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Hepatitis C virus (HCV) infection is remarkably efficient in establishing viral persistence, leading to the development of 
liver cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antiviral agents (DAAs) are promising HCV therapies 
to clear the virus. However, recent reports indicate potential increased risk of HCC development among HCV patients 
with cirrhosis following DAA therapy. CD8+ T-cells participate in controlling HCV infection. However, in chronic hepatitis 
C patients, severe CD4+ and CD8+ T-cell dysfunctions have been observed. This suggests that HCV may employ 
mechanisms to counteract or suppress the host T-cell responses. The primary site of viral replication is within hepatocytes 
where infection can trigger the expression of costimulatory molecules and the secretion of immunoregulatory cytokines. 
Numerous studies indicate that HCV infection in hepatocytes impairs antiviral host immunity by modulating the 
expression of immunoregulatory molecules. Hepatocytes expressing whole HCV proteins upregulate the ligands of 
programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and transforming growth factor β (TGF-β) 
synthesis compared to those in hepatocytes in the absence of the HCV genome. Importantly, HCV-infected hepatocytes 
are capable of inducing regulatory CD4+ T-cells, releasing exosomes displaying TGF-β on exosome surfaces, and 
generating follicular regulatory T-cells. Recent studies report that the expression profile of exosome microRNAs provides 
biomarkers of HCV infection and HCV-related chronic liver diseases. A better understanding of the immunoregulatory 
mechanisms and identification of biomarkers associated with HCV infection will provide insight into designing vaccine 
against HCV to bypass HCV-induced immune dysregulation and prevent development of HCV-associated chronic liver 
diseases.  (Clin Mol Hepatol 2023;29:65-76)
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INTRODUCTION

The hepatitis C virus (HCV) is a serious and growing world-
wide threat to human health, having already infected ap-
proximately 3% of the world’s population (>180 million peo-

ple).1 HCV transmission can often be linked to a blood-borne 
route, such as intravenous drug use or medical procedures. 
HCV infection is almost invariably associated with viral per-
sistence, leading to development of hepatocellular carcino-
ma (HCC), as well as, autoimmune diseases such as mixed 
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cryoglobulinemia.2 Direct-acting antiviral agents (DAAs) are 
promising HCV therapies to clear the virus. However, recent 
reports indicate a potential increased risk of HCC develop-
ment among HCV-infected patients with cirrhosis following 
DAA therapy.3,4 Unfortunately, development of a vaccine 
against HCV infection has failed, and no vaccine is currently 
available.

Since HCV was identified as the causative agent of non-A, 
non-B hepatitis, the immune responses to HCV infection 
have been examined in detail.5-8 It is notable that immune re-
sponses to HCV are significantly impaired. First, the appear-
ance of  HCV-specific antibody response is delayed and is de-
tectable on 2–4 months after viral infection.9 Second, T cell 
responses to HCV have been demonstrated with multiple an-
tigenic stimulations.10 Importantly, early and sustained CD4+ 

and CD8+ T-cell responses are crucial for controlling HCV in-
fection,11 but the magnitude of T-cell responses is dramatical-
ly decreased in chronic hepatitis C patients compared to that 
in acute hepatitis C patients. This suggests that HCV may em-
ploy mechanisms to evade or possibly suppress host T-cell 
responses. It is important to understand how chronic HCV in-
fection dampens T-cell responses against HCV infection and 
develop vaccine against HCV.

Numerous studies have reported that HCV actively sup-
presses the immune response by altering the differentiation 
of innate immune cells, resulting in the impairment of subse-
quent robust antiviral adaptive responses. Moreover, CD4+ 

CD25+ regulatory T-cells (Tregs) have been consistently 
shown to be expanded in patients with chronic infection.6,12,13 
CD4+CD25+ Tregs play a pivotal role in maintaining immune 
homeostasis and controlling excessive immune responses. 
The immunoregulatory cytokines, transforming growth fac-
tor β (TGF-β) and interleukin (IL)-10, are crucial for the induc-
tion and maintenance of Tregs. TGF-β is involved in the gen-
eration of inducible Tregs and the maintenance of Treg 
function.14 IL-10 is a critical factor for sustaining FoxP3 expres-
sion.15 In addition, these cytokines have been reported to be 

secreted during HCV infection and have polymorphisms that 
correlate with HCV clearance.16 

