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Expert surgeons and deep learning 
models can predict the outcome 
of surgical hemorrhage from 1 min 
of video
Dhiraj J. Pangal1, Guillaume Kugener1, Yichao Zhu2, Aditya Sinha1, Vyom Unadkat2, 
David J. Cote1, Ben Strickland1, Martin Rutkowski3, Andrew Hung4, 
Animashree Anandkumar5,6, X. Y. Han7, Vardan Papyan8, Bozena Wrobel9, Gabriel Zada1 & 
Daniel A. Donoho10*

Major vascular injury resulting in uncontrolled bleeding is a catastrophic and often fatal complication 
of minimally invasive surgery. At the outset of these events, surgeons do not know how much blood 
will be lost or whether they will successfully control the hemorrhage (achieve hemostasis). We 
evaluate the ability of a deep learning neural network (DNN) to predict hemostasis control ability 
using the first minute of surgical video and compare model performance with human experts viewing 
the same video. The publicly available SOCAL dataset contains 147 videos of attending and resident 
surgeons managing hemorrhage in a validated, high-fidelity cadaveric simulator. Videos are labeled 
with outcome and blood loss (mL). The first minute of 20 videos was shown to four, blinded, fellowship 
trained skull-base neurosurgery instructors, and to SOCALNet (a DNN trained on SOCAL videos). 
SOCALNet architecture included a convolutional network (ResNet) identifying spatial features and 
a recurrent network identifying temporal features (LSTM). Experts independently assessed surgeon 
skill, predicted outcome and blood loss (mL). Outcome and blood loss predictions were compared with 
SOCALNet. Expert inter-rater reliability was 0.95. Experts correctly predicted 14/20 trials (Sensitivity: 
82%, Specificity: 55%, Positive Predictive Value (PPV): 69%, Negative Predictive Value (NPV): 71%). 
SOCALNet correctly predicted 17/20 trials (Sensitivity 100%, Specificity 66%, PPV 79%, NPV 100%) 
and correctly identified all successful attempts. Expert predictions of the highest and lowest skill 
surgeons and expert predictions reported with maximum confidence were more accurate. Experts 
systematically underestimated blood loss (mean error − 131 mL, RMSE 350 mL, R2 0.70) and fewer 
than half of expert predictions identified blood loss > 500 mL (47.5%, 19/40). SOCALNet had superior 
performance (mean error − 57 mL, RMSE 295 mL, R2 0.74) and detected most episodes of blood 
loss > 500 mL (80%, 8/10). In validation experiments, SOCALNet evaluation of a critical on-screen 
surgical maneuver and high/low-skill composite videos were concordant with expert evaluation. Using 
only the first minute of video, experts and SOCALNet can predict outcome and blood loss during 
surgical hemorrhage. Experts systematically underestimated blood loss, and SOCALNet had no false 
negatives. DNNs can provide accurate, meaningful assessments of surgical video. We call for the 
creation of datasets of surgical adverse events for quality improvement research.
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Major vascular injury during minimal access, endoscopic or robotic-assisted surgery can impair visualization 
and requires immediate action1,2. Despite maximal efforts, including the conversion from minimally invasive 
to ‘open’ surgery, 13–60% of major vascular injuries result in patient death2–6. Surgeons immediately assess the 
likelihood of achieving hemostasis and the need for blood transfusion, however; inexperience, inability7–11 and 
stress1,3,12,13 impair decision-making. Accordingly, surgeon self-assessments of the likelihood of controlling an 
unexpected vascular complication are uncorrelated with their actual performance14. Inaccurate predictions of 
blood loss and task outcome risk patient harm by delaying changes in technique, aid from surgical colleagues, 
or transfusion of blood products. Rather than waiting for a patient’s clinical deterioration, early prediction of 
difficulty at achieving hemostasis and high-volume blood loss using computer vision (CV) techniques could 
optimize patient outcomes.

