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Abstract Bacterial cellulose spheres subjected to amination and inlaid modification with
superparamagnetic molecules were analyzed with regard to possibility of their application as
an immobilization carrier of Lecitase® Ultra (LU) enzyme. The starting point to obtain the
carrier was synthesis of bacterial cellulose spheres performed in shaking cultures of
Komagataeibacter xylinus. These spheres were subsequently subjected to a multi-stage mod-
ification to increase the efficiency of the immobilization process and to separate product from
the reaction medium. Maximal yield of Lecitase® Ultra immobilization equaled 70%. It was
also found that immobilization process did not affect the pH and LU temperature optimum.
Moreover, immobilized enzyme exhibited similar temperature stability profile as its native
form. The immobilization process did not significantly affect the enzyme Ky, value. The
immobilized enzyme retained over 70% of its initial activity after 8§ cycles of use. The
immobilized enzyme displayed good storage stability and retained 80% of its initial activity
after 4 weeks at 4 °C. The potential application of such modified cellulose-based carrier may
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be correlated with lower costs of process thanks to higher enzyme’s reusability in comparison
to unbound enzyme. Moreover, data presented in the current study may serve as proof of a
concept of cellulose-based carrier utilization for immobilization of enzymes other than LU and
of high industrial importance.

Keywords Bacterial cellulose - Modification - Immobilization - Lecitase® Ultra

Introduction

Immobilization allows to use enzymes in many industrial branches thanks to the possi-
bility of their repeated use (it lowers costs of new enzymes’ production) and increased
stability related with severe for biological macromolecules conditions of reactions,
especially in industrial settings [1]. The process of enzymes’ immobilization is referred
by some authors as “an art,” and it requires, more than anything else, using a suitable
carrier that meets all pre-designed requirements [2, 3]. In the era of searching for
environment-friendly technologies, natural biopolymers are gaining more and more
recognition [4]. One of such biopolymers, with such unique properties, as high homo-
geneity or high Young’s modulus, is bacterial cellulose (BC) [5]. Depending on the
bacterial culturing conditions, BC takes form of flat membranes (in static cultures), or
spheres (when shaking is performed). The BC size, mechanical properties, degree of
crystallinity, or polymerization also depends on the culture conditions [6, 7]. Despite
many advantages, purified BC lacks specific functional groups that allow to permanently
bind enzymes to its fibrils. Interactions between enzyme and BC are result of hydropho-
bic or hydrogen bond interactions which are susceptible to temperature changes, pH, or
ionic strength. The BC matrix for enzyme immobilization may be modified in situ by
supplementation of the culture medium with, e.g., carboxymethylcellulose, chitosan,
alginate, or lignin derivatives [8—11]. Another way to modify the physicochemical
properties of BC is to modify the conditions of drying of BC membranes, which affect
its porosity and the ability to adsorb the enzyme [12]. BC can also be modified by
introduction of epoxide groups using epichlorohydrine or 1,4-butanediol diglycidyl ether
and further amination or oxidization using 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)
to introduce carboxyl groups on its surface [13—16]. These treatments considerably
increase the possibilities of using BC as enzyme or other active substances’ carrier.

Lipolytic enzymes, despite many years of research on their properties and applicabil-
ity, still attract great attention thanks to their high biotechnological potential. For
example, in the food industry, lipolytic enzymes are increasingly used as replacements
or additives to traditional emulsifiers [17, 18]. Lipases have also become one of the most
important groups of enzymes used in organic syntheses. The ability to catalyze ester
synthesis and transesterification reactions allows the use of this enzyme as biocatalysts in
the production of biodegradable polyesters [19, 20]. Thus, methods increasing lipases’
efficiency and operational stability, including enzymes’ immobilization, are constantly
developed [21].

The aim of the present study was to analyze the properties of BC spheres obtained from a
Komagataeibacter xylinus shaking culture, modified with polyethyleneimine and ferromag-
netic particles, for use as a carrier for the immobilization of enzymes of lipolytic activity,
namely, Lecitase® Ultra.
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Material and Methods
Materials

An enzymatic preparation displaying activity of phospholipase A and lipase (trade name
Lecitase® Ultra; E.C.3.1.1.32, LU, Sigma-Aldrich) was used. K. xylinus ATCC 53582 strain
was used for the production of BC. All reagents used were of analytical quality and were
purchased from Sigma-Aldrich (Poland) or Chempur (Poland).

Experiment
Bacterial Cellulose Beads Preparation

The culture of K. xylinus was carried out in a 25-ml Erlenmeyer flask with Herstin-Schramm
(HS) medium containing glucose 20 g/, yeast extract 2.0 g/1, peptone 2 g/1, citric acid 1.15 g/1,
Na,HPO, 2.7 g/l, and MgSO, -7H,O 0.06 g/l with 1% ethanol. Prepared medium was
inoculated with 1 ml of 2-week-old starter culture. The cultivation was carried out at 28 °C,
on a laboratory shaker at 180 rpm for 24 h. After this time, the formed “spheres,” hereinafter
referred to as “beads” of BC (BCB), were picked up using a laboratory strainer and rinsed in
deionized H,O (dH,0) to remove culture medium. The BCB was then digested with 0.1 M
NaOH at 80 °C for 30 min (3%) to remove bacterial cells and residual nutrient components.
Finally, the cellulose was rinsed again with dH,O until the pH stabilization at 7.0. Cellulose
beads prepared in this way were stored at 4 °C until use.