Molecular biological studies of HCV have shown that it is a 
positive-stranded RNA virus related to the Flaviviridae fami-
ly.17 The viral genome encodes a single polyprotein of ap-
proximately 3,000 amino acids (aa) processed by host and vi-
ral proteases to form non-structural and structural proteins 
including a nucleocapsid (core) and two envelope proteins. 
The primary site of HCV replication is in hepatocytes. HCV life 
cycle involves multiple steps to generate infectious virus and 
lipid droplet formation is crucial for viral RNA replication (Fig. 
1). Viral tropism seems to be determined by initial interaction 
of HCV glycoproteins with dendritic cell-specific intercellular 
adhesion molecule-3-grabbing non-integrin (SIGN) and 
lymph node-SIGN on the surface of liver endothelial cells and 
antigen-presenting cells. This interaction is followed by bind-
ing to CD81, SR-B1, and/or heparin sulfate on the cell surface 
of hepatocytes.18 Although there is evidence for HCV replica-
tion at extrahepatic sites including B-cells, the vast majority 
of HCV replication and protein expression occur in hepato-
cytes.19 Recently, it has been reported that hepatocytes are 
capable of exerting immunoregulatory function. Notably, 
HCV-infected hepatocytes interact with immune cells pres-
ent in the liver microenvironment and suppress host immune 
responses. In this review article, we discuss the contribution 
of HCV-infected hepatocytes to regulate host immune re-
sponses during HCV infection and the molecular mechanism 
for their immunoregulatory function. 

IMMUNOLOGICAL FEATURES OF HEPATO-
CYTES UPON ENCOUNTER WITH VIRAL  
INFECTION 

Hepatocytes are not traditionally regarded as key players in 
mounting immune response. However, they have the ability 
to produce a large variety of cytokines and chemokines. 

Abbreviations: 
AIH, autoimmune hepatitis; ASC, caspase recruitment domain; ATP, adenosine triphosphate; DAA, direct-acting antiviral agent; EVs, extracellular vesicles; GC, germinal 
center; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HSC, hepatic stellate cell; HTA, host-targeting antiviral; IFN, interferon; IL, interleukin; 
LSEC, liver sinusoidal endothelial cell; MDSC, myeloid-derived suppressor cell; MIP-1α, macrophage inflammatory protein-1 α; miRNA, microRNA; mRNA, messenger 
RNA; MVs, microvesicles; NAFLD, nonalcoholic fatty liver disease; NLRP3, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 
3; PAMP, pathogen-associated molecular pattern; Panx1, pannexin 1; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; RANTES, regulated 
upon activation, normal T cell expressed and secreted; ROS, reactive oxygen species; RUNX1, runt-related transcription factor1; RUNXOR, RUNX1 overlapping RNA; SIGN, 
specific intercellular adhesion molecule-3-grabbing non-integrin; Tfr, T follicular regulatory; TGF-β, transforming growth factor β; TLR, toll-like receptor; Treg, regulatory 
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Thus, in the liver microenvironment, the cellular interaction 
between lymphocytes and hepatocytes might take place 
due to the fenestrated structure of hepatic sinusoids, com-
bined with the lack of basal membrane and the low blood 
flow. Current techniques available for the in vivo analysis of 
acute HCV infection are limited because the chimpanzee is 
the only animal susceptible to a natural HCV infection. The in 
vitro tissue culture of HCV has been used for studying the in-
teraction of infected hepatocytes with immune cells. HCV in-
fection leads to hepatocyte damages that initiate hepatic in-
flammatory responses by recruiting immune cells (i.e., 
myeloid and T-cells) at the site of infection.20 Secretion of im-
mune mediators from infected hepatocytes and immune 
cells is involved on the activation of hepatic stellate cells 
(HSCs) and the development of liver fibrosis (Fig. 2).