We created SOCAL (Simulated Outcomes Following Carotid Artery Laceration), a video dataset of attend-
ing and resident surgeons (otorhinolaryngologists and neurosurgeons) controlling life-threatening internal 
carotid artery injury (ICAI) in a validated, high-fidelity bleeding cadaveric simulator14–18. Carotid injury is a 
catastrophic complication of endonasal surgery and results in up to 30% mortality, similar to vascular injuries 
during minimally-invasive abdominal and thoracic surgery5,19,20. In prior work, we applied artificial intelligence 
(AI) methods to SOCAL video and developed tools that quantify blood loss and measure surgeon performance 
metrics from video21,22. Using these tools, we showed that video contains signals of surgical task outcome, but 
we do not know whether the model can detect predictive signals early in a bleeding episode, nor its performance 
compared to gold-standard human experts.

We provided human experts (fellowship trained skull-base neurosurgeons) with the first minute of 20 videos 
from SOCAL (‘Test Set’) and collected predictions of blood loss and task success over the entire unseen task. 
Experts’ predictions of outcome and blood loss established a benchmark of human performance. We then built 
a deep learning neural network (DNN) trained on the SOCAL video dataset (excluding the Test Set), called 
SOCALNet, and compared model performance on the Test Set to expert benchmarks. We validated SOCALNet 
predictions in subsequent experiments. To the authors knowledge this is the first comparison of DNN-derived 
surgical video outcome prediction to human experts viewing the same video.

Methods
Experimental design.  Experimental setup, data collection, consent and implementation parameters 
for the dataset are found in Appendix 1. Seventy-five surgeons ranging from junior trainees to world experts 
on endoscopic endonasal approaches (EEA) were recorded in a nationwide, validated, high-fidelity training 
exercise. Surgeons attempted to control an ICAI in a cadaveric head perfused with blood substitute. In short, 
task success was defined as the ability for the operating surgeon to achieve hemostasis using a crushed mus-
cle patch within 5 min, upon which simulated patient mortality occurred. Blood loss was additionally meas-
ured and recorded for each trial. Performance data and intraoperative video was used to develop the SOCAL 
database14–18,23. The SOCAL database was developed in concordance with previously published methods, and is 
publicly available23–26. The SQUIRE reporting guidelines were followed27. The study was approved by the IRB 
of the University of Southern California. All research was performed in accordance with relevant regulations/
guidelines. No patient data was utilized therefore patient-level informed consent was waived. Participating sur-
geons’ consent was obtained for intraoperative video recording. Surgeon-expert consent was obtained.

Datasets.  The 147 videos in SOCAL were divided into a training set of 127 videos and a separate test set of 
20 videos. Ten videos depicting successes and 10 of failure were initially chosen at random for the test set; ulti-
mately, 11 success videos (and 9 failures) were used due to ease of video formatting. Videos were truncated after 
60 s. Only videos in the test set were shown to experts for grading.

SOCALNet model architecture.  SOCALNet utilized two distinct neural network architectures and a 
transfer learning approach to generate predictions using video. The first layer, a ResNet, is used to analyze each 
individual frame to generate a vector representation of features which correspond with success/failure of a trial, 
or an amount of blood lost. However, given the necessity to analyze video (versus individual frames), a temporal 
layer was added following the ResNet. This temporal layer utilizes an LSTM architecture, a type of recurrent 
neural network which contains an input, output and forget gate. These gates can modify information from the 
current frame as well as the frames prior, before passing these modified weights to the subsequent cell, effec-
tively regulating the flow of information across a temporal sequence. This enables SOCALNet to take individual 
frame-predictions generating by a ResNet and link them together in a temporal sequence using an LSTM. A 
schematic of SOCALNet is shown in Fig. 1.

SOCALNet model implementation.  See eSupp1 for model code. Video was sampled at 1 frame-per-
second (fps) and input into two layers, a feature generating layer and a temporal analysis algorithm (Fig. 1). The 
output of the model was a binary prediction of surgical ability (trial success or failure) and estimated blood loss 
over the entire trial (in milliliters).

