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Patient–clinician concordance in behavior and brain activity has been proposed as a potential key mediator of mutual empathy and
clinical rapport in the therapeutic encounter. However, the specific elements of patient–clinician communication that may support
brain-to-brain concordance and therapeutic alliance are unknown. Here, we investigated how pain-related, directional facial
communication between patients and clinicians is associated with brain-to-brain concordance. Patient–clinician dyads interacted in
a pain-treatment context, during synchronous assessment of brain activity (fMRI hyperscanning) and online video transfer, enabling
face-to-face social interaction. In-scanner videos were used for automated individual facial action unit (AU) time-series extraction.
First, an interpretable machine-learning classifier of patients’ facial expressions, from an independent fMRI experiment, significantly
distinguished moderately painful leg pressure from innocuous pressure stimuli. Next, we estimated neural-network causality of
patient-to-clinician directional information flow of facial expressions during clinician-initiated treatment of patients’ evoked pain.
We identified a leader–follower relationship in which patients predominantly led the facial communication while clinicians
responded to patients’ expressions. Finally, analyses of dynamic brain-to-brain concordance showed that patients’ mid/posterior
insular concordance with the clinicians’ anterior insula cortex, a region identified in previously published data from this study1, was
associated with therapeutic alliance, and self-reported and objective (patient-to-clinician-directed causal influence) markers of
negative-affect expressivity. These results suggest a role of patient-clinician concordance of the insula, a social-mirroring and
salience-processing brain node, in mediating directional dynamics of pain-directed facial communication during therapeutic
encounters.
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INTRODUCTION
The patient–clinician relationship can have a powerful impact on
patient outcomes, across disorders [1, 2] and across therapies
[3, 4]. The clinical encounter is particularly relevant across mental
illnesses as well as in chronic psychosomatic conditions such as
fibromyalgia, which is often characterized by uncertainty in
diagnosis, treatment, and management [5], leading to challenges
in building a therapeutic relationship between patient and
clinician [6]. Difficulties in communication are commonly
described as a major issue by both patients and clinicians,
contributing to reduced medical adherence, suboptimal treat-
ment, and poorer clinical outcomes [7–9]. Although research has
identified nonverbal aspects of communication (e.g., pain-related
facial expressions for chronic-pain patients) as important

mediators of a therapeutic relationship, the causal dynamics of
this mode of information transfer in clinical encounters is not well
studied. Moreover, the brain processes supporting this mode of
communication are unknown.
Nonverbal behavior such as facial expressions have been

identified as central in clinical interactions, and better clinician
accuracy in perceiving patient emotions is associated with a
range of positive outcomes, including greater patient satisfac-
tion, better treatment adherence, and improved comprehension
and retention of medical information [10]. In fact, recent
evolutionary frameworks have suggested that, beyond self-
protection, a primary function of symptoms such as pain is to
motivate expressions that will call for the attention of others
who may be able to help [11]. However, expressions of pain vary
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depending on the social context, chronic or acute nature of the
pain, and whether the individual feels safe [12, 13]. To date,
most investigations of pain expressions have studied single
individuals in isolation, a setting that may involve facial
expression dynamics that are qualitatively different from those
in actual social interactions. Thus, it is increasingly acknowl-
edged that two-person (or more) studies during active interac-
tion are needed in order to fully understand social processes
[14]. This notion is especially pertinent for the study of
physiological and brain processes underpinning social interac-
tions [15]. Patient–clinician dynamics in nonverbal communica-
tion such as facial expressions [16], posture [17], and gestures
[18] have been linked to empathy and clinical rapport, which
may underpin dynamics in brain-to-brain coupling [19]. Simi-
larly, in psychotherapy, reduced therapeutic alliance can reduce
eye contact and physiological concordance between the patient
and the therapist [20, 21].
Using two-person functional MRI (fMRI hyperscanning), we

recently identified patient–clinician concordance in brain activity
as a potentially key mechanism supporting therapeutic alliance in
pain treatment [16]. Specifically, we found that patient–clinician
dyads that had established a clinical relationship, relative to a
control group, showed increased dynamic concordance in brain
circuitry involved in theory-of-mind and social mirroring, such as
the insula, temporoparietal junction (TPJ), and ventrolateral
prefrontal cortex (vlPFC) [16]. Correspondingly, recent social
neuroscience studies have shown brain-to-brain coupling in this
circuitry during joint attention [22–24], mutual eye gaze [25], in
addition to verbal communication (language comprehension) [26],
and speaker–listener interaction [27]. Lateral prefrontal and insular
cortices have also been associated with affective information flow
during nonverbal communication using facial expressions [28].
These pioneering studies have spurred key questions about the
causal directionality of facial expression transmission in the
interacting patient/clinician dyad, and how these nonverbal
communication dynamics may be associated with brain-to-brain
concordance.
Here, we investigated the causal dynamics in patient–clinician