Modification of Bacterial Cellulose Beads and Lecitase® Ultra Immobilization

The preparation of the carrier was carried out according to optimized protocol (Fig. 1). In the
first stage, the beads were oxidized using sodium periodate (NalO,4). The fixed mass of BCB
was transferred to the plastic tubes, added in a ratio of 1:2 with 100 mM aqueous NalO,
solution and mixed on a roller shaker for 4 h at 25 °C. The oxidized BCB was then rinsed with
dH,0 and 1% (v/v) polyethyleneimine (PEI) solution (M,, 750,000) in 100 mM phosphate
buffer at pH 7.0 was added in a 1:1 ratio and further incubated on a roller mixer for 12 h at
25 °C. Obtained BCB saturated with PEI (BCB-PEI) was washed with 100 mM phosphate
buffer at pH 7.0 for removing excess of unbounded PEIL In the next step, BCB-PEI was
saturated with the mixture of Fe**/Fe®* ions (sulfate salts) in molar ratio 1:2 by addition of 1
volume of beads to 3 volumes of previously prepared Fe**/Fe** solution and mixed on a roller
shaker for 20 min at room temperature. After aspiration of Fe?*/Fe* solution, 3 volumes of
2.5% NH4OH aqueous solution were added and incubated for 30 min at 60 °C with periodic
stirring. Finally, the obtained BCB-PEI-Fe was rinsed with dH,O until the pH stabilizes and
stored in water at 4 °C until further use.

Enzyme Immobilization
Initially, the BCB-PEI-Fe were activated with 1% glutaraldehyde in 100 mM phosphate
buffer at pH 7.0 by adding 2 volumes of solution in relation to the BC volume and mixed

using a roller shaker at room temperature for 1 h. The activated BCB-PEI-Fe was rinsed
three times in 100 mM phosphate buffer of pH 7.0 with 100 mM NaCl to remove
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Fig. 1 The illustration of carrier preparation and Lecitase® Ultra immobilization process

unbound glutaraldehyde. Immobilization of the enzyme was performed by adding 2
volumes of the enzyme solution to 1 volume of BCB-PEI-Fe activated with glutaralde-
hyde and incubation at 4 °C for 24 h. After the incubation, the supernatant was removed,
and the obtained matrix was washed twice with 100 mM phosphate buffer pH 7.0. Then,
4 volumes of sodium borohydride (1 mg/ml in 100 mM phosphate buffer of pH 7.0)
solution were added to the immobilized enzyme and incubated at 4 °C for 1 h. In the
next stage, BCB-PEI-Fe was rinsed once in 100 mM phosphate buffer of pH 7.0
containing 100 mM NaCl and 0.25% Triton-X100, and then twice in 100 mM phosphate
buffer of pH 7.0.

Determination of the Activity of the Native and Immobilized Enzyme

As substrate for the determination of LU activity, 4-nitrophenol palmitate (pNPP) was
used at a concentration of 0.5 mM in Tris-Cl 50 mM pH 8.5 in the presence of 0.25%
Triton X-100. The stock solution of pNPP (3.3 mg per ml) was prepared in 2-propanol,
mixed with 10 volumes of assay buffer, and heated to 60 °C for 15 min to obtain
transparent solution. Activity was determined by measuring the absorbance changes for
5 min at 30 °C at wavelength A =348 nm (e =5.400 mM ' cm™ ') using a microplate
reader. One Lecitase® Ultra unit releases 1 umol pNPP per minute. The specific activity
of the enzyme activities was expressed as units per mg protein, immobilized enzyme as
units per g of wet weight of the carrier.

Protein Concentration Determination

Protein concentrations were assayed by Bradford method with bovine serum albumin as a
standard [22].
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Efficiency of Binding of the Enzyme to the Carrier

In order to test the ability of binding the enzyme with the carrier, Lecitase® Ultra formulation

was diluted in phosphate buffer of pH 7.0 in the range of activity of 500 to 1200 mU/ml and

protein concentration range of 0.45 to 1.8 mg/ml. The prepared dilutions were then mixed with

the activated carrier. Next, prepared samples were incubated overnight at 4 °C. After this time,

activity of LU was measured in each of the trials according to the methodology given above.
The yield of immobilization was calculated from the equation:

immobilized activity

Yield(%) = 100 - )
starting activity

where immobilized activity is the difference between starting and remaining activity in the
binding solution [23].

Optimum pH of Free and Immobilized Enzymes

In order to check the pH optimum for free and immobilized enzymes, the enzyme activity was
measured at pH 6.0, 6.5, 7.0, 7.5 (50 mM phosphate buffer), and at pH 8.0, 8.5, and 9.0
(50 mM Tris-Cl buffer).

Temperature Optimum of Free and Immobilized Enzymes

The temperature optimum of the free enzyme was measured at 25, 30, 35, 40, 45, 50,
55, and 60 °C. Before adding the enzyme, substrate solution was equilibrated and
next 10 ml of the enzyme solution in 50 mM phosphate buffer of pH 7.5 to 300 pl of
substrate and incubated for 5 min at suitable temperatures. Determination of the
optimum temperature of the immobilized enzyme was carried out by transferring
300 upl of the heated substrate to the tube with buffer containing ~25 mg of the
immobilized enzyme. The mixture was then incubated for 5 min at appropriate
temperatures. The activity was expressed in relative terms taking the highest activity
at a given temperature for 100%.

Thermal Stability of Free and Immobilized Enzymes

The thermal stability of the free and immobilized enzymes was determined at a
selected temperature 40, 50, and 60 °C by incubation in 1 ml of 50 mM phosphate
buffer pH 7.5 for 10-60 min. The residual activity of free and immobilized enzyme
was expressed in relative terms taking initial activity as 100%.