For the feature generator, we utilized a transfer-learning approach, where a Residual Learning Neural Net-
work (ResNet) model was pretrained on the ImageNet 2012 classification dataset28,29. ResNet is a single-stage 
convolutional neural network (CNN) which uses skip connections to allow for large networks with many layers 
to skip layers that hurt overall performance. ResNet has become ubiquitous for object detection and classification 
in computer vision (CV)29. All weights from pretraining on ImageNet were used in our model, however the final 
three layers of the ResNet were retrained on SOCAL images to predict blood loss or task success. The values of 
the four output nodes from the penultimate layer of the ResNet were extracted, representing a 4 × 1 matrix of 
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values predictive of task success/failure or blood loss within that individual frame. This matrix is combined with 
with tool presence information encoded as an array of eight binary values (1 × 8 matrix per frame, representing 
whether specific surgical instruments were present within the frame). This process is repeated for all frames, and 
the resulting 2D matrix is passed into a bi-layer Long Short-Term Memory (LSTM) recurrent neural network30. 
Instrument annotations alone are inadequate for outcome prediction; successful detectors incorporate instru-
ment data and image features21.

Expert assessment.  Experts were four skull base fellowship-trained neurosurgeon instructors in ICAI 
management. Experts watched the 20, 1-min test videos and provided: blood loss estimates (in mL), outcome 
predictions (success/failure), and surgeon grades (1–5 Likert scale, 1 represents novice and 5 represents master). 
Experts also reported self-confidence in their outcome prediction (1–5 Likert scale; 5 represents most confi-
dent). Each expert was surveyed for this data in a standardized fashion via the following questions: Based on the 
1 min of video viewed, (1) do you feel the operating surgeon will succeed or fail in controlling bleeding within 5 
min? (2) how much blood (in mL) will be lost by the end of the trial. (3) On a Likert scale of 1–5, how skilled is 
the operator? (4) How confident are you in this prediction? To provide baselines prior to grading, experts were 
shown 3 anchoring videos demonstrating predetermined novice, average, and master performances with respec-
tive outcomes data. Anchoring videos were not contained in the Test-Set and were chosen as representative 
videos of each skill level by adjudication by the study team. Experts were not given additional data (e.g. years of 
practice, attending/resident status) on participating surgeons and relied solely on intraoperative video. Grading 
sessions were conducted in double-blinded fashion by the lead author (DJP) and individual experts (BS, MR, 
GZ, DAD, referred to as S1–S4). Given high concordance, mean and mode are reported for experts (‘S’).

Validation analysis.  We conducted two experiments to evaluate model and expert concordance. In experi-
ment one, two videos were identified in the Test-Set where a critical error occurred shortly after the 1-min video 
sample concluded (i.e., not shown to the model or surgeons). The model and all surgeons predicted, incorrectly, 
that both videos were successes. A new, 1 min clip was generated showing the critical error and its aftermath. 
These new clips were evaluated by one of the human experts and SOCALNet.

In a second experiment, the three best (least blood loss, successes) and worst (most blood loss, failures) videos 
were identified from within the Test-Set. Composite ‘best’ and ‘worst’ videos were constructed by combining the 

Figure 1.   SOCALNet architecture. Deep learning model used to predict blood loss and task success in 
critical hemorrhage control task. (A) Video is snapshotted into individual frames. (B) A pretrained ResNet 
convolutional neural network (CNN) is fine-tuned on SOCAL images from (A), to predict of blood loss and task 
success in each individual frame. The penultimate layer of the network was removed and a 1 × 4 matrix of values 
predictive of success/failure or BL was obtained. This is repeated for all frames, generating a new matrix with 
N (number of frames) rows and 4 columns. Output matrix from (B) and Tool Presence Information (C) [e.g. 
‘Is suction present? Yes (check); is Muscle present? No (X), etc.; encoded as 8 binary values per frame (Nx8)] is 
input into a temporal layer. (D) Temporal layer: Long-short-term memory (LSTM) modified recurrent neural 
network allowing for temporal analysis across all frames. The 2D matrix of: features from the ResNet and Tool 
Presence Information (‘check mark’, ‘X’) from each frame are fed into the Temporal Layer. All LSTM predictions 
are consolidated in one dense layer and (E) a final prediction of success/failure, and blood loss (in mL) is output.
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first 20 s of each of the three best and worst trials in each possible order permutation (6 ‘best’, 6 ‘worst’ videos). 
The twelve composite videos were then presented to SOCALNet.