facial communication in the context of pain treatment, using
neural-network-based causality modeling of the dynamics of facial
action units (AU). These AUs were algorithmically identified from
videos of patients’ and clinicians’ faces during their interaction.
Furthermore, we investigated whether these dynamics were
associated with concordance in brain activity, using simulta-
neously recorded fMRI (see [16] for previously published data from
this study). We hypothesized that pain-relevant patient–clinician
facial communication would be associated with stronger brain
concordance in circuitry implicated with social mirroring and
theory-of-mind/empathy.

METHODS AND MATERIALS
Subjects
We enrolled 23 patients diagnosed with fibromyalgia (“patients”) and 22
licensed acupuncture practitioners (“clinicians”) to participate in an
interactive pain-treatment experiment during fMRI hyperscanning. Parti-
cipants were matched to form patient–clinician dyads (n= 40 total unique
dyads), who were positioned in separate MRI scanners with nonverbal (i.e.,
facial expressions) communication enabled via online video connection
(Fig. 1, see Supplementary Methods for full details).
The study was approved by the Massachusetts General Hospital

institutional review board. All participants provided informed consent.

Overall study protocol
At an initial behavioral visit, all patients were familiarized with the
experimental protocol, provided informed consent, and went through a
cuff-pressure pain-calibration procedure in order to select an individua-
lized pressure level (mmHg) for evoking moderate pain (~40 out of 100, 0
= no pain, 100=most pain imaginable). Painful deep-pressure stimuli

were applied to the patients’ left lower leg using the Hokanson Rapid Cuff
Inflator (Hokanson, Inc., Bellevue, WA, USA).
During the MRI visits, patients were first positioned in the MRI scanner.

The clinician then entered and led the patient through the process of
acupuncture needling, in which two needles were inserted above the
patient’s left knee, proximal to the cuff, with MRI-safe electrodes attached
to each needle. Following needle insertion, the clinician was positioned in
the other MRI scanner, on the same floor in the same building. We applied
a customized head-coil configuration, using a 64-channel head-coil bottom
in combination with a small (4-channel) flex coil positioned over each
subject’s forehead, in order to enable full facial coverage for video transfer.
MRI-compatible video cameras enabled the participants to communicate
nonverbally (e.g., eye movement and facial expressions) during the
experimental hyperscanning runs. Each dyad completed two experiments,
one in which the patient experienced moderately painful and nonpainful
cuff-pressure stimulation while the clinician observed (pain MRI run,
Fig. 1A, B), and another experiment in which the patient experienced pain
while the clinician “treated” the patient’s pain with remotely controlled
electroacupuncture (pain/treatment MRI run, Fig. 1C, D). Participants were
informed that they could freely communicate their feelings nonverbally
using facial expressions, provided they kept their head as still as possible
(see Supplementary Methods for full details on the experimental protocol).

Self-report assessments
Therapeutic alliance. The Consultation and Relational Empathy (CARE)
questionnaire [29] was filled out by patients and clinicians, and used as a
proxy for therapeutic alliance. The total scores for patient-rated CARE and
clinician-rated CARE were calculated and averaged for each dyad to
estimate dyad-wise therapeutic alliance.

Trait-affective expressivity. Patients filled out the Berkeley Expressivity
Scale [30], as an assessment of individual (trait) tendency to express
emotions and feelings. The scale has three subscales—negative expressiv-
ity, positive expressivity, and impulse strength, which are calculated as a
sum of the items for each subscale.

Video data processing
We recorded in-scanner videos from both scanners continuously during
fMRI scan runs at a sampling rate of 20 frames per second, and used
automated facial-feature extraction (Affectiva, Cambridge, MA) to obtain
individual action-unit (AU) values for each video frame. Affectiva software
extracts the extent of activation/movement of 20 facial AUs, such as brow
raise/furrow, nose wrinkle, lip movement (raise, pucker, press, suck, and
tighten), mouth open, chin raise, smirk, eye closure/widen, and jaw drop. A
full list of AUs is available in Supplementary Table S1.