Determination of Kinetic Parameters Free and Immobilized Lecitase® Ultra

Kinetic parameters Ky; and V.« of immobilized and free LU were determined by

measuring the rate of hydrolysis of pNPP. Initial velocities were determined for
substrate concentrations in the range from 0.05 to 1.5 mM in 50 mM Tris-Cl of pH
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8.5 in the presence of 0.25% Triton X-100. The kinetic constants were determined
according to the Michaelis-Menten kinetics model using a non-linear regression model
using the Origin8pro program.

Operating Parameters
Effect of Reusability on Immobilized Enzyme Stability

The reusability of immobilized enzyme was determined by using the immobilized
beads for 10 times. After each cycle of reaction, the BCB-PEI-Fe beads were removed
and washed with phosphate buffer 100 mM (pH 7.5) to clean it from residual
substrate and products of reaction from immobilized beads. Next, the immobilized
beads were transferred into fresh reaction medium to start reaction. The initial activity
was considered as 100%.

Determination of Storage Stability Immobilized Lecitase® Ultra

The immobilized enzyme was stored as suspension in 50 mM phosphate buffer of pH
7.0, and activity was determined several times during 28 days of storage at 4 °C. At
this time, an equal amount of carrier with immobilized enzyme was collected every
2-3 days and its activity was measured. The initial activity was considered as 100%.

Carrier Property Determination
Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed using a high-resolution field
emission gun scanning electron microscope (ZEISS EVO MA 25, Oberkochen, Ger-
many). The samples of modified BCB were firstly fixed by 3% glutaraldehyde
solution in phosphate buffer of pH 7.0 by 30 min. Next, samples were flushed by
deionized water to remove extended amount of glutaraldehyde. Then, fixed BCB were
dehydrated in graded series of ethanol dilution 10—-100% (5 min each) and finally
dried with the hexamethyldisilazane (HMDS) chemical drying series, ethanol:HMDS
1:1, 2:1, and 100% HMDS two times 20 min and allow to air dry overnight under a
fume hood. Afterwards, prepared beads were used to characterize the morphology of
the functionalized BCB. Prior to the SEM, all the samples were fixed onto SEM by
the sputtering with Au/Pd (60:40) using QI50R ES device (Quorum Technologies,
Laughton, UK).

Attenuated Total Reflectance Fourier Transform Infrared Spectral Studies of Modified
Cellulose Beads

Samples before attenuated total reflectance Fourier transform infrared (ATR-FTIR)
analysis were dried at room temperature for 24 h. The analysis was carried out using
a Bruker spectrophotometer with an ATR-FTIR adapter. The spectra were collected in
the range of 4000-400 cm ' with a resolution of 8 cm ' (64 scans). The obtained
ATR-FTIR spectra were analyzed using the Omnics and Origin8pro software.
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Results and Discussion
Carrier Properties

Analysis of the ATR-FTIR spectrum of modified BC indicates its effective modification by
PEI and Fe;04. Oxidation step using sodium periodate increased the intensity of the bands
from 1600 to 1780 cm ™' (Fig. 2). The strands belonging to the C—O stretching vibration of
carboxylic group are usually visible in this region (the most intense ones at 1610 cm™").
Sodium periodate opens the glucose pyranose ring by specific cleaving the C2-C3 bond. It
leads to formation of two aldehyde groups, the specific C=0 stretches of which may be
detected by the presence of 1725-cm™ " peak [24]. After oxidation of BCB-PEI, a peak at
1560 cm™!, which is appropriate for NH, in bend plane, appears. Further modification of
BCB-PEI by saturation with Fe;0,4 leads to the spectrum modification in the range from
700 to 500 cm™ ', where band at 585 cm™' shows Fe—O stretching vibrations typical for
magnetite particles. Formation of magnetite particles was also confirmed by XRD analysis
(Fig. S1). Above-mentioned changes confirm successful introduction of functional groups
to BCB structure. In turn, differences in 1200- to 950-cm ' spectrum range indicate
alterations of crystalline structure of cellulose microfibrils. Reduction of the intensity of
bands in the range from 1000 to 900 em ™, marking the conformation of the primary
alcohols present in the glucose structure [25], indicates an increase in the amount of
amorphous cellulose fraction compared to crystalline one, which may affect the mechan-
ical properties of the obtained carrier [26]. At the stage of oxidation, the intensity of bands
did not differ significantly from native BC. However, Guo et al. [27] and several other

Fig. 2 The ATR-FTIR spectra of BCB-PEI-Fe Fe-O_,_
BCB from subsequent stages of 3
modification. The spectra were re- NH
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I BCB-PEI

NH
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L COO
- C:O/

AN,
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authors reported a decrease in the cellulose crystallinity due to the periodate oxidation.
This can be explained by relatively short oxidation time and low concentration of sodium
periodate applied (100 mM, 4 h). These conditions were, however, well suited for
permanent binding of PEI by BCB. Modification with PEI had the greatest impact on
the BCB microfibril structure, for which the reduction in the intensity of bands at 1003 and
980 cm ' is the most pronounced and does not change after next modification. Further
BCB-PEI modification by introducing Fe;O, into the carrier structure resulted in the
decrease of band intensity at 1560 cm ™', indicating lower content of amino groups on
the surface of BCB-PEI-Fe.