Immune mediators produced from infected 
hepatocytes

The HCC cell line, Huh7, is established from HCC and com-
monly used for in vitro studies. Following HCV infection, 

Huh7 cells are able to produce IL-7, IL-15, and TGF-β, and their 
expression does not change with IL-1α exposure.21,22 Other 
cytokines and chemokines, such as tumor necrosis factor, IL-
1β, regulated upon activation, normal T cell expressed and 
secreted (RANTES), macrophage inflammatory protein-1 α 
(MIP-1α), and IL-8, are also produced by hepatocytes, and 
their productions are increased in response to pro-inflamma-
tory IL-1α activation. In addition, HCV infection is associated 
with the activation of inflammasomes such as nucleotide-
binding oligomerization domain-like receptor family pyrin 
domain containing 3 (NLRP3), apoptosis-associated speck-
like protein containing a caspase recruitment domain (ASC), 
caspase-1, and release of IL-1β secretion.23 Many of these cy-
tokines and chemokines are important to CD4+ T-cell survival 
and differentiation. For example, RANTES is CD4+ T-cell re-
cruiting cytokine and contributes to development of Th1 
response.24 While IL-15 enhances Th1 cytokine production 
and promotes development of an effector phenotype,25 
TGF-β has a negative influence on effector T-cell function 
and is known to be involved in Treg cell and Th17 cell devel-
opment. Development of HCV replicon (genotype 1a)26 as 

Figure 1. Hepatitis C virus life cycle occurs via 7 steps; entry, fusion & uncoating, translation, replication, assembly, maturation, and release. 
Formation of lipid droplet is crucial for viral RNA replication. ER, endoplasmic reticulum.
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well as replicating JFH1 virus (genotype 2a)27 represent a ma-
jor advancement for studying the interaction of HCV-infected 
hepatocytes and the host immune system. Successful repli-
cation of the viral genome has been superior in the HCC cell 
line Huh7.5. Huh7.5 cells were generated from HCV-positive 
parental cell,  Huh7, which was cured of HCV using 
interferon-α treatment. These cells were subsequently recep-
tive to HCV replication such that HCV RNA and proteins could 
be detected soon after transfection with HCV replicons.26 
Studies on cytokine analysis using HCC cells have been vali-
dated in primary hepatocytes following HCV infection.

Programmed cell death protein 1 (PD-1) and 
PD-1 ligand expression 

PD-1 is a receptor for the programmed death-ligand 1 (PD-
L1) and PD-L2, and plays a role in dampening host immune 
responses. Specifically, T-cells activation increased the level 
of PD-1 expression and engagement of PD-1 with its ligand 
inhibits their activation, proliferation, and cytokine secre-

tions.28-30 Leukocytes, a number of soft tissues, and endothe-
lial cells constitutively express low levels of PD-L1, but induce 
the expression of PD-L2 under the inflammatory condition.28 
Inflammatory cytokines, including interferon (IFN)-γ, up-reg-
ulate PD-L1 and PD-L2 expression on a variety of epithelial 
cells and leukocytes.31 The PD-1 pathway is associated with 
outcome of human disease severity (e.g., autoimmune dis-
eases, cancer). PD-1 ligand expression is seen in a variety of 
cancers, often correlating with worse cancer outcome. Im-
muntherapy based on PD-1 blockade has been developed to 
treat cancer patients.

The pathogenic role of the PD-1 pathway has been demon-
strated in the progression of chronic liver diseases by deter-
mining the modulation of the inhibitory PD-1 ligands in the 
liver with chronic inflammation. Chronically damaged livers 
provide ample opportunity for lymphocyte modulation via 
PD-1/PD-1 ligand ligation. Indeed primary human hepato-
cytes as well as Kupffer cells, stellate cells, T-cells, myeloid 
cells, and liver sinusoidal endothelial cells (LSECs) express PD-
L1 and PD-L2.32 At the messenger RNA (mRNA) level, chronic 