Statistical analysis
Discrimination of pain states and ranking of facial-feature importance. The
time courses of facial AUs extracted from patients’ facial video data during
the pain MRI were used to train a nonlinear classifier, using the extreme
gradient-boosting (XGBoost) algorithm [31], in order to (1) discriminate
states of moderate pain from innocuous pressure based on patients’ facial
data (Fig. S1A.1), and (2) extract the relative importance of each facial
action unit for this classification (Fig. S1A.2). Precision and recall were also
calculated. The contribution of each feature (i.e., facial action unit) to the
final prediction performance of the model was evaluated and ranked by
computing Shapley Additive explanations (SHAP) values [32].

Directed information flow of facial expressions between patients and
clinicians. Video streams from patients and clinicians in the pain/
treatment MRI were used to assess “information flow” (quantified using
the general concept of Granger causality [33]) between the patient’s and
clinician’s facial expressions (Figure S1B). Specifically, we investigated how
the clinician’s facial expression affected the patient’s facial expression, and
vice versa, using “Echo-State GC”, a GC implementation based on recurrent
neural networks with minimal trainable parameter count [34, 35] (see
Supplementary methods for details).
Granger causality was independently assessed during anticipation of

pain and treatment/no treatment, which preceded pressure stimulus,
consisting of 12 nonconsecutive data blocks for each dyad (6–12-seconds
duration, pseudorandomized). Pain-related anticipation and expectancy
constitute a key factor shaping pain outcomes [36–38] and are central to
both pain phenomenology and patient–clinician interaction [39–41]. Thus,
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the pain/treatment anticipation phase provided an optimal window for
causality analyses of clinically relevant nonverbal interaction while
unimpeded by task-related differences in sensorimotor processes involved
in evoked pain receipt (patients) and treatment application (clinicians).
Furthermore, focusing on the anticipation phase aided inferences of how
facial expression causality is associated with concordance in brain activity,
which may be more confounded during differential nociceptive stimula-
tion and motor activity for the patient and clinician. For every
clinician–patient dyad, we estimated the GC strength for the time series
of each of 20 facial action units in both directions, thus obtaining two
(patient-to-clinician and clinician-to-patient) nonsymmetric 20×20 matrices
of GC strength between face features, for each dyad and for each GC
paradigm.

Statistical analysis of echo-state Granger causality estimates. To evaluate
statistical significance of the patient-to-clinician and clinician-to-patient
GC estimates, we constructed empirical null distributions for each
paradigm using simulated “dyads” of subjects (patient–clinician dyads
who did not actually interact), in order to minimize the presence of
“pseudo-concordance” due to the shared structure of the experimental
protocol. GC-estimate distributions for “real dyads” were contrasted with
these null distributions using nonparametric statistics. Specifically, the
causal link between any two signals was considered statistically significant
if the median GC strength in the null distribution was significantly (p <
0.05) lower than the median GC strength across “real dyads”
(Mann–Whitney U-test) (Fig. S1B.3). All the resulting p-values related to
the GC matrices were then corrected for multiple comparisons using a
false-discovery rate (FDR) correction procedure across all 400 matrix
elements (alpha= 0.05).

BOLD fMRI acquisition, preprocessing, and analysis. See Supplementary
Methods for details on MRI acquisition and preprocessing. To investigate
whether dynamic brain-to-brain concordance in social-mirroring circuitry
would be associated with patient–clinician facial expression communica-
tion related to pain, we calculated dynamic fMRI signal concordance for
each patient–clinician dyad as previously reported [16]. After preproces-
sing of the fMRI data from the pain/treatment MRI scans, we performed
two first-level GLM for each participant (one for each pain/treatment MRI
run), using each trial anticipation phase as a separate regressor of interest
(Fig. S1C.1). Rating periods and pain periods were also included in the GLM
as regressors of no interest. This yielded 12 parameter estimate maps (one
for each trial across both fMRI scan runs) for each individual. Next, we
extracted mean Zstat scores within regions of interest (ROI) implicated in
theory-of-mind processing and social mirroring, including the left anterior
insula, the left vlPFC, and bilateral TPJ (see [16]) from each clinician (Fig.
S1C.2), which were used as a trial-by-trial regressor in a second-level
whole-brain regression GLM for time-synchronized fMRI data from their
patient, and vice versa (Fig. S1C.3). This analysis produced a whole-brain
map, for each individual, of regions that were dynamically coupled with
their partner’s brain fMRI data throughout the interaction. These estimates
were passed up to a group-level regression GLM, using FMRIB’s Local
Analysis of Mixed Effects (FSL-FLAME1+ 2), where the influence of
patient’s AU28 on the clinician’s facial expressions was used as a
between-subject regressor (Fig. S1D). This facial feature was used as it
(1) showed the highest-ranked influence in the machine-learning model
trained to distinguish pain from innocuous pressure based on facial AU,
and (2) because it exerted significant causal influence on the largest
number of the clinicians’ AUs. We used the subjectwise overall causality
strength of patients’ AU28 (lip sucking) on clinicians’ facial AUs (mean