Statistical analysis.  Blood loss prediction was reported using mean error, root mean square error (RMSE), 
and Pearson’s correlation coefficients. Categorical inter-rater reliability was calculated using Cohen’s Kappa and 
Krippendorff ’s alpha for more than two raters. Continuous inter-rater reliability was calculated using Pearson’s 
correlation coefficient and an inter-rater correlation coefficient (ICC) (> 2 groups; using a two-way random 
effects ICC model)31. We used Fisher’s exact test for categorical comparisons. We performed analysis in Python 
with SciPy32.

Results
Table 1 lists predictions and ground truth data. There were 11 successful trials and 9 failed trials in the Test Set, 
with mean blood loss of 568 mL (range 20–1640 mL, mean success = 323 mL, mean failure = 868 mL). Experts 
correctly predicted outcome in 55/80 predictions (69%, Sensitivity: 79%, Specificity: 56%). Expert predictions 
were concordant, with one dissent in 80 ratings (Fleiss’ kappa = 0.95). The average root mean square error (RMSE) 
for blood loss prediction of surgeons was 351 mL (mean error = − 131 mL, average R2 = 0.70). Expert ICC was 
high at 0.72.

Figure 2, and Supplemental Table 1 demonstrates the relationship between prediction confidence, surgeon 
skill and prediction accuracy. Experts were most accurate when maximally confident (5/5 confidence, accuracy 
88%) or viewing a surgeon they rated as having minimal (Likert scale 1, accuracy 92%) or maximal skill (Likert 
scale 5, accuracy 79%). Predictions with non-maximal confidence (levels 2–4,) were only marginally better than 
chance (53%, p = 0.02 compared to maximal confidence). Predictions of intermediate skill surgeons were also 
less accurate (levels 2–4, 63%, p = 0.04 compared to composite 1/5 and 5/5 skill).

SOCALNet correctly predicted outcome in 17/20 trials (85%, Sensitivity: 100%, Specificity: 66%), noninferior 
to surgeons (p = 0.12). The model predicted blood loss with a RMSE of 295 mL (mean error = − 57 mL, R2 = 0.74) 
(Fig. 3). The model and experts all predicted outcome correctly in 13/20 trials. In four trials, the model was 
correct and all experts incorrect, in one trial the model was incorrect, and all experts correct, and two trials all 
were incorrect (Fig. 4). Correlation (R2) between blood loss estimates for the model, experts and ground truth 
are shown in Supplemental Fig. 1, and range from 0.53 to 0.93. Correlation between the model and the average 
surgeon blood loss estimate was 0.73, ranging from 0.53 to 0.74 for individual surgeons (Table 1).

We then evaluated trials above the 50th percentile for blood loss, where blood loss exceeded 500 mL and 
transfusion might be needed. The model predicted a blood loss estimate above 500 mL in 80% (8/10) compared 
to experts 47.5% (19/40); this difference was not statistically significant (p = 0.09).

Exploratory model‑validation.  Supplemental Table 2 reports model-validation experiments. In two tri-
als, experts and SOCALNet predicted success, but the surgeon failed due to a critical error shortly after the end 
of the 1-min clip (therefore unseen by experts and SOCALNet). When we included the critical error, the model 
accurately predicted ‘failure’, as did an expert. In a second experiment, SOCALNet viewed six composite ‘Best’ 
trials and uniformly predicted success with low blood loss (328–473 mL); conversely, in six composite ‘Worst’ 
videos the model uniformly predicted failure with high blood loss (792–794 mL).

Discussion
To address the need for datasets depicting surgical adverse events we created SOCAL, a public video dataset 
of 147 attempts to control carotid injury in high-fidelity perfused cadavers. In this work we compared human 
expert predictions of outcome using 1 min of video from 20 trials in the dataset to those of a DNN (SOCALNet). 

