis II
(nitrite reductase)

92 −0.167 0.0607 0.0058 0.078

MGB027: Nitric oxide degradation I
(NO dioxygenase)

135 −0.171 0.0666 0.0099 0.098

* A value of beta > 0 indicates increasing values of the microbiome or genetic variable are associated with less
than average improvement and a value of beta < 0 that the improvement is greater than average.

After the dietary and lifestyle intervention, 66% of the 154 individuals studied reported
improving their insomnia symptoms, with 29%, 18%, and 19% reporting improvement
in 1, 2, and 3 scale points, and 34% reporting no improvement. Two genetic scores were
statistically significant, with one associated with a greater than average decrease in intensity
scores, type 1 diabetes (T1D), and one associated with a less than average decrease in
intensity scores, type 2 diabetes (T2D) (Table 3). Two bacterial genera were associated with
improvement in insomnia intensity. Butyricimonas was associated with a less than average
improvement, and Roseburia with a greater than average improvement (Table 3). Finally, one
functional pathway was associated with a greater than average improvement in insomnia,
nitric oxide synthesis II (nitrite reductase) (Table 3). Tables S5 and S8 and Figures S7 and S8
provide summary statistics and boxplots of the genetic scores and microbiome factors
significantly associated with the improvement of insomnia between T1 and T0.



J. Pers. Med. 2022, 12, 1237 7 of 16

Table 3. Variables associated with improvement of insomnia between T1 and T0. N samples cor-
respond to the number of samples included in the analyses. In the case of microbiome analysis, it
corresponds to the number of samples with an abundance greater than zero. T1D = type 1 diabetes,
T2D = type 2 diabetes, and FDR = false discovery rate. Beta and ‘beta se’ correspond to the regression
coefficient and its standard error, respectively. p-value of statistical test evaluating beta 6= 0.

Variable N Samples Beta * Beta Se p-Value FDR

Genetics

T2D 154 0.125 0.050 0.013 0.15

T1D 154 −0.148 0.063 0.018 0.15

Microbial Taxa

Butyricimonas 68 0.319 0.086 2.2 × 10−4 0.018

Roseburia 144 −0.143 0.043 7.5 × 10−4 0.0291

Microbial Functions

MGB026: Nitric oxide synthesis
II (nitrite reductase)

108 −0.185 0.0418 9 × 10−6 3.8 × 10−4

* A value of beta > 0 indicates increasing values of the microbiome or genetic variable are associated with less
than average improvement and a value of beta < 0 that the improvement is greater than average.

3.4. At Baseline, Psychiatric Disorders’ Genetic Scores Are Associated with Anxiety or Depression,
Whereas Microbial Metabolic Pathways Associate with Sleep Problems

At baseline (T0), individuals that reported depression or anxiety, compared with those
who did not report it, had higher mean BMI (t-test p-value = 0.022), higher proportion
of females χ2

1 p-value = 0.021), lower mean age (t-test p-value = 2.2 × 10−5), and higher
prevalence of FGIDs ( χ2

1 p-value = 8 × 10−5). Individuals who reported sleep problems
at baseline compared with those who did not report it, had a higher prevalence of FGIDs
( χ2

1 p-value = 0.021) (Table S9). We also noted significant differences in overall bacterial
diversity between individuals with and without anxiety or depression at the baseline
(PERMANOVA, p = 0.035; Figure S9).

Two genetic scores, namely alcohol use disorder (AUD) and major depressive disorder
(MDD), were significantly associated with an increased prevalence of depression or anxiety
(Table 4). Two microbial functional pathways were associated with sleep problems at base-
line: (a) menaquinone synthesis (vitamin K2) I (MGB040) with increased prevalence of sleep
problems at T0, and (b) inositol degradation (MGB038) with decreased prevalence of sleep
problems at T0 (Table 5). Tables S10 and S11 provide summaries of all variables and their
statistical associations with anxiety or depression at baseline, and sleep problems at base-
line, respectively. Table S5 provides a summary of the statistics, and Figures S10 and S11
provide boxplots of the genetic scores associated with anxiety or depression at baseline,
and for the microbial functions associated with sleep problems at baseline, respectively.

Table 4. Variables associated with depression or anxiety at T0. Summary of statistical associations
with depression or anxiety at baseline. N samples correspond to the number of samples included
in the analyses. AUD = alcohol use disorder, MDD = major depressive disorder, and FDR = false
discovery rate. Beta and ‘beta se’ correspond to the regression coefficient and its standard error,
respectively. p-value of statistical test evaluating beta 6= 0.

Variable N Samples Beta * Beta Se p-Value FDR

Genetics

AUD 328 0.361 0.139 0.0096 0.13

MDD 328 0.309 0.129 0.016 0.13
* A value of beta > 0 indicates increasing values of the microbiome or genetic variable are associated with an
increasing prevalence of anxiety or depression and a value of beta < 0 indicates a lower prevalence of anxiety
or depression.
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Table 5. Variables associated with sleep problems at T0. Summary of statistical associations with sleep
problems at baseline. N samples correspond to the number of samples included in the analyses. In
the case of microbiome analysis, it corresponds to the number of samples with an abundance greater
than zero. FDR = false discovery rate. Beta and ‘beta se’ correspond to the regression coefficient and
its standard error, respectively. p-value of statistical test evaluating beta 6= 0.

Variable N Samples Beta * Beta Se p-Value FDR

Microbial Functions

MGB040: Menaquinone synthesis
(vitamin K2) I

328 0.863 0.298 0.0038 0.092

MGB038: Inositol degradation 328 −0.484 0.170 0.0044 0.092
* A value of beta > 0 indicates increasing values of the microbiome or genetic variable are associated with an
increasing prevalence of sleep problems and a value of beta < 0 indicates a lower prevalence of sleep problems.

3.5. Multi-Omics Models Are Better Correlated with Mental Health Improvement Than
Demographics Models Alone

We compared the ability of models combining demographic (D), genetic (G), and
microbiome (M) information to explain the study outcomes: anxiety or depression at
baseline, sleep problems at baseline, and improvement of anxiety, depression, and insomnia
from T0 to T1. Except for the improvement of insomnia symptoms, we found a trend for
D + M or D + G models to explain more of the variation of the outcomes than the D model.
Additionally, the D + M + G models were always better than the D models independently
or were at least of a similar magnitude as the best D + M or D + G model (Figure S12 and
Table S12).