Fig. 1 fMRI hyperscanning experimental environment and protocol. A In an initial “pain MRI”, the patient (1) received a series of moderately
painful and nonpainful leg-cuff-pressure stimuli (2) while the clinician observed. Video recordings of patients’ facial expressions (3) during
moderately and nonpainful cuff pressure were used in a machine learning classifier to identify facial expressions indicative of painful relative
to nonpainful states. B Each pain MRI consisted of six repeated trials (three moderate pain, three no pain) in a pseudorandomized order. After
a resting period, patients were shown a visual cue indicating whether the upcoming cuff pressure would be non-painful (green frame) or
painful (red frame). Following this anticipation cue, patients received either innocuous (30mmHg) or painful (individually calibrated to evoke
moderate pain) cuff-pressure stimuli to their left leg. After each trial, patients rated pain intensity on a Visual Analog Scale. C In the
subsequent “pain/treatment MRI”, the clinician (4) used a button box (5) to apply remotely activated subliminal electroacupuncture treatment
(6) to the patient (1) while they received moderate cuff-pressure pain (2). In-scanner videos (3) were recorded and used for automated facial-
feature extraction to investigate causal dynamics in nonverbal communication between the patient and the clinician, and their association
with brain-activity concordance assessed with simultaneous fMRI. D Each pain/treatment MRI consisted of 12 trials (four verum, four sham,
and four no treatment) in a pseudorandomized order. After a rest period (left), both participants were shown visual cues, indicating whether
the next pain stimulus, applied to the patient, would be treated (green frame) or not treated (red frame) by the clinician (Anticipation phase).
Next, patients received moderately painful cuff-pressure stimuli to their left leg, while clinicians applied or did not apply treatment, according
to the preceding anticipation cue.
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across all clinician AUs, first row in Fig. 3b) as the regressor of interest.
Thus, the resulting group map indicated brain regions in which patients
whose facial expressions influenced their clinician’s facial responses more
strongly also showed greater dynamic coupling with their clinician’s social-
mirroring circuitry. The results of this whole-brain analysis were corrected
for multiple comparisons using FSL’s ‘cluster’ tool, which applies Gaussian
Random Field theory to determine initial minimal extent threshold, using a
voxel-wise cluster forming the statistical threshold of z= 2.3, and cluster
significance threshold of P= 0.05 [42, 43]. This combination of FSL’s FLAME
and a cluster threshold of z= 2.3 has been shown to be relatively
conservative compared with other parametric approaches such as
Ordinary Least Squares, especially for paradigms using moderate block
lengths similar to our study, and yields a false error rate of approximately
5% [44].

RESULTS
Therapeutic alliance
Ratings of therapeutic alliance (CARE) showed relatively high
scores for both patients (mean ± SD: 42.20 ± 4.25, possible range:
9–45) and clinicians (mean ± SD: 35.69 ± 4.08), as previously
reported [16]. Since we investigated both patient and clinician
outcomes in facial expressions and brain activity, we calculated a
mean value for the patient and clinician-rated CARE scores as an
estimate for each dyad’s overall therapeutic alliance (mean ± SD:
39.26 ± 2.67).

Classification of patients’ pain-related facial expression during
clinician observation
The XGBoost model distinguished moderate pain from innocuous
pressure conditions by employing the patient’s AU data yielding
an AUC of 0.75, a precision of 72%, and a recall of 70% (Fig. 2a).
This is comparable to previous studies using neuroimaging
metrics to classify chronic pain from individuals without chronic
pain [45]. SHAP estimation [46], reflecting the relative importance
of each AU in distinguishing moderate pain from innocuous leg
pressure (Fig. 2b), indicated that AU28 (lip sucking) yielded the
largest contribution to the prediction of the pain state, followed

by AU43 (eye closure), AU7 (tightening of the eyelids), and AU4
(brow furrowing), consistent with previous reports of facial
expressions associated with pain [8, 47, 48].