Figure 2. Interaction between virus-infected hepatocyte and immune cells. Hepatitis C virus infection and replication in hepatocytes pro-
mote the production of cytokines/chemkines leading to recruit immune cells. The excessive cytokines cause hepatic inflammation in the liver 
and exacerbate tissue damage and liver disease progression. DC, dendritic cell; KC, Kupffer cell; NK, natural killer cell; LSEC, liver sinusoidal en-
dothelial cell.
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hepatitis C and autoimmune hepatitis (AIH) patients have in-
creased levels of PD-L1 and PD-L2 mRNA compared to those 
with normal livers. Multiple studies found that blocking PD-1 
and PD-L1 interactions on leukocytes from hepatitis B virus 
(HBV)- or HCV-infected patients restored T-cell function in vi-
tro.33,34

Cellular location of PD-1 and its ligand expression, has been 
identified by histologic studies on liver biopsies from chronic 
hepatitis B, chronic hepatitis C, AIH, and nonalcoholic fatty 
liver disease (NAFLD) patients as well as individuals with nor-
mal liver histology. The presence of the normal control group 
enabled to differentiate baseline tolerogenic features of the 
liver from those modulated during chronic liver damage. The 
increased numbers of CD3+ T-cells were detected in chronic 
hepatitis B, chronic hepatitis C, and AIH livers and significant 
portions of intrahepatic lymphocytes from these patient 
groups expressed PD-1. LSECs, Kupffer cells, and intrahepatic 
leukocytes expressed PD-L1 and PD-L2 while hepatocytes 
also expressed PD-L1 and PD-L2 under inflammation. These 
studies confirm that PD-L1 and PD-L2 expression on paren-
chymal and non-parenchymal cells can deliver a negative 
signal to T-cells, dampening their responses. Moreover, the 
necroinflammatory levels associated with chronic hepatitis B, 
chronic hepatitis C, and AIH were correlated with increased 
PD-L1 and PD-L2 on leukocytes, Kupffer cells, and LSECs. 
However, early-stage NAFLD patients did not demonstrate 
significant increases in CD3+ lymphocyte infiltrates, PD-1 or 
PD-L1 and PD-L2 expression, suggesting that inflammation 
rather than liver damage itself leads to the expression of PD-1 
and PD-1 ligands.

Induction of Treg driven by TGF-β secreted 
from HCV-infected hepatocytes

Impaired antiviral CD8+ and CD4+ Th1 T-cell responses are 
associated with persistence of HCV infection.35 Although fail-
ure of T-cell responses might occur as a result of mutation in 
viral antigens.36,37 and upregulation of negative costimulatory 
PD-1 and CTLA-4 pathways,38,39 HCV infection generates a di-
rect mechanism to generate CD4+CD25+FoxP3+ Tregs to in-
hibit T-cell responses. Notably, an increase in the number and 
functionality of Tregs has been detected in chronic HCV pa-
tients as compared to those with resolved infection.6,40,41 The 
increased frequency of Tregs observed in chronic HCV pa-
tients might arise from expansion of thymic-derived natural 

Tregs or from de novo induction from naïve T-cells. The 
mechanism underlying induction of Tregs during HCV infec-
tion remains unclear. 

Notably, HCV protein expression within hepatocytes alters 
the function of CD4+ T-cells and could contribute to develop-
ment of Tregs.42 By using an HCV whole protein-expressing 
hepatoma line (Huh7.5-FL), studies have been conducted to 
examine contribution of infected hepatocytes on CD4+ T-cell 
dysfunction. CD4+ T-cell responsiveness, as measured by 
IFN-γ production, was diminished in co-culture with Huh7.5-
FL compared to controls. Importantly, CD4+ T-cells in contact 
with Huh7.5-FL adopted a Treg phenotype (CD25+FoxP3+ 

CTLA-4+LAP+) and developed the ability to suppress effector 
T-cell proliferation. The role of hepatocytes in Treg develop-
ment was clarified by finding that Huh7.5-FL produced more 
TGF-β than control hepatocytes. Moreover, intracellular ex-
pression of an HCV core is known to enhance TGF-β1 mRNA 
production by the hepatoma cell line HepG2.43,44 These pro-
vide evidence that the site of HCV infection (i.e., hepatocytes) 
plays a pivotal role in impairing the antiviral T-cell response 
by the induction of Tregs via TGF-β production.