3.6. Medication and Recreational Drug Use Do Not Confound Microbiome Associations with
Mental Health

We performed sensitivity analyses to evaluate the potential confounding effect of
medication, alcohol intake, and recreational drug use on the observed microbiome as-
sociations. First, we performed a PERMANOVA, testing the impact of medicines at T0
on all bacterial genera and gut–brain modules/functions (Table S13A–D). Although we
observed a marginally significant effect of anxiolytic medications (p-value = 0.04), we did
not find any evidence of a confounding effect of anxiolytic or antidepressant drugs on either
anxiety or depression at T0 (p-value = 0.517 and 0.762, respectively) or sleep problems
at T0 (p-value = 0.82 and 0.62, respectively). Similarly, we did not find any confounding
effect of medications when the analysis was repeated with the subset of microbial markers
(both bacterial genera and functions) that were found to be significantly associated with
the mental health status at baseline and change in intensity of a particular outcome at T1
(Table S13E,F). Lastly, we performed the same analyses for each genus and pathway sepa-
rately. We found no confounding effect of medication, alcohol intake, or recreational drug
use on the bacterial genera and pathways identified as significantly associated with the
outcomes. The only marginal association, which did not pass multiple testing corrections,
was MGB038 (inositol degradation pathway) and alcohol consumption associated with
sleep problems at T0 (p-value = 0.017). We also noted that demographic factors such as
age, gender, and BMI explained most of the variation in the gut microbiome at baseline.
We accounted for these factors as covariates in all the statistical models, including the
multivariate models. We observed no significant confounding effect of these factors on
the associations of the microbiome with mental health outcomes (Table S13). Furthermore,
we also did not find any significant association between alcohol consumption or use of
recreational drugs and baseline gut microbiome (Table S13).

4. Discussion

We identified demographic, genetic, and gut microbiome factors that correlate with
the mental health status at baseline and future improvement in mental health outcomes,
particularly depression, anxiety, and insomnia. Overall, study participants lost on average
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5.4% body weight during the study, and more than 95% reported having an improvement
in at least one mental health outcome (Figure S2 and Table S3).

This study identified 8 genetic scores, 15 microbiome genera, and 7 functional path-
ways associated with improvement in anxiety, depression, insomnia, or anxiety/depression
and sleep problems at baseline. We noted an association between a higher abundance of
kynurenine synthesis (MGB004) and a less than average improvement in anxiety inten-
sity. Kynurenine is a catabolic product of the tryptophan-kynurenine metabolism, and
it is further metabolized into kynurenic acid or quinolinic acid. Previous studies have
reported higher levels of plasma kynurenine to be associated with anxiety [49] and higher
plasma levels of quinolinic acid to be associated with depression [50,51]. The gut micro-
bial pathway involved in p-cresol synthesis (MGB015) was strongly associated with a
less than average improvement in depression intensity. Although previous reports have
linked this gut microbial metabolite with autism [52], its role in depression has not been
previously reported.

Interestingly, nitric oxide synthesis II (MGB026: nitrite reductase) was significantly
associated with a greater than average improvement in depression and insomnia intensity.
In contrast, the nitric oxide degradation I pathway (MGB027: nitric oxide dioxygenase) was
associated with a greater than average improvement in depression intensity only. Increased
NO levels have been found in the plasma of MDD patients (see [53]). Antidepressants and
anxiolytics have been shown to induce inhibition of NO synthesis (see [54] and references
therein). Therefore, increased NO degradation by the gut microbiome may mimic the
effects of pharmacological treatments. Contrastingly, the research literature also suggests
that higher NO levels may benefit mental health due to their role in neuronal plasticity,
inflammation, and oxidative stress [55]. Given its intrinsic properties enabling rapid
diffusion and its activation of signaling cascades with functions in multiple physiological
contexts, it is not surprising that the mechanistic link between NO degradation or synthesis
by the gut microbiome and human behaviors is not well understood yet [54,56].

The association between the increasing abundance of butyrate synthesis II (MGB053)
and a less than average improvement in depression is in the opposite direction of the gener-
ally reported relationship between short-chain fatty acids (SCFAs) and mental health [54,57].
These previous reports linked lower butyrate with poorer mental health before interven-
tion. However, the association found in this study relates to the effect of the intervention.
Thus, it reflects that a high abundance of butyrate synthesis genes at baseline is associated
with improvement, but less so than the average. This could be explained because the
intervention increases dietary fiber, which is known to increase the relative abundance
of butyrate-producing microbes and those producing other SCFAs. Therefore, having a
high baseline abundance of butyrate synthesis genes may limit the beneficial effect an
individual can attain during the intervention. We also noted that the literature reports that
the beneficial or detrimental effects of higher butyrate synthesis by the gut microbiome may
depend on the context, such as the section of the intestine where the butyrate-producing
microbes are inhabiting [58].

Previous research has pointed to the association between depression and
Oscillospiraceae_UCG003 [59], Eubacterium ventriosum group [60,61], Lactobacillus [62], Pre-
votella [63], and anxiety with Ruminococcaceae_UBA1819 [64] and Ruminococcaceae_DTU089 [65]
and the direction of the association was concordant with previous reports. Butyricimonas and
Roseburia were associated with improvement in insomnia, replicating previously reported
associations [66]. Interestingly, in our dataset, several genera were systematically associated
with anxiety or depression at baseline and with improvement in multiple outcomes. For
instance, the Eubacterium ventriosum group was significantly associated with improvement
in anxiety and depression with the same direction of effect (beta = 0.24 and 0.20). Likewise,
Prevotella was associated with improvement in anxiety and depression with the same direc-
tion of effect (beta = −0.13 and −0.12) and nominally associated with anxiety or depression
at baseline (beta = −0.3 and p-value = 0.0028) (Table S10C). Oscillospiraceae_UCG003 was
associated with improvement on depression (beta = 0.28) and reached a nominal association
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with improvement on anxiety (beta = 0.42 and p-value = 0.0048) (Table S6C). In fact, there
were no genera associated (with p-values < 0.05) with multiple outcomes with an inconsistent
direction of effect.

The association between the IBS genetic score and a less than average improvement
in anxiety suggests that individuals at higher inherited risk for IBS improve their anxiety
symptoms less than those without the risk after our digital therapeutics intervention.
Cameron et al. [25] had already reported a positive correlation between genetic risk for IBS
and anxiety. Furthermore, Eijsbouts et al. (2021) suggested a common basis for anxiety and
IBS independent of their comorbidity [13]. Our results suggest that this shared etiology
may also have implications for therapeutic response. The association between BMI and
OSA genetic scores with a greater than average improvement in anxiety is likely due to
the direct relationship between obesity and the occurrence of OSA [62,67]. In fact, OSA
partially causes sleep disturbances and poor sleep and is also associated with higher
anxiety symptoms [68,69]. Therefore, it is plausible that weight loss would lead to a
reduction in OSA and anxiety. In line with this hypothesis, examining the ratio of the
linear regression coefficients for improvement of anxiety for different weight loss groups
shows that subjects who did not lose or gain body weight (no change group) improved
17% less (no change/3–5% weight loss = 0.6163/−3.6632 = −0.168, p-value = 0.003), and
those that gained weight (weight gain group) improved 62% less (weight gain/3–5%
weight loss = 2.273/−3.6632 = −0.620, p-value = 0.025) than those that lost between 3 and
5 percent body weight (Table S6). Other weight loss groups did not differ significantly in
improvement compared to the 3–5% weight loss group.