Causal influence of facial expression transfer between
patients and clinicians
Granger causality analyses of facial expressions during anticipation
of evoked pain/treatment indicated a strong asymmetry in which
patients’ facial expressions caused a range of facial expressions
displayed by the clinician, while clinician AUs showed minimal
causal influence on patient expressions (Fig. 3). The median
influence (i.e., Granger causality strength) of the variability in
individual patient AUs on the variability of the clinician AUs was
significantly higher compared with the median of the estimated
null distribution. Specifically, 59 causal links survived false
discovery rate (FDR, α= 0.05) correction for multiple comparisons
of patient-to-clinician directed causality, while there were no
significant causal links for clinician-to-patient directed causality
after FDR correction. Notably, the dynamics in patients’ AU28 (lip
sucking), which was also identified as the feature that best
discriminated between moderate pain and innocuous pressure,
exerted a significant causal influence on the dynamics of the
largest number of clinician AUs. Conversely, clinicians’ AU43 (eye
closure), which was the second most discriminative feature of
patients’ perceived pain, was the facial feature most influenced by
the patients’ facial expressions (i.e., causally influenced by the
highest number of patient AUs). The corresponding exploratory
analyses of Granger causality during the pain phase showed a
similar pattern, with a strong unidirectional effect of patient-to-
clinician causality for a wide range of AUs, but no significant causal
links in the opposite direction (Fig. S2).

The causal strength of patients’ AU28 on clinicians’ facial
expressions is related to patients’ dynamic brain-activity
concordance with clinicians’ anterior insula
A whole-brain regression analysis was performed to investigate
the degree to which causal influence of patients’ pain-related
facial expressions on clinicians’ facial responses would be
associated with dynamic brain concordance in social-mirroring
circuitry. The results indicated that, for dyads in which clinicians’
facial expressions were more strongly influenced (i.e., higher
causal strength) by patients’ AU28 dynamics, greater dynamic
brain concordance was also noted between clinicians’ aIns activity
and patients’ fMRI activity in middle/posterior insula (m/pIns),
dorsomedial (dmPFC) and ventrolateral prefrontal cortex (vlPFC),
supramarginal gyrus (SMG)/anterior temporoparietal junction
(aTPJ), and hippocampus (HC) (Fig. 4a).
Next, we evaluated if the dynamic brain concordance noted

above was also associated with clinically relevant outcomes. We
found that dynamic concordance between clinicians’ aINS and
patients’ m/pIns (extracted mean Zstat values from each dyad)
was significantly associated with therapeutic alliance (CARE scores,
averaged between patient-rated and clinician-rated scores, r=
0.64, p= 0.01), suggesting that dyads with higher therapeutic
alliance showed stronger insular dynamic concordance during
pain-treatment anticipation (Fig. 4b).

Insula cortex dynamic brain-to-brain concordance is positively
associated with patients’ trait (negative) expressiveness
Next, we investigated whether dynamic brain concordance was
also associated with personality factors—i.e., patients’ trait
expressivity of negative affect. A Pearson correlation coefficient
indicated that dynamic concordance between clinicians’ aINS and
patients’ m/pIns was significantly associated with patients’
negative expressivity, assessed by the Berkeley Expressivity Scale
(r= 0.49, p= 0.002, Fig. 5) [49]. Note that this analysis was
performed on a larger sample (n= 37 dyads), as intact fMRI and
questionnaire data existed for more dyads than those with intact

Fig. 2 Unique importance of individual facial action units (AU) in
classifying painful and nonpainful states. Following machine-
learning classification, we calculated Shapley Additive explanations
(SHAP) values, which indicate the relative contribution of each
individual AU in distinguishing periods of painful leg pressure from
periods of innocuous, nonpainful, leg pressure. AUs are numbered
according to their corresponding Facial Action Coding System
(FACS) code. The AUs “Smirk” and “Eye widening”, as estimated by
the AFFDEX algorithm, do not correspond to specific AUs in the
FACS framework.
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facial video data. However, the same analysis shows a correspond-
ing effect when performed only on dyads with intact facial data
for both participants (r= 0.62, p= 0.018).

DISCUSSION
In this study, we combined patient–clinician simultaneous fMRI
(hyperscanning) with facial expression recording and neural-
network-based Granger causality analyses to investigate the
causal dynamics of facial expressions in a therapeutic interaction,
and how these dynamics are supported by patient–clinician
concordance in brain activity. Using automated extraction of facial
action units (AUs) from video time series of patients’ and clinicians’
faces during social interaction, we first applied a nonlinear
machine-learning classifier, which predicted whether or not
patients were experiencing pain based on AU data alone. Next,
Granger causality analyses indicated that patients’ facial expres-
sions caused a range of facial responses by clinicians, but not vice
versa, suggesting a leader–follower relationship in which patients
led the facial communication while clinicians responded. We then
demonstrated that the most salient causal relationship—clinicians’
global facial expression response to patients’ AU28, which exerted
the highest relative influence on the machine learning classifier
outcomes—was also associated with patient–clinician dynamic
brain concordance in circuitry implicated in social mirroring and
theory-of-mind. Specifically, the strength of patient-to-clinician
directed causality was positively associated with patients’ vlPFC,