CELLULAR CROSSTALK VIA EXOSOMES  
RELEASED BY HCV-INFECTED HEPATOCYTES

Cells exchange information through release of soluble fac-
tors or by direct interaction. Several reports demonstrate 
that cells can also communicate by circular membrane frag-
ments called extracellular vesicles (EVs).45 Normal or diseased 
cells release different types of EVs, including microvesicles 
(MVs) and exosomes, depending on their cellular origin. Exo-
somes (40–100 nm) are formed by the fusion between multi-
vesicular bodies and the plasma membrane, while MVs (100–
2,000 nm) bud directly from the plasma membrane. Exosomes 
have been shown to provide a means of intercellular com-
munication as contributing factors in the development of 
several diseases by the spread of proteins, mRNAs, and mi-
croRNAs (miRNAs).45 During virus infection, exosomes re-
leased from virus-infected cells contain viral proteins, viral 
RNAs, and certain specific miRNAs that are able to spread the 
infection and alter the cellular response in uninfected target 
cells during the immune response and pathogenesis.

Exosomes secreted from HCV-infected hepatocytes play a 
critical role in promoting intercellular crosstalk with liver non-
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parenchymal cells.46,47 HCV infection may directly activate a 
signaling network in hepatocytes, promoting release of im-
munoregulatory molecules packaged into exosomes, leading 
to intercellular communication inducing for activation of fi-
brotic macrophages and LSEC (Fig. 3). Recently, accumulating 
evidence demonstrates that exosomes and exosomal miR-
NAs from HCV-infected hepatocytes lead to polarization and 
differentiation of macrophages and mediate pro-fibrotic re-
sponses in HSC and T follicular regulatory (Tfr) cells expan-
sion.48-50 This suggests that development of liver disease in-
volves intercellular communication during HCV infection. 
Interestingly, some studies have reported increased release 
of specific miRNAs, such as miR-122 in HCV infection.51 Re-
cently, potential cellular and molecular mechanisms of HCV-
mediated secretions of exosome and exosomal miRNAs have 
been elucidated.52

Exosomes containing immunoregulatory 
molecules

Numerous studies have been conducted to identify con-
tents of exosomes secreted from HCV-infected hepatocytes 

and define their biological function. Interestingly, HCV exo-
somes play a role in regulating host immune responses and 
facilitating development of persistent HCV infections and 
chronic liver diseases. HCV-dependent elevated reactive oxy-
gen species (ROS) levels and induction of autophagy are re-
lated to exosomes derived from the endosomal pathway.53 
Toll-like receptor (TLR) 7 and TLR8 are present in intracellular 
vesicles from HCV-infected hepatocytes and macrophages.54 
TLR is a type of pattern-recognition receptor in the immune 
system recognizing pathogen-associated molecular patterns 
(PAMPs) and exerts a broad spectrum of innate immunity. 
Exosomes containing single-strand HCV RNA have been 
shown to affect differentiation of monocytes to fibrogenic 
macrophages in a TLR7/8-dependent manner.48 TLR3 activa-
tion was reduced under influence of viral dsRNA contained in 
exosomes secreted from HCV-positive cells, showing a novel 
mechanism to evade the host immune response in virus per-
sistence.55 

Moreover, HCV exosomes isolated from infected hepato-
cytes contain TGF-β at the surface of exosomes. TGF-β is im-
portant for induction and expansion of Tfr cells, a subset of 
Tregs.56 Increased Treg responses are a prominent feature in 