SEM Morphology of Modified BCB

The SEM pictures show the structure of native and modified BCB (Fig. 3). Pictures of
modified and native spheres of BC revealed strongly corrugated surface formed by layers
of randomly oriented cellulose microfibrils. As for BCB-PEI-Fe, SEM analysis revealed
presence of Fe;04 particles associated with microfibrils evenly distributed throughout the
structure. Moreover, BCB-PEI-Fe displayed high porosity of BCB, and it significantly
increased the area available for immobilization and might also affect the catalytic proper-
ties of the immobilized Lecitase® Ultra.

Fig. 3 SEM images of unmodified BCB (a, b; magnification x300 and x7000) and BCB-PEI-Fe with
immobilized Lecitase® Ultra (¢, d; magnification x300 and x7000)
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Effectiveness of Immobilization Process on Modified BCB

Values of obtained yield indicate that modified BCB displays high ability to bind the enzyme
(Fig. 4). The immobilized enzyme activity in BCB-PEI-Fe showed positive linear relation to
the enzyme initial activity loading, in contrast to the percent of immobilization yield value. The
highest specific activity of Lecitase® Ultra, 225.0+ 7.1 mU/g, was obtained for the initial
activity of the preparation used to immobilize 5.0 U/g of support with yield being only 14.8 +
7.0%. In the range of the initial loading activity of LU from 1.5 to 3.0 U/g, the yield obtained
did not exceed 70%; however, specific activity was relatively low and was within the range of
74.5+3.0 to 45.7+ 5.0 mU/g. The most favorable ratio between loading activity and yield of
immobilization was found for initial units loading of 3.5 U/g with final specific activity of
immobilized LU equal to 116.2+ 1.0 mU/g and yield 58.5 +0.4%.

Optimum pH for Immobilized Lecitase® Ultra

The effect of pH on the immobilized enzyme was analyzed within the pH range of 6.0-9.0
(Fig. 5). Optimum pH value for free and immobilized LU was 8.5. This value is consistent
with the optimum reported by Mishra et al. [28], who also studied the effect of pH on
Lecitase® Ultra activity, using pNPP as a substrate. Free and immobilized enzymes showed
similar pH optimum profile, with no significant differences in the entire analyzed range.
Lecitase® Ultra entrapped in gelatin cross-linked with glutaraldehyde showed significant shift
at a pH optimum of up to 7.5 in comparison to free enzyme, for which the pH optimum was
6.5-7.0. On the other hand, dos Santos et al. [29] showed that depending on the type of
functional groups present on the surface of the carrier and the immobilization method, the pH
optimum of the LU profiles ranges from 6.0 to 9.0 and the pH activity profile also varies.
Lecitase® Ultra immobilized on epoxy-activated polymer DILBEAD-VWR modified by
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70 4 —e— Activity of immobilized Lecitase® Ultra L
60 - 200
50 2
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S 150 §
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Enzyme loading (units/g support)

Fig. 4 The yield (%) of immobilization process and activity of immobilized Lecitase® Ultra depending on the
enzyme solution initial activity used to immobilization
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polyethyleneimine showed a shift of the pH optimum towards the alkaline reaction, probably
due to the presence of amino groups on the carrier surface [30]. Wu et al. [12] analyzed lipases
other than Lecitase® Ultra (i.e., Candida rugosa-derived lipases) and immobilized these
enzymes on BC disks. Such immobilized enzymes displayed optimal activity at pH equal to
7.0, analogously to unbound enzyme. Contrary results were obtained by Huang et al. [31], who
reported that pH optimum for free C. rugosa-derived lipase is 5.5, while immobilized enzyme
displayed optimum at 6.1. The lack of changes in the optimum pH of the immobilized LU
presented in our study can be a result of the immobilization process itself, in which the spacer
(glutaraldehyde) used allows the bound enzyme to be removed from the support surface. This
probably prevents from the influence of local changes in the H" and OH  gradient on the
immobilized enzyme.

Influence of Temperature on Activity and Stability of Immobilized Lecitase® Ultra

The activity of immobilized and free enzyme was analyzed in the temperature range from 25 to
60 °C (Fig. 6). The optimal temperature for the free form of enzyme was 40 °C. Free enzyme
retained high activity up to 50 °C, and application of 50-60 °C led to sharp drop of lipase
activity. Optimal temperature for immobilized enzyme was in the range of 45-50 °C. It should
be noted that application of higher temperatures, i.e., 50-60 °C, led to lower drop of
immobilized enzyme stability in comparison to free lipase. Lecitase® Ultra trapped in gelatin
also showed a shift of the optimum temperature from 40 to 50 °C [32]. Similar results were
obtained by Zhan et al. [33]; however, this shift was observed when 50—60 °C temperature was
applied. Lipase from Candida cylindracea immobilized on magnetic poly(methacrylate-
divinylbenzene) microsphere also showed a shift in the temperature optimum from 37 to
50 °C [34]. Contrary to this, LU immobilized on triacetate cellulose showed similar optimum
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Fig. 5 Effect of pH on activity of free and immobilized on BCB-PEI-Fe Lecitase® Ultra
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temperature to the free enzyme (40 °C) [35]. Immobilization process also did not significantly
affect the temperature profile of the lipase derived from C. rugosa [12]. The shift of the
catalytic temperature optimum of immobilized enzymes is a frequent phenomenon resulting
from the decrease of flexibility of immobilized protein [36]. The impact of the immobilization
process depends on the method of immobilization and resulting interaction between the carrier
and the enzyme. The loss in flexibility, which is necessary to obtain the proper conformation of
the catalytic region, enforces the need to partially relax the resulting bonds between the carrier
and the enzyme and manifested by higher-temperature optima of immobilized enzymes.
Immobilization of LU on BCB-PEI-Fe, by introducing a spacer in the form of glutaraldehyde,
allows to distance the enzyme from the surface of the carrier itself. As a result, it is possible to
retain comparable flexibility to the free form of the enzyme, which could be the reason for
similar values of temperature optima for free and immobilized enzymes.