Table 1.   Results comparing deep learning model with expert Surgeons. SN: sensitivity; SP: specificity; M-S: 
model-surgeon. a Kappa coefficient. b Inter-class coefficient. c Inter-Surgeon Agreement: Success/Failure = 0.95, 
Blood-Loss: 0.72.

Accuracy (SN %, SP %) RMSE (R2) M-S agreement:a success/failure M-S agreement:b blood loss

Ground truth 11 success
9 failures – – Avg blood loss: 568 (range:20–1640)

Model 17/20 (85%)
(100, 66) 295 (0.74) – –

Expert cohort 55/80 (68.75)
(79, 56) 351 (0.70) 0.43‡ 0.73c

Surgeon 1 13/20 (65%)
(73, 55) 306 (0.73) 0.34 0.74

Surgeon 2 14/20 (65%)
(81, 55) 335 (0.66) 0.43 0.66

Surgeon 3 14/20 (65%)
(81, 55) 423 (0.65) 0.43 0.65

Surgeon 4 14/20 (65%)
(81, 55) 329 (0.74) 0.43 0.72
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Compared to expert benchmarks, SOCALNet met or surpassed expert prediction performance, despite its rela-
tively primitive architecture and small training data size relative to CV tasks. We synthesized counterfactual vid-
eos of excellent and poor surgeon performance to challenge SOCALNet, and it correctly predicted the outcomes 
in these challenges. SOCALNet and other CV methods can aid surgeons by quantifying and predicting outcome 
during surgical events, and in automatic video review. The absence of video datasets containing adverse events 
is a critical unmet need preventing the development of predictive models to improve surgical care.

Benchmark performance of human experts.  Expert predictions were highly concordant, indicating 
that experts detected similar signals of blood loss and outcome (cross-correlation: R2 = 0.74–0.93, Kappa for 
success prediction = 0.95). Experts had uniform definitions of success (hemostasis) and were familiar with the 

Figure 2.   Association between expert confidence, surgeon skill level and accuracy of prediction. Experts are 
most accurate when viewing trials of surgeons with low or high skill, or where they (experts) are maximally 
confident. For those with moderate skill or when experts have moderate confidence, prediction accuracy is 
lower. Size of circle denotes number of trials. Color denotes accuracy.

Figure 3.   Expert and SOCALNet blood loss quantification. Predicted versus observed blood loss estimations by 
individual surgeons (grey), surgeon mean (blue), and model (green). Red points represent measured blood loss 
(ground truth).
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stepwise progression of a well-described technique18,33. Thus, it is reasonable to conclude that using the first 
minute of video of a bleeding event, human experts detect signals predictive of blood loss and task outcome.

Although experts had reasonably accurate outcome and blood loss predictions (69% accuracy, R2 = 0.7), 
experts systematically overestimate surgeon success and underestimate bleeding: 4/6 of expert errors were 
false ‘success’ predictions, experts systematically underestimated blood loss by 131 mL and experts failed to 
identify 52% of high blood loss (above 500 mL) events. This post-hoc cutoff of 500 mL represents a poten-
tial clinical marker of need for transfusion. The tendency for human experts to underestimate blood loss is 
well documented34–37, corroborated by our findings, and may result in delayed recognition of life-threatening 
hemorrhage.

To validate individual ratings, we asked experts to provide their confidence in each prediction, and perceived 
skill rating of the participating surgeon. Maximally confident predictions were more likely to be correct, as 
expected from prior work34,35,38. Similarly, predictions were most accurate when evaluating highest and lowest-
skilled surgeons (skill rating 1 or 5), but scarcely better than chance when evaluating intermediate surgeons. 
Intermediate skill surgeons comprised half of all surgeons and may benefit greatly from performance assessments.

During a real vascular injury, estimation ability of the average surgeon is likely to be inferior to our experts 
calmly rating a single stereotyped task after training with videos of known blood loss. Experts’ systematic 
underestimation of blood loss and struggle to assess performance of intermediate surgeons represents a chasm 
in surgeon-assessment proficiency. Surgical patients may benefit from novel methods that improve on these 
benchmarks.