SMG/aTPJ, and mid/posterior insula concordance with clinicians’
fMRI response in the anterior insula. Finally, insula-to-insula
concordance in particular was associated with self-reported
therapeutic alliance and patients’ trait expressivity, suggesting
that patients with a higher tendency to express negative emotions
also showed stronger insula-to-insula concordance with their
clinician.
Expression of pain is highly dependent on social context and

the state of the individual [11]. For example, patients with chronic
pain often have very different communicative motivations than
individuals without chronic pain experiencing an acute painful
situation. Expression of pain may also differ, depending on
whether it is expressed in a social context or alone [12]. Many of
the studies investigating pain facial expressions have studied
individuals in isolation. Here, we studied patient–clinician pairs
during a therapeutic interaction, which provided a qualitatively
different context compared with single-subject studies or studies
of healthy volunteers roleplaying as patient and clinician. Hence,
notwithstanding the inherent limitations of the MRI environment,
our protocol design included unique elements, which may have
increased ecological validity, leading to clinically relevant associa-
tions between psychosocial behavioral and neural processing.
Our pain-expression model, using the state-of-the art method to

assign univocal importance values to features influencing
classification (SHAP), identified several facial AUs consistent with
previous reports of pain-related expressions, such as eye closure
(AU43), lid tighten (AU7), brow furrow/lowerer (AU4), and mouth

Fig. 3 Median (across dyads) Granger causality strength between patients’ and clinicians’ facial action units (AUs) during pain treatment
anticipation. A Significant causal links between patients’ AUs and clinicians’ AUs, surviving false discovery rate (FDR) correction for multiple
comparisons, are shown with causal direction indicated by arrowheads and causality strength (log(p)) indicated by color and thickness. AUs
are ordered according to SHAP values (the most influential AU at the top row) reflecting AU association with patients’ pain perception—i.e.,
importance in discriminating pain from innocuous pressure when no treatment was provided (i.e., bright yellow indicates a large, whereas
dark red indicates a small, contribution to machine-learning-based prediction of patients’ pain vs. innocuous pressure, corresponding to the
color shading in Fig. 2). Matrices (right) show causal links from the patient to the clinician (B) and from the clinician to the patient (C). Same as
for the connectogram (A), AUs are ordered according to their ranked contribution to the independent classification of pain for nonpain states
(bright yellow indicates large, while dark red indicates small contribution). Each cell in the matrices shows the corresponding Granger
causality strength. The causal links that survived FDR correction for multiple comparisons across all possible matrix cells are highlighted by
black rectangles. Patients’ “lip suck”, which showed the strongest unique contribution to the discrimination of pain states, was also the AU that
influenced the dynamics of the largest number of facial AU in the clinician when treating evoked cuff-pressure pain (B). No significant causal
links were found in the opposite direction—i.e., between clinicians’ facial AUs and patients’ AUs (C).
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open (AU52) [8, 47, 48]. Notably, a recent systematic review
identified a relatively consistent set of AUs associated with
experimental and clinical pain, except for eye closure, which was
more prominent for clinical pain [47]. Since complete eye closure
involves the activation of the orbicularis oculi muscle, which is also
activated—albeit less intensely—during lid-tightening (AU7) and
cheek-raise (AU6), the authors speculated that eye closure may
signal more severe, or prolonged, pain in the context of chronic
pain. In our study, eye closure ranked as the second most

influential AU for classifying experimentally evoked pressure pain
relative to innocuous pressure—greater than lid-tighten and
cheek-raise—which may reflect the patients’ chronic-pain condi-
tion. One notable exception in our results was that wrinkling of
the nose (AU9), which is a relatively commonly reported AU for
pain, did not strongly contribute to evoked pain in our study.
Interestingly, the AU that had the strongest influence on

classifying pain from innocuous pressure in our machine-learning
model was lip sucking (AU28). Moreover, lip sucking, when

Fig. 4 Association between facial-expression exchange dynamics and brain-to-brain concordance during pain-treatment anticipation. (A)
A voxelwise GLM regression indicated that the causal strength of patients’ AU28 on clinicians’ facial responses overall (across all clinician AUs)
was associated with dynamic brain concordance between clinicians’ aINS activity and patients’ fMRI activity in the m/pIns, vlPFC, SMG/aTPJ,
dmPFC, and the HC. (B) Furthermore, dyads characterized by greater aIns (clinician) to m/pIns (patient) concordance also reported greater
therapeutic alliance at the preceding clinical intake (Pearson’s r= 0.64, p= 0.014). aIns: anterior insula; vlPFC: ventrolateral prefrontal cortex;
SMG: supramarginal gyrus; aTPJ: anterior temporoparietal junction; m/pIns: middle/posterior insula; dmPFC: dorsomedial prefrontal cortex;
HC: hippocampus; AU28: action unit 28; CARE: Consultation and relational empathy questionnaire.