Both free and immobilized enzymes showed similar temperature stability profile (Fig. 7a,
b). At 40 and 50 °C, after 1 h of incubation, the native as well as immobilized enzymes
retained over 80% of the activity. However, at 60 °C, after just 20 min of incubation, both free
and immobilized enzymes lost more than 40% of its initial activity. The immobilization
process has usually a positive effect on the enzyme stability profile increasing its resistance
to higher temperatures. For example, LU entrapped in gelatin maintained 60% of its initial
activity at 50 °C compared to 30% for the free form of the enzyme [32]. Immobilization of LU
on hydrophobic polystyrene macroporous resin (DA-201) also resulted in a significant increase
in the enzyme temperature stability at 55 °C, retaining over 60% of its initial activity [36]. The
immobilization of LU to cellulose triacetate also increased the temperature stability of the
enzyme, especially at 50 and 60 °C [36]. However, immobilization of Lecitase® Ultra on
epoxy-activated polymer (DILBEAD-VWR) did not significantly affect the stability of the
enzyme at high temperature [30]. The rationale for the increase in thermal stability of
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Fig. 6 Effect of temperature on the activity of the free and immobilized on BCB-PEI-Fe Lecitase® Ultra
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immobilized enzymes observed by majority of researchers is drop of these proteins’ flexibility,
i.e., their ability to undergo changes in molecular structure. This is direct result of enzyme
immobilization and may also have an impact on their activity. However, depending on the
immobilization method and the type of interactions affecting the binding of the enzyme to the
carrier, the effect of immobilization on the enzyme structure may be different and, as many
examples show, immobilization does not always lead to increased thermal stability of the
enzyme [37].
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Effect of Immobilization on Catalytic Constants of Lecitase® Ultra

Immobilization of enzymes often leads to disturbances in mass exchange leading to hindered
access of the enzyme to the substrate. It frequently manifests in an increase in Ky value of the
immobilized enzyme comparing to the free form. Bacterial cellulose, as indicated by SEM
analyses, is a material with extensive molecular structure characterized by high porosity.
Therefore, significant increase in Ky, value for the immobilized enzyme could be expected
due to diffusion of the substrate to the interior of the carrier. Immobilized on BCB-PEI-Fe, LU
showed similar Ky value to the free form of the enzyme (Table 1). It may be probably related
to the binding of the enzyme by the carrier mainly on its surface, which significantly reduces
the probability of disturbances in the mass transfer process. However, catalytic efficiency
(Kcat/Ky) calculated for immobilized enzyme was almost fourfold lower in comparison to
free LU. Lecitase® Ultra immobilized onto a polystyrene DA-201 resin was characterized by
~25% increase in Ky, value (tributyrin as a substrate) as compared to the free form of the
enzyme, suggesting the influence of immobilization process on mass transfer [36]. Apart from
possible difficulties in binding of substrate associated with the structure of the carrier as
reported by Fernandez-Lorente et al. [38], changes in the Ky, constant reflecting the degree
of affinity of the enzyme for the substrate may also depend on possible conformational
changes of the enzyme resulting from binding to the support. Depending on the type of
functional groups present on the surface of the carrier, the strength and type of interaction with
the enzyme is different and can influence on the 3D structure of the immobilized LU in various
ways [39]. This can lead to the reduction in turnover number (K, of the immobilized enzyme
as well as its substrate specificity [40]. However, observed reduction in catalytic efficiency of
immobilized LU can be compensated by the possibility of repeated use of this form of enzyme.

Reusability of Immobilized Lecitase® Ultra

One of the most important features of an immobilized enzyme, with regard to its industrial
application, is the possibility of its repeated use without significant loss of activity. Analysis of
aforementioned parameter indicated high stability of the immobilized LU (Fig. 8). After
10 cycles, the immobilized enzyme retained significant activity, reaching 70% of the initial
activity at both tested temperatures (25 and 70 °C). LU immobilized on triacetate cellulose
maintained less than 20% of the initial activity as well as trapped in gelatin after 5 cycles. The
reason for such low reusability was the possibility of enzyme leakage from gelatin matrix and
in the case of immobilization on triacetate cellulose, the presence of Triton-X-100 in the
reaction mixture, which significantly enhanced the enzyme desorption from the carrier [32,
36]. Despite the presence of mentioned detergent in the reaction mixture used to determine the

Table 1 Influence of immobilization process on Ky and V.« and catalytic efficiency K ,/Ky; of Lecitase®
Ultra

Vinax (wmol I min™") Ky (mM) Kea ¥ 10° (571 Kea/Knu M5
Immobilized LU 8.7+0.7 040+0.07  1.9+0.15 48+0.8
Free LU 49.6 £ 4.7 045+005 9309 20.9£2.3

The data shown are representative of three independent experiments (mean + SD)

 Determination of catalytic constants was done with use 10 pg of free enzyme and 25 mg of immobilized
enzyme that contained 70 pug of protein
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activity, resulting covalent bond between the carrier and enzyme effectively prevents from LU
desorption from the BCB-PEI-Fe. The decrease in the activity of immobilized LU observed in
successive cycles was probably related to the denaturation of parts of enzyme molecules rather
than rinsing of the enzyme from the carrier, because activity of LU in washing buffer was not
detected. Wu et al. [12], using the BC in the form of glutaraldehyde modifying membranes as a
carrier for the immobilization of lipase from C. rugosa and different method of drying, showed
significant effect of these factors on reusability of the immobilized enzyme. In optimal
conditions, the lipase immobilized by these authors retained nearly 60% of its initial activity
after 15 cycles. Values of reusability, obtained in the current study, indicate high operational
stability of the immobilized LU on BCB-PEI-Fe and its significant resistance to repeated use,
which is of fundamental importance in the further use of the immobilized enzyme.