Improvement in depression was associated with the AUD genetic score, with a higher
genetic score implying a more significant improvement in self-reported depression. Genetic
scores for alcohol use are positively correlated with the amount of alcohol consumed.
Avoiding alcohol consumption is strongly recommended as part of the digital therapeutics
intervention and removing alcohol from the diet would lead to improvement in men-
tal health.

Epidemiological studies have shown significant comorbidity between insomnia and
type 1 and type 2 diabetes [70,71], and there exists evidence showing that weight loss is
associated with improvement in sleep and insomnia [72]. In line with our results associating
the T1D genetic score with a greater than average improvement of insomnia, previous
research has linked autoimmune disease and T1D in particular with increased risk of
insomnia. Interestingly, we also found the T2D genetic score associated with a less than
average improvement in insomnia. In addition to their co-occurrence, there is evidence of
a genetic [73] and a causal link between T2D and insomnia [74]. The metabolic nature of
T2D, compared with T1D, is more prone to improvement under the implemented dietary
intervention, which is focused, among other objectives, on reducing insulin resistance and
diabetes severity and risk, which could explain why subjects with higher genetic risk for
T2D may improve less than average on their insomnia.

Subjects’ reported anxiety or depression at baseline was associated with the genetic
scores of two psychiatric disorders, namely alcohol use disorder (AUD) and major depres-
sive disorder (MDD). These two associations align well with known genetic correlations of
AUD and MDD with mood and anxiety disorders [75,76]. We also identified an association
between gut microbial menaquinone synthesis (vitamin K2) I (MGB040) and a higher
prevalence of sleep problems at baseline. There is a paucity of evidence documenting this
relationship, but previous reports align with our findings [77–80] and warrant additional
investigation due to their potential to support nutrigenomics interventions. Similarly, there
was a significant association between microbial inositol degradation (MGB038) and a lower
prevalence of sleep-related issues at baseline. Although there exists no direct evidence of
the relationship between gut microbial-based inositol degradation and sleep improvement,
earlier reports suggested an association of frontal cortex myo-inositol concentration with
sleep and depression [81].
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Our study evaluated the association between genetic scores and microbiome factors
with the improvement in depression, anxiety, and insomnia after a dietary and lifestyle inter-
vention. Therefore, this study assessed a gene and microbiome by environment interaction
where the individuals responded and improved differentially depending on their genetic
and baseline microbiome profile. Previous research has focused on identifying genetic
and microbiome correlations and signatures with disease diagnosis or symptom severity
(for instance, see [5,16,82,83]). Currently, it is unknown whether diagnostic associations
with genetic or microbiome factors are also associated with prognosis after an intervention,
especially since physiological mechanisms might differ based on the interventions. To
approach this question, we compared the association between genetic and microbiome
factors with baseline (T0) and follow-up (T1) responses by participants. We found the effect
sizes of the diagnostic and prognostic associations were correlated but weakly so, with
microbial functional pathways having the largest r-squared values, for instance, 0.38 for
the associations between anxiety or depression at T0 with depression improvement at T1
(Figures S13–S15). Several of the associations with improvement at T1 had been previously
reported as diagnostic associations suggesting that, to some extent, the same physiological
process may be associated with the development of the conditions and their improvement.

This study has some limitations that are important to note. Firstly, the findings from
this study are derived from a weight loss cohort and thus may be only reflective of the
population with mental health that is overweight or obese. Secondly, this study did not
consider factors known to influence the microbiome composition, such as diet, other
disease diagnoses, measures of environmental health, social determinants of health, or any
other situational factors that may confound the results presented. Our statistical models
accounted for potential confounders and the evidence presented indicates that these do not
affect the interpretation of our findings (Table S13A–D). However, we cannot rule out their
effect due to the intrinsic limitations of our study design. Thirdly, the survey instrument
utilized was not a clinically validated questionnaire. Additionally, the questionnaire was
applied at follow-up (T1) retrospectively for the baseline (or T0) time point so that the
data may contain recall bias. However, evidence shows that non-clinical and self-reported
assessment of previous events of depression is a valid construct [75,83]. In addition, we
observed a high concordance, 81% (74 out of 91), between the self-reported measure of
depression or anxiety and the self-reported use of medication for either condition, in line
with published research [84]. Fourthly, our associations with bacterial functional pathways
were based on predicting the abundance of the relevant genes and do not directly relate to
the enzymatic or molecular functions at strain-specific levels.

5. Conclusions

Overall, the evidence gathered in this study supports the notion that weight loss
is associated with improvement in mental health and that genetic and gut microbiome
factors explain the heterogeneity in the level of improvement among subjects. Genetic and
gut microbiome factors contribute to and mediate individuals’ improvement in mental
health after dietary intervention with relative importance equal to or greater than that of
demographic characteristics on their own. Our results provide evidence of the value of
genetic and microbiome factors to explain future mental health improvement and guide
personalized interventions. We believe our findings are relevant to the large population
of individuals affected by mental health issues and obesity, and we found that they are
also congruent with previous reports. However, they warrant validation via replication on
independent samples and follow-up studies using metabolomics, longitudinal microbiome
sampling, and other assays to understand the associations more deeply.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm12081237/s1, Supplementary Methods: Study rationale; Participant enrollment, in-
tervention, and phenotype data collection; Sample collection and processing: Genome SNP array
and gut microbiome sequencing; Microbiome data analyses; Genetic data analyses; Statistical anal-
ysis. Figure S1: Study design and cohort sample size for each outcome, Figure S2: Changes in
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symptom intensity after the intervention, Figure S3: Boxplot of microbiome features associated
with improvement on anxiety, Figure S4: Boxplot of genetic scores associated with improvement
on anxiety, Figure S5: Boxplot of microbiome features associated with improvement on depression,
Figure S6: Boxplot of genetic scores associated with improvement on depression, Figure S7: Boxplot
of microbiome features associated with improvement on insomnia, Figure S8: Boxplot of genetic
scores associated with improvement on insomnia, Figure S9: Community-level comparison of the
gut microbiome of 328 individuals with and without reported anxiety or depression at baseline,
Figure S10: Boxplot of genetic scores associated with anxiety or depression at baseline, Figure S11:
Boxplot of microbiome features associated with sleep problems at baseline, Figure S12: Comparison
of models for all outcomes of the study based on demographic, microbiome and genetic factors,
Figure S13: Comparison of functional pathway associations with outcomes at baseline versus im-
provement at follow-up, Figure S14: Comparison of bacterial genera associations with outcomes
at baseline versus improvement at follow-up, Figure S15: Comparison of genetic scores associa-
tions with outcomes at baseline versus improvement at follow-up. Table S1: Demographic data of
participants and survey information used in the study, Table S2: Summary characteristics of the
cohort, Table S3: Genetic scores used in the study, Table S4: Summary characteristics of the cohorts
studied for the improvement of anxiety, depression, and insomnia, Table S5: Summary statistics of
genetic and microbiome factors significantly associated with the study outcomes, Table S6: Statistical
associations with improvement in anxiety, Table S7: Statistical associations with improvement in
depression, Table S8: Statistical associations with improvement in insomnia, Table S9: Summary
characteristics of the cohorts studied at baseline, Table S10: Statistical associations with anxiety or
depression at baseline, Table S11: Statistical associations with sleep problems at baseline, Table S12:
Model fit of combined models of demographics, microbiome, and genetic predictors, Table S13:
Effect of medications on the gut microbiome [16,33–48,85–95].