SOCALNet performance compared to experts.  We designed a primitive deep-learning architecture 
containing a standard CNN and a recurrent neural network, which we call SOCALNet. We provided SOCALNet 
with short videos from a much smaller training dataset than is customary in CV. Despite these disadvantages, 
SOCALNet made statistically non-inferior (and numerically superior) outcome predictions and superior blood 
loss predictions compared to human experts. SOCALNet’s predictions of blood loss had a smaller mean under-

Figure 4.   Outcome predictions of experts and SOCALNet. Outcomes of experts (Blue) and model (Red) 
in predicting task success using 1 min of video. Circle size denotes number of trials (N). Success (S) and 
failure (F) denoted underneath each N. When the union of successful predictions is taken, the model + expert 
grouping would successfully predict outcome in 18/20 cases. In the 2 remaining cases (bottom left quadrant), 
a critical error took place following the cessation of the video and was evaluated in subsequent counterfactual 
experiments.
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estimation and standard error. Unlike experts, SOCALNet predictions were accurate for intermediate-skill sur-
geons.

The advantages of SOCALNet support the development of computer vision tools for surgical video review and 
as potential teammates for surgeons39. SOCALNet demonstrates that CV models can provide accurate, clinically 
meaningful analyses of surgical outcome from video. Future models could leverage the vast but largely untapped 
collections of surgical videos. Workflows developed in building SOCALNet can guide model deployment for 
other surgical adverse events. Human-AI teaming is a validated concept in other domains40–42. A SOCALNet-
and-expert combined team (with model as a tiebreaker, particularly when expert confidence was low) would 
have generated 18/20 correct predictions. Furthermore, the only two inaccurate predictions from this teaming 
occurred when a critical error was made after the video ceased, and these errors were detected by the model and 
experts. If utilized at scale, AI-driven video analysis may quantify comparisons of surgical technique, provide 
real-time feedback for trainees, or provide guidance during rare scenarios a surgeon may not have encountered 
(e.g. vascular injury) but the model has been trained on39.

SOCALNet has room for improvement. For adverse events, the (1) accurate estimation of high-volume 
blood-loss and (2) detection of task failures may be prioritized as exsanguination is life-threatening. SOCALNet 
blood loss predictions exhibited more robust central tendency than experts, resulting in better predictions for 
typical performances. However, when grading edge cases of the two worst surgeons in the Test Set, SOCALNet 
underestimated blood loss (absolute error of 790–800 mL on videos exceeding 1.5L of blood loss). In predicting 
failure (specificity), both experts and SOCALNet showed limitations (Specificity = 0.56, 0.66 respectively); how-
ever, improving expert predictions are challenging, and most surgeons are non-experts. Accordingly, applying 
CV optimization techniques to AI models (e.g. cost-sensitive classification, oversampling) may be preferred43,44.

Surgical adverse event video datasets: an unmet need in surgical safety.  A growing body of 
evidence supports the quantitative analysis of surgical video22,45–48. One fundamental discovery has been the 
detection of signals in surgical video that predict patient outcome: surgeons have heterogeneous skill resulting 
in heterogeneous outcomes14,45,46,49. Although low-skill surgeons are more likely to have adverse intraoperative 
events, video of these events has not been systematically studied. Instead of studying surgical video, studies 
describe adverse events using textual medical records, radiography, and laboratory results. Analysis of these 
extra-operative records and correlations with pre-operative risk factors and post-operative management can be 
useful50–54. However, this research omits a crucial determinant of the outcome of the surgical patient: the surgical 
event itself. This omission limits root-cause analysis to only the extra-operative universe and prevents evaluation 
of the technical maneuvers and patient anatomic conditions that make adverse events more likely. Unlike textual 
records, surgical video depicts all visualized surgeon movements and patient anatomy, making video uniquely 
suited for the study of operative events. The results of the present study begin to demonstrate the value of study-
ing video of surgical adverse events.