Storage Stability of Immobilized Lecitase® Ultra

In addition to the reuse, it is also important to store the immobilized enzyme for an extended
period of time without significant decrease in its activity. In order to check this parameter, the
activity of the immobilized enzyme was measured at various intervals for 28 days, when the
enzyme was stored at 4 °C. After 7 days, the activity of the immobilized enzyme decreased by
about 20%; however, the activity remained unchanged for the next 3 weeks (Fig. 9). Huang
et al. [31] immobilized lipase from C. rugosa on electrospun cellulose nanofiber membrane,
and as indicated by this author, the enzyme retained 60% of the initial activity after 30 days of
storage. Liu et al. [36] immobilized lipase produced by C. rugosa on Fe;0,4 nanoparticles. The
authors showed that the enzyme retained 70% of its initial activity after 30 days of storage.
Kuo et al. [41] used the same lipase, Fe;0, saturated chitosan as a carrier for immobilization,
and after 13 days of storage at 25 °C, the enzyme retained 100% of the initial activity. Li et al.
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Fig. 8 Reusability of immobilized on BCB-PEI-Fe Lecitase® Ultra. The immobilized enzyme was tested at
room temperature (25 °C) and on optimal temperature (50 °C)
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Fig. 9 Effect of storage time on activity of immobilized on BCB-PEI-Fe Lecitase® Ultra

[42] stored lipase produced by C. rugosa and immobilized on polyacrylonitrile for 20 days;
after that time, the enzyme retained 95% of its initial activity. Analysis of enzyme stability
during storage performed in the current study showed that immobilized on BCB-PEI-Fe, it
retains the level of its activity for at least 28 days.

Effective immobilization of Lecitase® Ultra on functionalized spheres of bacterial cellulose
extends the possibility of its use in various types of bioprocesses. Moreover, the immobilized
LU on the carrier sensitive to the external magnetic field has the main advantage of being
easily separable from the reaction medium. As a result, utilizing these obvious benefits, the
enzyme immobilized on this type of carrier can be used in processes carried out using
bioreactors supported with various types of magnetic field [43]. In this type of reactors, the
use of carriers’ sensitivity to magnetic field gives the opportunity of mixing without use of
traditional mechanical stirrers, thus increasing the stability of the carrier due to minimizing the
mechanical shear, while mixing and also improving the mass transfer [44]. One of the frequent
uses of lipases and also LU is their ability to synthesize various types of esters that can be used
as biofuels or precursors of substances desired in the pharmaceutical or cosmetic industries.
The utilization of magnetic field in processes catalyzed by immobilized enzymes can poten-
tially affect the reaction mode and in this way giving the possibility of obtaining new
compounds or increasing the process effectiveness [45].

Conclusions

Bacterial cellulose beads modified by polyethyleneimine and ferromagnetic material were used
as a new support material for the immobilization of Lecitase® Ultra. The important advantage
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of using a natural biopolymer as BC is also significant reduction in costs associated with its
purification and preparation of the carrier for further modification. Properties of this new
carrier allow for efficient immobilization of analyzed enzyme and also simplification during its
manipulation by easy separation form reaction medium with use a regular magnet only.
Immobilization process did not significantly influence on main catalytic parameters of LU
(pH, temperature optima). However, immobilized Lecitase® Ultra showed fourfold lower
catalytic efficiency, which on the other hand was compensated by high resistance to reuse.

The resulting carrier is characterized by unique properties allowing its further modification
to be used for the immobilization of many other enzymes that can be applied in biotechno-
logical process, in which magnetic field is applied as a force for a biocatalyst separation and
modification of its properties.

Funding Information The research was supported partially by the National Centre for Research and Devel-
opment in Poland (Grant No. LIDER/011/221/L-5/13/NCBR/2014).

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

1. Sheldon, R. A., & Van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how.
Chemical Society Reviews, 42(15), 6223-6235.

2. Cao, L. Q. (2005). Immobilised enzymes: Science or art? Current Opinion in Chemical Biology, 9(2), 217-226.

3. Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: An overview on techniques
and support materials. Biotech, 3, 1-9.

4. Cantone, S., Ferrario, V., Corici, L., Ebert, C., Fattor, D., Spizzo, P., & Gardossi, L. (2013). Efficient
immobilisation of industrial biocatalysts: Criteria and constraints for the selection of organic polymeric
carriers and immobilisation methods. Chemical Society Reviews, 42(15), 6262—6276.

5. Lin, S. P, Calvar, L. L., Catchmark, J. M., Liu, J. R., Demirci, A., & Cheng, K. C. (2013). Biosynthesis,
production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219.

6. Zhou, L. L., Sun, D. P, Hu, L. Y., Li, Y. W., & Yang, J. Z. (2007). Effect of addition of sodium alginate on
bacterial cellulose production by Acetobacter xylinum. Journal of Industrial Microbiology & Biotechnology,
34(7), 483-489.

7. Hu, Y., & Catchmark, J. M. (2010). Formation and characterization of sphere like bacterial cellulose
particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules, 11(7), 1727-1734.

8. Chen, H.-H., Chen, L.-C., Huang, H.-C., & Lin, S.-B. (2011). In situ modification of bacterial cellulose
nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose, 18(6), 1573-1583.