Author Contributions: I.P. and S.V.K.: formal analysis, methodology, software, visualization, writing—
original draft, and writing—review and editing. B.J., D.S.M., T.U. and K.M.M.: formal analysis
software. S.K.S., S.S.-R., C.I. and C.R.-S.: formal analysis, methodology. P.S.D.: conceptualization, and
writing—review and editing. D.E.A.: conceptualization, writing—original draft, and writing—review
and editing. R.S.: conceptualization, funding acquisition, and writing—review and editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Digbi Health, Mountain View, CA, USA. There were no addi-
tional funding sources.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of E&I Review Services (protocol code
#18053 on 05/22/2018). The retrospective analysis of mental health outcomes reported on this
research article for individuals already consented to study #18053 was determined to be exempt from
Institutional Review Board review by E&I Review Services (protocol code #21141 on 8 June 2021).

Informed Consent Statement: Informed consent was obtained electronically from study participants.

Data Availability Statement: The microbiome sequence data used in this study were submitted to
NCBI SRA under Bioproject accession number PRJNA821674.

Acknowledgments: We are grateful to subjects participating in Digbi Health research studies without
whom it would not have been possible to perform this research. We are grateful to Caleb Stacy and
Evangelos Vassos for their help in proofreading or providing feedback on the manuscript, respectively.

Conflicts of Interest: The digital therapeutics program provided to study participants in this work is
a commercially available program developed and marketed by Digbi Health. All authors except for
P.D. were employees or contractors of Digbi Health and may hold stocks or stock options on Digbi
Health. R.S. was CEO and founder of Digbi Health. P.D. was an advisor to Digbi Health and has
received consulting and/or research support from Takeda, Pfizer, Janssen, BMS, Gilead, Novartis,
Lily; stock options from Digbi Health; and royalties from PreciDiag. D.A. has received royalties from
Kura Biotech. I.P., S.K., R.S., and D.A. had a patent pending concerning this work: US Application
No. 63/330316, Methods and systems for multi-omic interventions as diagnostics for personalized
care of mental health. The former conflicts of interest do not alter our adherence to policies on sharing
data and materials.



J. Pers. Med. 2022, 12, 1237 13 of 16

References
1. DeRubeis, R.J.; Siegle, G.J.; Hollon, S.D. Cognitive therapy versus medication for depression: Treatment outcomes and neural

mechanisms. Nat. Rev. Neurosci. 2008, 9, 788–796. [CrossRef]
2. Giuntella, O.; Hyde, K.; Saccardo, S.; Sadoff, S. Lifestyle and mental health disruptions during COVID-19. Proc. Natl. Acad. Sci.

USA 2021, 118, e2016632118. [CrossRef] [PubMed]
3. Goldberg, S.B.; Lam, S.U.; Simonsson, O.; Torous, J.; Sun, S. Mobile phone-based interventions for mental health: A systematic

meta-review of 14 meta-analyses of randomized controlled trials. PLoS Digit. Health 2022, 1, e0000002. [CrossRef]
4. Miao, B.Y.; Arneson, D.; Wang, M.; Butte, A.J. Open challenges in developing digital therapeutics in the United States. PLoS Digit.

Health 2022, 1, e0000008. [CrossRef]
5. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated

from genome-wide SNPs. Nat. Genet. 2013, 45, 984–994. [CrossRef]
6. McGuffin, P. A Hospital-Based Twin Register of the Heritability of DSM-IV Unipolar Depression. Arch. Gen. Psychiatry 1996,

53, 129. [CrossRef]
7. Plomin, R.; Owen, M.J.; McGuffin, P. The Genetic Basis of Complex Human Behaviors. Science 1994, 264, 1733–1739. [CrossRef]
8. Speed, M.S.; Jefsen, O.H.; Børglum, A.D.; Speed, D.; Østergaard, S.D. Investigating the association between body fat and

depression via Mendelian randomization. Transl. Psychiatry 2019, 9, 184. [CrossRef] [PubMed]
9. Tyrrell, J.; Mulugeta, A.; Wood, A.R.; Zhou, A.; Beaumont, R.N.; Tuke, M.A.; Jones, S.E.; Ruth, K.S.; Yaghootkar, H.; Sharp, S.; et al.

Using genetics to understand the causal influence of higher BMI on depression. Int. J. Epidemiol. 2019, 48, 834–848. [CrossRef]
10. Millard, L.A.C.; Davies, N.M.; Tilling, K.; Gaunt, T.R.; Davey Smith, G. Searching for the causal effects of body mass index in over

300 000 participants in UK Biobank, using Mendelian randomization. PLoS Genet. 2019, 15, e1007951. [CrossRef]
11. Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L.

Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch.
Psychiatry Clin. Neurosci. 2014, 264, 651–660. [CrossRef]

12. Hu, Z.; Li, M.; Yao, L.; Wang, Y.; Wang, E.; Yuan, J.; Wang, F.; Yang, K.; Bian, Z.; Zhong, L.L.D. The level and prevalence of
depression and anxiety among patients with different subtypes of irritable bowel syndrome: A network meta-analysis. BMC
Gastroenterol. 2021, 21, 23. [CrossRef] [PubMed]

13. Eijsbouts, C.; Zheng, T.; Kennedy, N.A.; Bonfiglio, F.; Anderson, C.A.; Moutsianas, L.; Holliday, J.; Shi, J.; Shringarpure, S.;
23andMe Research Team. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic
pathways with mood and anxiety disorders. Nat. Genet. 2021, 53, 1543–1552. [CrossRef] [PubMed]

14. Mannan, M.; Mamun, A.; Doi, S.; Clavarino, A. Is there a bi-directional relationship between depression and obesity among adult
men and women? Systematic review and bias-adjusted meta analysis. Asian J. Psychiatry 2016, 21, 51–66. [CrossRef]

15. Järbrink-Sehgal, E.; Andreasson, A. The gut microbiota and mental health in adults. Curr. Opin. Neurobiol. 2020, 62, 102–114.
[CrossRef] [PubMed]

16. Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.;
Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019,
4, 623–632. [CrossRef]