Fig. 5 Association between brain-to-brain insula concordance and patients’ tendency to express negative affect. Dynamic brain-to-brain
concordance between aIns (clinicians) and m/pIns (patients) was significantly associated with patients’ self-reported trait-negative expressivity
(Berkeley Expressivity Questionnaire) (Pearson’s r= 0.49, p= 0.002). Thus, dynamic concordance was greater in dyads in which patients
showed a higher tendency to express negative affect. m/pIns: mid/posterior insula; aIns: anterior insula.
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expressed by the patient, was also the AU that exerted significant
causal influence on the highest number of clinician AUs during the
pain/treatment MRI, suggesting that this patient expression most
readily influenced clinicians’ facial expression. Although not
necessarily included as part of a “canonical” pain expression,
some studies have indeed associated AU28 with pain [8, 48].
Furthermore, artificial-intelligence algorithms that estimate com-
posite emotions from patterns of individual AUs found that lip-
sucking dynamics influences the likelihood of negative affect (i.e.,
anger, sadness, and disgust) but not positive affect [50]. In the
context of pain treatment in our study, dynamics in lip sucking
may thus have conveyed negative affect associated with current
or upcoming pain, from patient to clinician.
Granger causality analyses of facial-expression time series

(based on nonlinear neural networks with minimal parameter
count and hence little-to-no overfitting), showed a robust
asymmetry in which patient expressions caused a wide range of
facial responses by the clinician, but not vice versa. One possibility
is that clinicians, in response to patients’ expressions, were
attempting to use nonverbal communication as a means for
consolation or expressing support for their patient, even though
patients were less responsive to expressions by the clinician.
Importantly, we applied causality-estimation modeling based on
nonlinear neural networks, which has been shown to be superior
to traditional Granger causality methods in estimating highly
nonlinear, directed coupling in complex networks such as an
ensemble of facial AUs from distinct individuals.
We previously found that treatment-related change in mirroring

of facial expressions was associated with therapeutic alliance and
patient analgesia [16]. This raises the question of whether patients
and clinicians show causal directionality consistent with mirroring
overall at the level of individual AUs. Notably, our Granger
causality analyses, across both treatment and no-treatment trials,
showed significant influence of the patients’ opening of the
mouth (AU25/26/27) and raising of the (outer) eye brow (AU20) on
the clinicians’ facial activation of these same AUs, but not similar
symmetric causality for other AUs. Thus, aside from the former
AUs, our results do not suggest a simple overall AU-to-AU
mirroring pattern. However, patients’ expressions caused robust
expression of clinician AUs that were highly associated with pain
states for the patients, such as eye closure (AU43) and brow furrow
(AU4). In fact, among all of the clinician AUs that were significantly
influenced by patient expressions, 40 causal links (67.8%) were
among the ten AUs independently identified as most strongly
influencing the machine-learning classifier trained to discriminate
painful states from nonpainful states. Furthermore, considering
both patient and clinician expressions, the results showed
21 significant connections among the ten AUs most associated
with pain (Fig. 3b, top-left quadrant), compared with only seven
causal links among the ten AUs least associated with pain (Fig. 3b,
bottom-left quadrant). This may indicate that clinicians responded
to patients’ expressions (in general, but particularly for AUs
associated with pain) by making pain-related facial expressions,
which may be reflective of mirroring in a broader sense.
Specifically, rather than strict “mimicry” of individual AUs, clinician
mirroring of patients’ expressions may have been characterized by
more flexible constellations of pain-related expressions. This is
consistent with previous research suggesting that individualized
pain-related facial expressions vary flexibly along higher-level
patterns of AUs rather than expressing a uniform (prototypical) set
of individual AUs [51]. It has also been proposed that it may be
functionally meaningful to classify pain expressions more broadly
into unintentional, reflexive expressions vs. intentional, reflective
expressions following a cognitive process. This hypothesis is
supported by observers’ tendency to respond to pain expressions
with facial displays of more immediate “visceral” emotions vs.
more “controlled” expressions, respectively, reflecting higher-level
conceptual mirroring [52].