9. Lin, Q., Zheng, Y., Wang, G., Shi, X., Zhang, T., Yu, J., & Sun, J. (2015). Protein adsorption behaviors of
carboxymethylated bacterial cellulose membranes. International Journal of Biological Macromolecules, 73,
264-269.

10. Kim, J. H,, Park, S., Kim, H., Kim, H. J., Yang, Y. H., Kim, Y. H., Jung, S. K., Kane, E., & Lee, S. H.
(2017). Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and
their application in lipase immobilization. Carbohydrate Polymers, 157, 37-145.

11. Stumpf, T. R., Yang, X., Zhang, J., & Cao, X. (2018). In situ and ex situ modifications of bacterial cellulose
for applications in tissue engineering. Materials Science and Engineering: C, 82, 372-383.

@ Springer



192

Appl Biochem Biotechnol (2019) 187:176-193

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Wu, S. C., Wu, S. M., & Su, F. M. (2016). Novel process for immobilizing an enzyme on a bacterial
cellulose membrane through repeated absorption. Journal of Chemical Technology and Biotechnology, 92,
109-114.

Wu, S. C., & Lia, Y. K. (2008). Application of bacterial cellulose pellets in enzyme immobilization. Journal
of Molecular Catalysis B: Enzymatic, 54(3-4), 103-108.

Spaic, M., Small, D. P., Cook, J. R., & Wan, W. (2014). Characterization of anionic and cationic
functionalized bacterial cellulose nanofibres for controlled release applications. Cellulose, 21(3), 1529—
1540.

Weishaupt, R., Siqueira, G., Schubert, M., Tingaut, P., Maniura-Weber, K., Zimmermann, T., Thony-Meyer,
L., Faccio, G., & Thssen, J. (2015). TEMPO-oxidized nanofibrillated cellulose as a high density carrier for
bioactive molecules. Biomacromolecules, 16(11), 3640-3650.

Luo, H., Xiong, G., Hu, D., Ren, K., Yao, F., Zhu, Y., Gao, C., & Wan, Y. (2013). Characterization of
TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Materials Chemistry and
Physics, 143(1), 373-379.

Keskin, S. O., Sumnu, G., & Sahin, S. (2004). Usage of enzymes in a novel baking process. Molecular
Nutrition & Food Research, 48, 156-160.

Ray, A. (2012). Application of lipase in industry, Asian. The Journal of Pharmacy Technology, 2, 33-37.
Hasan, F., Shah, A. A., & Haamed, A. (2006). Industrial applications of microbial lipases. Enzyme and
Microbial Technology, 39(2), 235-251.

Cubides-Roman, D. C., Pérez, V. H., de Castro, H. F., Orrego, C. E., Giraldo, O. H., Silveira, E. G., &
David, G. F. (2017). Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on
chitosan with magnetic properties in a bioreaktor assisted by electromagnetic field. Fuel, 196, 481-487.
Zdarta, J., Norman, M., Smulek, W., Moszynski, D., Kaczorek, E., Stelling, A. L., Ehrlich, H., &
Jesionowski, T. (2017). Spongin-based scaffolds from Hippospongia communis demosponge as an effective
support for lipase immobilization. Catalysts, 7(5), 147. https://doi.org/10.3390/catal7050147.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of
protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72(1-2), 248-254.

de Souza, S. P., de Almeida, R. A., Garcia, G. G., Ledo, R. A., Bassut, J., de Souza, R. O., & Itabaiana, 1.
(2018). Immobilization of lipase B from Candida antarctica on epoxy-functionalized silica:
Characterization and improving biocatalytic parameters. Journal of Chemical Technology and
Biotechnology, 93(1), 105-111.

Li, H., Wu, B., Mu, C., & Lin, W. (2011). Concomitant degradation in periodate oxidation of carboxymethyl
cellulose. Carbohydrate Polymers, 84(3), 881-886.

Liu, Y., Thibodeaux, D., & Gamble, G. (2012). Characterization of attenuated total reflection infrared
spectral intensity variations of immature and mature cotton fibers by two-dimensional correlation analysis.
Applied Spectroscopy, 66(2), 198-207.

Drozd, R., Rakoczy, R., Konopacki, M., Frackowiak, A., & Fijatkowski, K. (2017). Evaluation of
usefulness of 2DCorr technique in assessing physicochemical properties of bacterial cellulose.
Carbohydrate Polymers, 161, 208-218.

Guo, J., Ge, L., Li, X., Mu, C., & Li, D. (2014). Periodate oxidation of xanthan gum and its crosslinking
effects on gelatin-based edible films. Food Hydrocolloids, 39, 243-250.

Mishra, M. K., Kumaraguru, T., Sheelu, G., & Fadnavis, N. W. (2009). Lipase activity of Lecitase® Ultra:
Characterization and applications in enantioselective reactions. Tetrahedron: Asymmetry, 20(24), 2854-2860.

dos Santos, J. C. S., Garcia-Galan, C., Rodrigues, R. C., de Sant' Ana, H. B., Gongalves, L. R. B., &
Fernandez-Lafuente, R. (2014). Improving the catalytic properties of immobilized Lecitase via physical
coating with ionic polymers. Enzyme and Microbial Technology, 60, 1-8.

Kumaraguru, T., Harini, T., & Basetty, S. (2017). Immobilization of Lecitase® Ultra on recyclable polymer
support: Application in resolution of trans-methyl (4-methoxyphenyl) glycidate in organic solvents.
Tetrahedron: Asymmetry, 28(11), 1612-1617.