17. García-Santisteban, I.; Cilleros-Portet, A.; Moyua-Ormazabal, E.; Kurilshikov, A.; Zhernakova, A.; Garcia-Etxebarria, K.;
Fernandez-Jimenez, N.; Bilbao, J.R. A Two-Sample Mendelian Randomization Analysis Investigates Associations Between
Gut Microbiota and Celiac Disease. Nutrients 2020, 12, 1420. [CrossRef] [PubMed]

18. Liu, X.; Tong, X.; Zou, Y.; Lin, X.; Zhao, H.; Tian, L.; Jie, Z.; Wang, Q.; Zhang, Z.; Lu, H.; et al. Mendelian randomization analyses
support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 2022, 54, 52–61. [CrossRef]

19. Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al.
Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [CrossRef] [PubMed]

20. Morres, I.D.; Hatzigeorgiadis, A.; Stathi, A.; Comoutos, N.; Arpin-Cribbie, C.; Krommidas, C.; Theodorakis, Y. Aerobic exercise
for adult patients with major depressive disorder in mental health services: A systematic review and meta-analysis. Depress.
Anxiety 2019, 36, 39–53. [CrossRef]

21. Jacka, F.N. Nutritional Psychiatry: Where to Next? EBioMedicine 2017, 17, 24–29. [CrossRef] [PubMed]
22. Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.;

Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’
trial). BMC Med. 2017, 15, 23. [CrossRef]

23. Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The Effects
of Dietary Improvement on Symptoms of Depression and Anxiety: A Meta-Analysis of Randomized Controlled Trials. Psychosom.
Med. 2019, 81, 265–280. [CrossRef]

24. Marx, W.; Lane, M.M.; Hockey, M.; Aslam, H.; Walder, K.; Borsini, A.; Firth, F.; Pariante, C.M.; Berding, K.; Cryan, J.F.; et al. Diet
and depression: Future needs to unlock the potential. Mol. Psychiatry 2022, 27, 778–780. [CrossRef]

25. Cameron, A.J.; Magliano, D.J.; Dunstan, D.W.; Zimmet, P.Z.; Hesketh, K.; Peeters, A.; Shaw, J.E. A bi-directional relationship
between obesity and health-related quality of life: Evidence from the longitudinal AusDiab study. Int. J. Obes. 2012, 36, 295–303.
[CrossRef]

http://doi.org/10.1038/nrn2345
http://doi.org/10.1073/pnas.2016632118
http://www.ncbi.nlm.nih.gov/pubmed/33571107
http://doi.org/10.1371/journal.pdig.0000002
http://doi.org/10.1371/journal.pdig.0000008
http://doi.org/10.1038/ng.2711
http://doi.org/10.1001/archpsyc.1996.01830020047006
http://doi.org/10.1126/science.8209254
http://doi.org/10.1038/s41398-019-0516-4
http://www.ncbi.nlm.nih.gov/pubmed/31383844
http://doi.org/10.1093/ije/dyy223
http://doi.org/10.1371/journal.pgen.1007951
http://doi.org/10.1007/s00406-014-0502-z
http://doi.org/10.1186/s12876-020-01593-5
http://www.ncbi.nlm.nih.gov/pubmed/33413140
http://doi.org/10.1038/s41588-021-00950-8
http://www.ncbi.nlm.nih.gov/pubmed/34741163
http://doi.org/10.1016/j.ajp.2015.12.008
http://doi.org/10.1016/j.conb.2020.01.016
http://www.ncbi.nlm.nih.gov/pubmed/32163822
http://doi.org/10.1038/s41564-018-0337-x
http://doi.org/10.3390/nu12051420
http://www.ncbi.nlm.nih.gov/pubmed/32423041
http://doi.org/10.1038/s41588-021-00968-y
http://doi.org/10.1038/nature25973
http://www.ncbi.nlm.nih.gov/pubmed/29489753
http://doi.org/10.1002/da.22842
http://doi.org/10.1016/j.ebiom.2017.02.020
http://www.ncbi.nlm.nih.gov/pubmed/28242200
http://doi.org/10.1186/s12916-017-0791-y
http://doi.org/10.1097/PSY.0000000000000673
http://doi.org/10.1038/s41380-021-01360-2
http://doi.org/10.1038/ijo.2011.103


J. Pers. Med. 2022, 12, 1237 14 of 16

26. Canetti, L.; Bachar, E.; Bonne, O. Deterioration of mental health in bariatric surgery after 10 years despite successful weight loss.
Eur. J. Clin. Nutr. 2016, 70, 17–22. [CrossRef]

27. Jackson, S.E.; Steptoe, A.; Beeken, R.J.; Kivimaki, M.; Wardle, J. Psychological Changes following Weight Loss in Overweight and
Obese Adults: A Prospective Cohort Study. PLoS ONE 2014, 9, e104552. [CrossRef] [PubMed]

28. Lasikiewicz, N.; Myrissa, K.; Hoyland, A.; Lawton, C.L. Psychological benefits of weight loss following behavioural and/or
dietary weight loss interventions. A systematic research review. Appetite 2014, 72, 123–137. [CrossRef] [PubMed]

29. Warkentin, L.M.; Das, D.; Majumdar, S.R.; Johnson, J.A.; Padwal, R.S. The effect of weight loss on health-related quality of life:
Systematic review and meta-analysis of randomized trials: The effect of weight loss on health-related quality of life. Obes Rev.
2014, 15, 169–182. [CrossRef] [PubMed]

30. Molendijk, M.L.; Fried, E.I.; Van der Does, W. The SMILES trial: Do undisclosed recruitment practices explain the remarkably
large effect? BMC Med. 2018, 16, 243. [CrossRef]

31. Sinha, R.; Kachru, D.; Ricchetti, R.R.; Singh-Rambiritch, S.; Muthukumar, K.M.; Singaravel, V.; Irudayanathan, C.; Reddy-Sinha, C.;
Junaid, I.; Sharma, G.; et al. Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study. J. Med.
Internet Res. 2021, 23, e25401. [CrossRef] [PubMed]

32. Ricchetti, R.R.; Sinha, R.; Muthukumar, K.M.; Singh-Rambiritch, S.; Underwood, B.; Junaid, I.; Reddy-Sinha, C.; Kotini, J.;
Irudayanathan, C. Outcomes of a Precision Digital Care Program for Obesity and Associated Comorbidities: Results in Real
World Clinical Practice. Int. J. Clin. Med. Cases 2020, 3, 11.

33. Kumbhare, S.V.; Francis-Lyon, P.A.; Kachru, D.; Uday, T.; Irudayanathan, C.; Muthukumar, K.M.; Ricchetti, R.R.;
Singh-Rambiritch, S.; Ugalde, J.; Dulai, P.S.; et al. Digital Therapeutics Care Utilizing Genetic and Gut Microbiome Sig-
nals for the Management of Functional Gastrointestinal Disorders: Results From a Preliminary Retrospective Study. Front.
Microbiol. 2022, 13, 826916. [CrossRef]

34. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.G.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef]

35. Callahan, B.J.; Sankaran, K.; Fukuyama, J.; McMurdie, P.; Holmes, S. Bioconductor Workflow for Microbiome Data Analysis:
From raw reads to community analyses [version 2; peer review: 3 approved]. F1000Research 2016, 5, 1492. [CrossRef]

36. Xia, Y. q2-Repeat-Rarefy: QIIME2 Plugin for Generating the Average Rarefied Table for Library Size Normalization Using
Repeated Rarefaction. GitHub 2021. Available online: https://github.com/yxia0125/q2-repeat-rarefy (accessed on 10 July 2022).

37. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for
prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef] [PubMed]

38. Darzi, Y.; Falony, G.; Vieira-Silva, S.; Raes, J. Towards biome-specific analysis of meta-omics data. ISME J. 2016, 10, 1025–1028.
[CrossRef]

39. Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: New York, NY, USA, 1986; p. 416.
40. Browning, B.L.; Tian, X.; Zhou, Y.; Browning, S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021,

108, 1880–1890. [CrossRef]
41. Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum.

Genet. 2018, 103, 338–348. [CrossRef]
42. Byrska-Bishop, M.; Evani, U.S.; Zhao, X.; Basile, A.O.; Abel, H.J.; Regier, A.A.; Corvelo, A.; Clarke, W.E.; Musunuri, R.;

Nagulapalli, K.; et al. High coverage whole genome sequencing of the expanded 1000 Genomes Project cohort including 602
trios. bioRxiv 2021. [CrossRef]

43. Rajan, T.; Menon, V. Psychiatric disorders and obesity: A review of association studies. J. Postgrad. Med. 2017, 63, 182. [PubMed]
44. Simon, G.E.; Von Korff, M.; Saunders, K.; Miglioretti, D.L.; Crane, P.K.; van Belle, G.; Kessler, R.C. Association Between Obesity

and Psychiatric Disorders in the US Adult Population. Arch. Gen. Psychiatry 2006, 63, 824. [CrossRef]
45. Zeileis, A. Econometric Computing with HC and HAC Covariance Matrix Estimators. J. Stat. Softw. 2004, 11, 1–17. [CrossRef]
46. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.

Stat. Soc. Ser. B. Methodol. 1995, 57, 289–300. [CrossRef]
47. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.;

Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.5-6. 2019; pp. 732–740. Available on-
line: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=2WBRFVIAAAAJ&sortby=pubdate&citation_
for_view=2WBRFVIAAAAJ:HeT0ZceujKMC (accessed on 6 April 2022).

48. Claudy, J.G. Multiple Regression and Validity Estimation in One Sample. Appl. Psychol. Meas. 1978, 2, 595–607. [CrossRef]
49. Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A

Complex Interconnected Loop Influencing Human Health Status. Int. J. Tryptophan Res. 2019, 12, 117864691985299. [CrossRef]
50. Cathomas, F.; Guetter, K.; Seifritz, E.; Klaus, F.; Kaiser, S. Quinolinic acid is associated with cognitive deficits in schizophrenia but

not major depressive disorder. Sci. Rep. 2021, 11, 9992. [CrossRef] [PubMed]
51. Steiner, J.; Walter, M.; Gos, T.; Guillemin, G.J.; Bernstein, H.-G.; Sarnyai, Z.; Mawrin, C.; Brisch, R.; Bielau, H.; Schwabedissen, L.; et al.

Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for
an immune-modulated glutamatergic neurotransmission? J. Neuroinflamm. 2011, 8, 94. [CrossRef] [PubMed]

http://doi.org/10.1038/ejcn.2015.112
http://doi.org/10.1371/journal.pone.0104552
http://www.ncbi.nlm.nih.gov/pubmed/25098417
http://doi.org/10.1016/j.appet.2013.09.017
http://www.ncbi.nlm.nih.gov/pubmed/24075862
http://doi.org/10.1111/obr.12113
http://www.ncbi.nlm.nih.gov/pubmed/24118750
http://doi.org/10.1186/s12916-018-1221-5
http://doi.org/10.2196/25401
http://www.ncbi.nlm.nih.gov/pubmed/33849843
http://doi.org/10.3389/fmicb.2022.826916
http://doi.org/10.1038/s41587-019-0209-9
http://doi.org/10.12688/f1000research.8986.2
https://github.com/yxia0125/q2-repeat-rarefy
http://doi.org/10.1038/s41587-020-0548-6
http://www.ncbi.nlm.nih.gov/pubmed/32483366
http://doi.org/10.1038/ismej.2015.188
http://doi.org/10.1016/j.ajhg.2021.08.005
http://doi.org/10.1016/j.ajhg.2018.07.015
http://doi.org/10.2139/ssrn.3967671
http://www.ncbi.nlm.nih.gov/pubmed/28695871
http://doi.org/10.1001/archpsyc.63.7.824
http://doi.org/10.18637/jss.v011.i10
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=2WBRFVIAAAAJ&sortby=pubdate&citation_for_view=2WBRFVIAAAAJ:HeT0ZceujKMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=2WBRFVIAAAAJ&sortby=pubdate&citation_for_view=2WBRFVIAAAAJ:HeT0ZceujKMC
http://doi.org/10.1177/014662167800200414
http://doi.org/10.1177/1178646919852996
http://doi.org/10.1038/s41598-021-89335-9
http://www.ncbi.nlm.nih.gov/pubmed/33976271
http://doi.org/10.1186/1742-2094-8-94
http://www.ncbi.nlm.nih.gov/pubmed/21831269


J. Pers. Med. 2022, 12, 1237 15 of 16

52. De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.;
Gobbetti, M.; Francavilla, M.M.; et al. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental
Disorder Not Otherwise Specified. PLoS ONE 2013, 8, e76993. [CrossRef]

53. Lu, Y.-R.; Fu, X.-Y.; Shi, L.-G.; Jiang, Y.; Wu, J.-L.; Weng, X.-J.; Wang, Z.-P.; Lin, Z.; Liu, H.-C.; Luo, J.-C.; et al. Decreased plasma
neuroactive amino acids and increased nitric oxide levels in melancholic major depressive disorder. BMC Psychiatry 2014, 14, 123.
[CrossRef] [PubMed]

54. Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y.; Kostyuk, G.P.; Danilenko, V.N.;
Chekhonin, V.P. Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int. J. Mol. Sci. 2020, 21, 9234.
[CrossRef]

55. Gulati, K.; Rai, N.; Ray, A. Nitric Oxide and Anxiety. Vitam. Horm. 2017, 103, 169–192.
56. Gautier-Sauvigné, S.; Colas, D.; Parmantier, P.; Clement, P.; Gharib, A.; Sarda, N.; Cespuglio, R. Nitric oxide and sleep. Sleep Med.