We propose the creation of large, multi-center datasets of surgical videos that includes adverse events55,56. 
Video datasets of surgical adverse events can be leveraged using predictive models (e.g., SOCALNet) which can 
detect intraoperative events, evaluate performance and quantify technique. This study was supported the North 
American Skull Base Society, whose mission is to promote scientific advancement, share outcomes data for 
education and to advance outcomes research. Groups such as the Michigan Bariatric Surgery Collaborative and 
the Michigan Urologic Surgery Improvement Consortium have conducted similar work and we hope to call their 
attention to adverse events in addition to routine procedures57,58. National organizations capable of soliciting 
large bodies of data should prioritize collecting adverse event videos and apply technical innovations adopted 
by other medical fields to ensure privacy and confidentiality59–61. National organizations can also facilitate the 
scaling of expert labeling. Small groups face long delays in accruing sufficient cases and labeling video. In this 
study, despite a long term track record of collaboration amongst our team, it required 2 months for our experts 
to review 20 min of aggregated video62. Collaborative efforts may be able to require video review as a condi-
tion of membership. This work is of importance given the potential strength of AI models to augment human 
performance. In the context of ICAI, an AI model may be useful in predicting high volumes of blood loss, or 
where outcomes are more uncertain. However, the volume of video required for appropriate statistical power 
to demonstrate clinical utility would require significant collaboration between institutions and expert surgeon 
reviewers. We are in the process of establishing a data sharing collective, aimed at providing a secure mechanism 
for surgeons to share anonymized video and corresponding outcomes. This effort mirrors other quality improve-
ment efforts already underway in surgical fields, with the added modality of surgical video and computer vision 
analysis. It is our hope that these efforts can accelerate the collection of surgical video and analysis using DNN 
methods such as described in this manuscript.

Finally, high-fidelity simulation enables analysis of rare surgical events. Curating 150 videos of real carotid 
injuries would require tens of thousands of cases, an impossible task without streamlined data-sharing mecha-
nisms; using perfused cadavers and real instruments we collected hundreds of observations of this otherwise 
rare event. Videos in the simulated environment can complement surgical video datasets that otherwise depict 
thousands of uncomplicated cases and only a few rare events14,15,17,18,63–66. As more surgical video datasets are 
developed, we can follow the ‘sim-to-real’ process where models are trained on virtual data and then fine-tuned 
and validated in the real environment67–69.

Limitations
Our study has several limitations. First, validation on clinical video is a clear next step, although accruing a 
corpus of carotid injury video would likely require substantial national efforts. Second, individualized models 
are required which incorporate surgeon experience, response to hemorrhage, and patient specific factors into a 
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predictive model. This is a necessary step in the development of deep learning models and for human-AI team-
ing. Concepts such as the ‘OR Black Box’ may be able to incorporate factors which may not be captured in purely 
intraoperative video (e.g. a surgeon’s appropriate response to an injury)70. Additionally, results from carotid inju-
ries may not transfer to other vascular injuries, and vascular injuries differ from other adverse events. Finally, this 
task was performed in a constrained, simulated environment, with clear endpoints; this is of course far removed 
from realities of clinical practice. Rather than diminishing our results, these complementary challenges showcase 
the depth of unmet need within surgical-video data science. Separately from these study design limitations, 
SOCALNet ingests ground truth tool annotations as input, which requires pre-processing of data and is thus 
not fully automated71–73. The lack of curated surgical video datasets remain a major limitation for future work.

Conclusion
Experts and a neural network can predict the outcome of surgical hemorrhage from the first minute of video of 
the adverse event. Neural network-based architectures can already achieve human or supra-human performance 
at predicting clinically relevant outcomes from video. To improve outcomes of surgical patients, advances in 
quantitative and predictive methods should be applied to newly collected video datasets containing adverse 
events.

Data availability
The datasets generated during and/or analyzed during the current study are available in the figshare repository, 
link: https://​doi.​org/​10.​6084/​m9.​figsh​are.​15132​468.​v1.
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