Huang, X. J., Chen, P. C,, Huang, F., Ou, Y., Chen, M. R., & Xu, Z. K. (2011). Immobilization of Candida
rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic,
70(3-4), 95-100.

Sheelu, G., Kavitha, G., & Fadnavis, N. (2008). Efficient immobilization of lecitase in gelatin hydrogel and
degumming of rice bran oil using a spinning basket reactor. Journal of the American Oil Chemists' Society,
85(8), 739-748.

Zhan, J. F., Jiang, S. T., & Pan, L. J. (2013). Immobilization of phospholipase al using a polyvinyl alcohol-
alginate matrix and evaluation of the effects of immobilization. Brazilian Journal of Chemical Engineering,
30(4), 721-728.

@ Springer


https://doi.org/10.3390/catal7050147

Appl Biochem Biotechnol (2019) 187:176-193 193

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Liu, X., Guan, Y., Shen, R., & Liu, H. (2005). Immobilization of lipase onto micron-size magnetic beads.
Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 822(1-2), 91—
97.

Silva, F. B., de Morais Junior, W. G., da Silva, C. V., Vieira, A. T., Batista, A. C. F., de Faria, A. M., &
Assuncdo, R. M. N. (2017). Preparation and characterization of cellulose triacetate as support for Lecitase
Ultra immobilization. Molecules, 22, 19-30.

Liu, N., Fu, M., Wang, Y., Zhao, Q., Sun, W., & Zhao, M. (2012). Immobilization of Lecitase® Ultra onto a
novel polystyrene DA-201 resin: Characterization and biochemical properties. Applied Biochemistry and
Biotechnology, 168(5), 1108-1120.

Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F., & Wahab, R. A. (2015). An overview of
technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes.
Biotechnology and Biotechnological Equipment, 29(2), 205-220.

Fernandez-Lorente, G., Filice, M., Terreni, M., Guisan, J. M., Fernandez-Lafuente, R., & Palomo, J. M.
(2008). Lecitase® Ultra as regioselective biocatalyst in the hydrolysis of fully protected carbohydrates:
Strong modulation by using different immobilization protocols. Journal of Molecular Catalysis B:
Enzymatic, 51, 110-117.

Manoel, E. A., dos Santos, J. C. S., Freire, D. M. G., Rueda, N., & Fernandez-Lafuente, R. (2015).
Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and
Microbial Technology, 71, 53-57.

Cabrera, Z., Fernandez-Lorente, G., Palomo, J. M., Guisan, J. M., & Fernandez-Lafuente, R. (2008).
Asymmetric hydrolysis of dimethyl 3-phenylglutarate catalyzed by Lecitase Ultra®. Effect of the immobi-
lization protocol on its catalytic properties. Enzyme and Microbial Technology, 43, 531-536.

Kuo, C.-H,, Liu, Y.-C., Chang, C.-M. J., Chen, J.-H., Chang, C., & Shieh, C.-J. (2012). Optimum conditions for
lipase immobilization on chitosan-coated Fe;O,4 nanoparticles. Carbohydrate Polymers, 87(4), 2538-2545.

Li, S. F, Chen, J. P., & Wu, W. T. (2007). Electrospun polyacrylonitrile nanofibrous membranes for lipase
immobilization. Journal of Molecular Catalysis B: Enzymatic, 47(3-4), 117-124.

Al-Qodah, Z., Al-Shannag, M., Al-Busoul, M., Penchev, 1., & Orfali, W. (2017). Immobilized enzymes
bioreactors utilizing a magnetic field: A review. Biochemical Engineering Journal, 121, 91-106.
Rakoczy, R., Lechowska, J., Kordas, M., Konopacki, M., Fijatkowski, K., & Drozd, R. (2017). Effects of a
rotating magnetic field on gas-liquid mass transfer coefficient. Chemical Engineering Journal, 327, 608-617.
Buchachenko, A., & Lawler, R. G. (2017). New possibilities for magnetic control of chemical and
biochemical reactions. Accounts of Chemical Research, 18, 877-884.

@ Springer



	Functionalized Magnetic Bacterial Cellulose Beads as Carrier for Lecitase® Ultra Immobilization
	Abstract
	Introduction
	Material and Methods
	Materials
	Experiment
	Bacterial Cellulose Beads Preparation
	Modification of Bacterial Cellulose Beads and Lecitase® Ultra Immobilization
	Enzyme Immobilization
	Determination of the Activity of the Native and Immobilized Enzyme
	Protein Concentration Determination
	Efficiency of Binding of the Enzyme to the Carrier
	Optimum pH of Free and Immobilized Enzymes
	Temperature Optimum of Free and Immobilized Enzymes
	Thermal Stability of Free and Immobilized Enzymes
	Determination of Kinetic Parameters Free and Immobilized Lecitase® Ultra

	Operating Parameters
	Effect of Reusability on Immobilized Enzyme Stability
	Determination of Storage Stability Immobilized Lecitase® Ultra

	Carrier Property Determination
	Scanning Electron Microscopy
	Attenuated Total Reflectance Fourier Transform Infrared Spectral Studies of Modified Cellulose Beads


	Results and Discussion
	Carrier Properties
	SEM Morphology of Modified BCB
	Effectiveness of Immobilization Process on Modified BCB
	Optimum pH for Immobilized Lecitase® Ultra
	Influence of Temperature on Activity and Stability of Immobilized Lecitase® Ultra
	Effect of Immobilization on Catalytic Constants of Lecitase® Ultra
	Reusability of Immobilized Lecitase® Ultra
	Storage Stability of Immobilized Lecitase® Ultra

	Conclusions
	References