Using hyperscanning fMRI, we tested whether patient-to-
clinician-directed information flow in facial expressions was
associated with dynamic brain-to-brain concordance. For dyads
showing stronger causal influence of patients’ AU28 (lip sucking)
on clinicians’ (global) facial expressions, patients showed stronger
dynamic concordance with the clinician’s anterior insula (aIns).
The anterior and mid-sections of the insula, a key hub of the
salience network, play a fundamental role in integrating sensory
signals with cognitive and affective information in order to guide
behavioral decisions [53]. Furthermore, multiple studies have
indicated that the aIns, along with the vlPFC, dlPFC, and TPJ,
constitutes a network implicated in social processes such as
theory-of-mind and empathy [54, 55]. Moreover, the aIns is
thought to be part of an extended mirror neuron network [56, 57].
Our results demonstrate that patients who exerted stronger causal
influence on clinicians’ facial expressions, showed higher con-
cordance, with the clinician’s aIns, in circuitry also implicated in
social processing, such as the mid/posterior insula (m/pIns),
ventrolateral prefrontal cortex (vlPFC), and a region of the
supramarginal gyrus overlapping with the anterior TPJ. A previous
two-person fMRI study of nonverbal communication [28] reported
brain-to-brain coupling between a “sender” and “perceiver” of
facial expressions in a set of regions, including the insula, ventro-/
dorsolateral PFC, precuneus, and hippocampus. In addition, a
functional near infrared spectroscopy (fNIRS) hyperscanning study
reported increased facial expressivity and eye gaze, which was
underpinned by activation and cross-brain coupling of vlPFC,
dlPFC, and the TPJ, when participants were sharing personal
information interactively, relative to a nonsharing condition [58].
These studies support the importance of such social-mirroring
circuitry to interpersonal interactions.
Previous studies have also linked activation of this circuitry with

pain expressions directly. One study found that pain expressions
in response to experimental pain were associated with activation
of anterior and posterior insula along with somatosensory areas
and midline circuitry (posterior and pregenual anterior cingulate
cortices) [59]. Another study found that for patients with chronic
back pain, relative to healthy controls, pain-related facial
expressions were robustly associated with trial-by-trial fMRI
dynamics in a range of brain regions, including lateral prefrontal
and insular cortices, precuneus, and primary motor areas [60].
Notably, in our study, concordance between clinicians’ aIns and

patients’ m/pIns fMRI response also showed a significant
association with scores on the CARE questionnaire, such that
patient–clinician dyads with higher insula cortex concordance
reported higher therapeutic alliance. Furthermore, patients that
showed stronger insula-to-insula dynamic concordance with the
clinician also reported higher trait tendency to express negative
affect, as assessed by the Berkeley Expressivity Questionnaire
(note that this finding was consistent for both the full sample and
for the subsample with intact facial-expression video data). Both
evolutionary theoretical frameworks [61] and computational
models in cognitive science [51] suggest that amplified expressiv-
ity of negative affect and pain may be utilized as part of a
successful behavioral strategy for eliciting altruistic behavior by
peers. Our findings suggest that brain-to-brain insula concordance
may underlie facial communication dynamics driven by patients’
expressivity of negative affect.
Our study has several limitations. First, due to the limited

sample of intact facial-expression data, our study was likely
underpowered, which increases the risk of type-II errors. Thus, the
observed classification accuracy (72%) for pain relative to nonpain
states, based on facial AU time courses, may be improved with
additional training data. Indeed, a recent study, using a deep-
learning approach with a larger training data set of static images
of facial expressions associated with shoulder pain, reported
higher accuracy [62], suggesting that facial-expression data have
appropriate information value for classifying pain from nonpain.
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Furthermore, while participants in this study were real clinicians
and real patients with chronic pain, the MRI environment is
inherently limited in terms of ecological validity due to the supine
position of participants and the inability to communicate verbally
during the pain/treatment fMRI scan. Future studies may
investigate facial communication and brain-to-brain concordance
using electroencephalography [63] or near-infrared spectroscopy
[58], which would enable a more naturalistic patient–clinician
interaction with more mobility, though at the cost of lower spatial
resolution and depth. Finally, the clinical context in this study may
not generalize to other kinds of patient–clinician interactions (e.g.,
psychotherapy, general medicine, and physical therapy).
In conclusion, we found that patients’ facial expressions during

pain treatment had a strong dynamically causal effect on the
clinicians’ facial expressions, but not vice versa. Furthermore, we
found that patient–clinician concordance in insula-cortex activity
was positively associated with larger causal influence of patients’
pain-related expressions on clinicians’ facial responses. Our
findings specify brain-behavioral dynamics that may be central
to successful patient–clinician interactions.
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