Rev. 2005, 9, 101–113. [CrossRef]
57. Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical

mechanisms. Microb. Cell 2019, 6, 454–481. [CrossRef]
58. Singh, V.; Yeoh, B.S.; Vijay-Kumar, M. Feed your gut with caution! Transl. Cancer Res. 2016, 5, S507–S513. [CrossRef]
59. Radjabzadeh, D.; Bosch, J.; Uitterlinden, A.; Zwinderman, K.; Ikram, M.A.; van Meurs, J.; Luik, A.; Nieuwdorp, M.; Lok, A.;

van Duijn, C.; et al. Gut Microbiome-Wide Association Study of Depression. Research Square. 2021. Available online:
https://www.researchsquare.com/article/rs-570388/v1 (accessed on 6 April 2022). [CrossRef]

60. Chao, L.; Liu, C.; Sutthawongwadee, S.; Li, Y.; Lv, W.; Chen, W.; Yu, L.; Zhou, J.; Guo, A.; Li, Z.; et al. Effects of Probiotics on
Depressive or Anxiety Variables in Healthy Participants Under Stress Conditions or With a Depressive or Anxiety Diagnosis: A
Meta-Analysis of Randomized Controlled Trials. Front. Neurol. 2020, 11, 421. [CrossRef] [PubMed]

61. Wallace, C.J.K.; Milev, R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann. Gen. Psychiatry
2017, 16, 14. [CrossRef]

62. Aizawa, E.; Tsuji, H.; Asahara, T.; Takahashi, T.; Teraishi, T.; Yoshida, S.; Ota, M.; Koga, N.; Hattori, K.; Kunugi, H. Possible
association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord.
2016, 202, 254–257. [CrossRef]

63. Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal
microbiota and depression. Neurogastroenterol. Motil. 2014, 26, 1155–1162. [CrossRef]

64. Jiang, H.; Pan, L.; Zhang, X.; Zhang, Z.; Zhou, Y.; Ruan, B. Altered gut bacterial–fungal interkingdom networks in patients with
current depressive episode. Brain Behav. 2020, 10, e01677. [CrossRef]

65. Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.-C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic Review of Gut Microbiota and
Major Depression. Front. Psychiatry 2019, 10, 34. [CrossRef]

66. Li, Y.; Shao, L.; Mou, Y.; Zhang, Y.; Ping, Y. Sleep, circadian rhythm and gut microbiota: Alterations in Alzheimer’s disease and
their potential links in the pathogenesis. Gut Microbes 2021, 13, 1957407. [CrossRef]

67. Jehan, S.; Zizi, F.; Pandi-Perumal, S.R.; Wall, S.; Auguste, E.; Myers, A.K.; Jean-Louis, G.; McFarlane, S.I. Obstructive Sleep Apnea
and Obesity: Implications for Public Health. Sleep Med. Disord. Int. J. 2017, 1, 00019.

68. Cox, R.C.; Olatunji, B.O. Sleep in the anxiety-related disorders: A meta-analysis of subjective and objective research. Sleep Med.
Rev. 2020, 51, 101282. [CrossRef]

69. Rezaeitalab, F.; Moharrari, F.; Saberi, S.; Asadpour, H.; Rezaeetalab, F. The correlation of anxiety and depression with obstructive
sleep apnea syndrome. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 205–210.

70. Khandelwal, D.; Dutta, D.; Chittawar, S.; Kalra, S. Sleep disorders in type 2 diabetes. Indian J. Endocrinol. Metab. 2017, 21, 758.
71. Vézina-Im, L.-A.; Morin, C.M.; Desroches, S. Sleep, Diet and Physical Activity Among Adults Living With Type 1 and Type

2 Diabetes. Can. J. Diabetes 2021, 45, 659–665. [CrossRef]
72. Duncan, M.J.; Fenton, S.; Brown, W.J.; Collins, C.E.; Glozier, N.; Kolt, G.S.; Holliday, E.G.; Morgan, P.J.; Murawski, B.;

Plotnikoff, R.C.; et al. Efficacy of a Multi-component m-Health Weight-loss Intervention in Overweight and Obese Adults:
A Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, E6200. [CrossRef] [PubMed]

73. Jansen, P.R.; Watanabe, K.; Stringer, S.; Skene, N.; Bryois, J.; Hammerschlag, A.R.; de Leeuw, C.A.; Benjamins, J.S.;
Muñoz-Manchado, A.B.; Nagel, M.; et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and
functional pathways. Nat. Genet. 2019, 51, 394–403. [CrossRef]

74. Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al.
The MR-Base platform supports systematic causal inference across the human phenome. ELife 2018, 7, e34408. [CrossRef]
[PubMed]

75. 23andMe Research Team; Howard, D.M.; Adams, M.J.; Shirali, M.; Clarke, T.-K.; Marioni, R.E.; Davies, G.; Coleman, J.R.I.;
Alloza, C.; Shen, X.; et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in
excitatory synaptic pathways. Nat. Commun. 2018, 9, 1470. [CrossRef]

76. Kranzler, H.R.; Zhou, H.; Kember, R.L.; Vickers Smith, R.; Justice, A.C.; Damrauer, S.; Tsao, P.S.; Klarin, D.; Baras, A.; Reid, J.; et al.
Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat.
Commun. 2019, 10, 1499. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0076993
http://doi.org/10.1186/1471-244X-14-123
http://www.ncbi.nlm.nih.gov/pubmed/24767108
http://doi.org/10.3390/ijms21239234
http://doi.org/10.1016/j.smrv.2004.07.004
http://doi.org/10.15698/mic2019.10.693
http://doi.org/10.21037/tcr.2016.09.13
https://www.researchsquare.com/article/rs-570388/v1
http://doi.org/10.21203/rs.3.rs-570388/v1
http://doi.org/10.3389/fneur.2020.00421
http://www.ncbi.nlm.nih.gov/pubmed/32528399
http://doi.org/10.1186/s12991-017-0138-2
http://doi.org/10.1016/j.jad.2016.05.038
http://doi.org/10.1111/nmo.12378
http://doi.org/10.1002/brb3.1677
http://doi.org/10.3389/fpsyt.2019.00034
http://doi.org/10.1080/19490976.2021.1957407
http://doi.org/10.1016/j.smrv.2020.101282
http://doi.org/10.1016/j.jcjd.2021.01.013
http://doi.org/10.3390/ijerph17176200
http://www.ncbi.nlm.nih.gov/pubmed/32859100
http://doi.org/10.1038/s41588-018-0333-3
http://doi.org/10.7554/eLife.34408
http://www.ncbi.nlm.nih.gov/pubmed/29846171
http://doi.org/10.1038/s41467-018-03819-3
http://doi.org/10.1038/s41467-019-09480-8
http://www.ncbi.nlm.nih.gov/pubmed/30940813


J. Pers. Med. 2022, 12, 1237 16 of 16

77. Grandner, M.A.; Jackson, N.; Gerstner, J.R.; Knutson, K.L. Dietary nutrients associated with short and long sleep duration. Data
from a nationally representative sample. Appetite 2013, 64, 71–80. [CrossRef] [PubMed]