Figure 3. Schematic diagram of HCV exosomes. Exosomes released by HCV-infected hepatocytes promote intercellular crosstalk with Mϕ 
and LSEC leading to stellate cell activation. HCV, hepatitis C virus; LSEC, liver sinusoidal endothelial cells; TGF-β, transforming growth factor β; 
miRNA, microRNA; HSC, hepatic stellate cell.
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HCV infection such that Tregs are increased in both number 
and function in chronic hepatitis C patients and are positively 
correlated with viral load.6,7 Furthermore, abundant Tregs are 
found in the livers of chronic hepatitis C patients.57,58 Recently 
Tfr cells have been identified for functional regulation of ger-
minal center (GC) responses by limiting Tfh cells and B 
cells.59,60 Tfrs are reported to be increased in the circulation of 
chronic hepatitis C patients.61 Tfrs are identified by the ex-
pression of follicular markers CXCR5 and PD-1 and regulatory 
markers CD25 and Foxp3. This allows Tfrs to co-migrate with 
Tfh to control GC responses.62 Interestingly, lymphoid folli-
cles, containing T- and B-cells, are commonly observed in the 
livers of HCV-infected patients and exhibit signs of GC-like ar-
chitecture.63,64 Recent studies have identified the presence of 
Tfh within the livers of HCV-infected patients.65

Exposure of CD4+ T-cells to TGF-β-containing exosomes 
from HCV-infected hepatocytes led to a significant increase 
in Tfrs. This study has been done by culturing exosomes iso-
lated from HCV-infected primary hepatocytes with pre-acti-
vated CD4+ T-cells. Moreover, depletion of CD14+ monocytes 
prior to co-culture of infected hepatocytes with PBMCs did 
not affect the ability of infected hepatoma cells to drive Tfr 
expansion but monocytes are not required for expansion of 
Tfr cells. Importantly, expansion of Tfr cell is accompanied by 
acquisition of an enhanced regulatory phenotype and leads 
to the functional suppression of Tfh cells. Increases in Tfr re-
sponses are driven by a novel pathway involving the release 
of TGF-β-containing exosomes from HCV-infected hepato-
cytes. These findings highlight the accumulation of Tfrs in 
the livers of HCV-infected patients, potentially inhibiting pro-
tective Tfh and B-cell responses at the site of infection, and 

contributing to viral persistence.

Exosomes containing miRNAs

Several studies report the expression and biological activi-
ty of various miRNAs in HCV infection-associated exosomes. 
In the exosomes of HCC patients, miR-21-5p, miR-10b-5p, 
miR-221-3p, and miR-223-3p were significantly upregulated 
compared to the non-HCC individuals.66 miR-19a and miR-192 
from exosomes secreted from HCV-infected hepatocytes 
were internalized into HSCs and induced HSC activation by 
triggering STAT3-mediated TGF-β signaling.50,67 HCV-induced 
exosomal miR-122/let-7b/miR-206 induced activation of B-
cells associated with mixed cryoglobulinemia.68 A link be-
tween the runt-related transcription factor1 (RUNX1)/RUNX1 
overlapping RNA (RUNXOR) and the STAT3/miR-124 pathway 
regulated differentiation of myeloid-derived suppressor cells 
(MDSCs) during chronic HCV infection, and expression of 
miR-124 was negatively correlated with expression of STAT3.69 
In addition, a pilot study on expression profiles of exosomal 
miRNAs in HCV-infected patients has identified various miR-
NAs related to other diseases.70

Molecular mechanism of exosome release from 
infected hepatocytes

The exosome plays a critical role in mediating the cellular 
communication.50 Syntenin has been reported to be involved 
on the secretion of E2 via exosomes. E2 is a viral envelope 
glycoprotein that forms a heterodimer and mediates viral en-
try.71 The release of MVs or exosomes can be stimulated by 

Table 1. Candidate biomarkers of HCV exosom miRNAs

Biomarker Responses of each markers in HCV Reference

miR-21-5p, miR-10b-5p, miR-221-3p, miR-223-3p Increased 66

miR-19a Increased 50

miR-192 Increased 81

miR-124 Decreased 69,82

miR-885-5p, miR-365 Increased 70

miR-627-5p, miR-221 Decreased 70

miR-155 Increased 76

miR-122, let-7b, miR-206 Increased 68,77

miR-199a Increased 77

HCV, hepatitis C virus; miRNA, microRNA.
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stress signals, including DNA damage, intracellular calcium, 
and extracellular adenosine triphosphate (ATP).72 Exosome 
release can occur by an ESCRT-dependent or ESCRT-indepen-
dent pathway. Moreover, exosome release is induced by ex-
tracellular ATP that is associated with purinergic receptor ac-
tivation. 

Pannexin 1 (Panx1) is a transmembrane channel that medi-
ates ATP release. Panx1 is activated by the stretch of the plas-
ma membrane during changes in osmolality or mechanical 
injuries or by proteolysis via caspase-3 and -7 during early 
apoptosis.73 The ATP released by Panx1 activation can bind to 
the purinergic receptor, leading to a calcium influx.74 Expres-
sion of Panx-1 and purinergic receptor was increased in HCV-
infected hepatocytes.75 However, participation of Panx1 
pathway-mediated exosome release in viral infection has not 
been well elucidated. Our studies demonstrate that secre-
tions of exosomes and specific miRNAs are associated with 
the Panx1/purinergic receptor pathway in HCV-infected he-
patocytes.52 Notably, Panx1 inhibitors prevented release of 
exosomes from HCV-infected hepatocytes.

DEVELOPMENT OF FUTURE THERAPEUTICS TO 
TREAT CHRONIC LIVER DISEASE

Therapeutic interventions to develop drugs for halting the 
liver disease progression and vaccine for preventing HCV in-
fection have met with limited success. It is vital to understand 
the pathogenesis of HCV infection and the mechanism of vi-
rus-induced immune suppression leading to the establish-
ment of persistent infection. The studies described in this re-
view article provide novel and important information on the 
role of HCV-infected hepatocytes in the pathogenesis of HCV 
infection and inhibition of T-cell function. Results of these 
studies contribute to advance the understanding of impaired 
T-cell responses via interactions between hepatocyte and T-
cell. Thus these data should stimulate development of novel 
vaccine strategies for this important human pathogen.

Furthermore, miRNA-containing exosomes have been re-
ported as biomarkers for diagnosis of HCV. Table 1 summariz-
es miRNAs identified as biomakers associated with HCV in-
fection. Exosomes containing miR-19a and miR-192 were 
observed in the serum of HCV patients and presented as a 
new marker.50 An increase of exosome miR-885-5p and miR-
365 but a decrease of exosome miR-627-5 and miR-221 

showed characteristic of HCV-infection among other miR-
NAs.70 Expression of exosome miR-155 was reduced after 
rituximab treatment in HCV patients.76 In particular, serum 
miR-122 and miR-199a are potential biomarkers reflecting 
therapeutic efficacy against HCV infection.77 Potential mech-
anisms of HCV anti-viral therapy involve therapeutic agents 
directly acting on the virus, IFN-dependent/independent 
therapeutics, and host-targeting antivirals (HTAs). miR-122 in-
creases viral replication by directly binding to two conserved 
flanking regions of the 5’ UTR of HCV RNA and acts as HTA 
against HCV replication.78 Miravisen, miR-122 antisense 
blocker, has been developed as a latest HTA.79 In addition, 
treatment of syntenin, a protein involved in the exosome se-
cretion pathway, has recently been introduced,80 but like the 
above-mentioned treatment, there are few reports of its clin-
ical test results yet. Nevertheless, these studies are important 
for developing therapeutics to target HCV-infected hepato-
cytes and prevent development of HCV-associated chronic 
liver diseases.

CONCLUSION

In summary, HCV-infected hepatocytes play a pivotal role 
in changing immunological features in the liver microenvi-
ronment. Through cellular and molecular mechanisms, HCV-
infected hepatocytes dampen intrahepatic T-cell responses 
directly via increased expression of PD-L1 or indirectly by re-
leasing immunoregulatory molecules such as TGF-β. Future 
studies are needed to develop immune-based therapeutics 
to treat chronic liver diseases associated with HCV infection. 
In addition, the markers in the various immunological mech-
anisms presented in this review can be used in future re-
search on immune-based therapeutics.
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