78. Ikonte, C.; Reider, C.; Fulgoni, V.; Mitmesser, S. Analysis of NHANES 2005–2016 Data Showed Significant Association Between
Micro and Macronutrient Intake and Various Sleep Variables (P06-103-19). Curr. Dev. Nutr. 2019, 3, nzz031.P06-103-19. [CrossRef]

79. Lichstein, K.L.; Payne, K.L.; Soeffing, J.P.; Heith Durrence, H.; Taylor, D.J.; Riedel, B.W.; Bush, A.J. Vitamins and sleep: An
exploratory study. Sleep Med. 2007, 9, 27–32. [CrossRef]

80. Xiong, S.; Liu, Z.; Yao, N.; Zhang, X.; Ge, Q. The independent association between vitamin B12 and insomnia in Chinese patients
with type 2 diabetes mellitus: A cross-sectional study. Nutr. Diabetes 2022, 12, 3. [CrossRef]

81. Urrila, A.S.; Hakkarainen, A.; Castaneda, A.; Paunio, T.; Marttunen, M.; Lundbom, N. Frontal Cortex Myo-Inositol Is Associated
with Sleep and Depression in Adolescents: A Proton Magnetic Resonance Spectroscopy Study. Neuropsychobiology 2017, 75, 21–31.
[CrossRef]

82. 23andMe Research Team, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium; Howard, D.M.;
Adams, M.J.; Clarke, T.-K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; et al. Genome-wide
meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions.
Nat. Neurosci. 2019, 22, 343–352. [CrossRef] [PubMed]

83. MDD Working Group of the Psychiatric Genomics Consortium; Cai, N.; Revez, J.A.; Adams, M.J.; Andlauer, T.F.M.; Breen, G.;
Byrne, E.M.; Clarke, T.-K.; Forstner, A.J.; Grabe, H.J.; et al. Minimal phenotyping yields genome-wide association signals of low
specificity for major depression. Nat. Genet. 2020, 52, 437–447.

84. Skelton, M.; Rayner, C.; Purves, K.L.; Coleman, J.R.I.; Gaspar, H.A.; Glanville, K.P.; Hunjan, A.K.; Hübel, C.; Breen, G.; Eley, T.C.
Self-reported medication use as an alternate phenotyping method for anxiety and depression in the UK Biobank. Am. J. Med.
Genet. Part B Neuropsychiatr. Genet. 2021, 186, 389–398. [CrossRef] [PubMed]

85. American College of Gastroenterology. Digestive Health Tips—American College of Gastroenterology. 2021. Available online:
https://gi.org/topics/digestive-health-tips/ (accessed on 6 April 2022).

86. International Foundation for Gastrointestinal Disorders. About GI Motility—About GI Motility. 2021. Available online:
https://aboutgimotility.org/learn-about-gi-motility/ (accessed on 6 April 2022).

87. Davies, M.; Nowotka, M.; Papadatos, G.; Dedman, N.; Gaulton, A.; Atkinson, F.; Bellis, L.; Overington, J.P. ChEMBL web services:
Streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015, 43, W612–W620. [CrossRef] [PubMed]

88. Illumina. Illumina Documentation: 16S Metagenomic Sequencing Library; Preparation, Part # 15044223 Rev. B. 2013. Available
online: https://web.uri.edu/gsc/files/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 6 April 2022).

89. Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene
database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [CrossRef] [PubMed]

90. Mölder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.O.;
Kanitz, A.; et al. Sustainable data analysis with Snakemake. F1000Research 2021, 10, 33. [CrossRef]

91. Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of
larger and richer datasets. GigaScience 2015, 4, 7. [CrossRef] [PubMed]

92. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

93. Goodrich, J.; gnomAD Production Team. Using the gnomAD Ancestry Principal Components Analysis Loadings and Random
Forest Classifier on Your Dataset. Using GnomAD Ancestry Princ Compon Anal Load Random For Classif Your Dataset. 2021. Avail-
able online: https://gnomad.broadinstitute.org/news/2021-09-using-the-gnomad-ancestry-principal-components-analysis-
loadings-and-random-forest-classifier-on-your-dataset/ (accessed on 15 January 2022).

94. Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in
Science Conference, Austin, TX, USA, 20 June–3 July 2010; pp. 92–96.

95. Raju, N.S.; Bilgic, R.; Edwards, J.E.; Fleer, P.F. Methodology Review: Estimation of Population Validity and Cross-Validity, and the
Use of Equal Weights in Prediction. Appl. Psychol. Meas. 1997, 21, 291–305. [CrossRef]

http://doi.org/10.1016/j.appet.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23339991
http://doi.org/10.1093/cdn/nzz031.P06-103-19
http://doi.org/10.1016/j.sleep.2006.12.009
http://doi.org/10.1038/s41387-022-00181-8
http://doi.org/10.1159/000478861
http://doi.org/10.1038/s41593-018-0326-7
http://www.ncbi.nlm.nih.gov/pubmed/30718901
http://doi.org/10.1002/ajmg.b.32878
http://www.ncbi.nlm.nih.gov/pubmed/34658127
https://gi.org/topics/digestive-health-tips/
https://aboutgimotility.org/learn-about-gi-motility/
http://doi.org/10.1093/nar/gkv352
http://www.ncbi.nlm.nih.gov/pubmed/25883136
https://web.uri.edu/gsc/files/16s-metagenomic-library-prep-guide-15044223-b.pdf
http://doi.org/10.1093/nar/gks1219
http://www.ncbi.nlm.nih.gov/pubmed/23193283
http://doi.org/10.12688/f1000research.29032.2
http://doi.org/10.1186/s13742-015-0047-8
http://www.ncbi.nlm.nih.gov/pubmed/25722852
https://gnomad.broadinstitute.org/news/2021-09-using-the-gnomad-ancestry-principal-components-analysis-loadings-and-random-forest-classifier-on-your-dataset/
https://gnomad.broadinstitute.org/news/2021-09-using-the-gnomad-ancestry-principal-components-analysis-loadings-and-random-forest-classifier-on-your-dataset/
http://doi.org/10.1177/01466216970214001

	Introduction 
	Materials and Methods 
	Participant Enrollment, Intervention, and Phenotype Data Collection 
	Data Analyses 

	Results 
	Data Collection 
	Cohort Demographic Characteristics 
	Baseline Gut Microbiome and Genetic Factors Are Associated with Mental Health Improvement after Dietary Intervention 
	At Baseline, Psychiatric Disorders’ Genetic Scores Are Associated with Anxiety or Depression, Whereas Microbial Metabolic Pathways Associate with Sleep Problems 
	Multi-Omics Models Are Better Correlated with Mental Health Improvement Than Demographics Models Alone 
	Medication and Recreational Drug Use Do Not Confound Microbiome Associations with Mental Health 

	Discussion 
	Conclusions 
	References

