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Abstract

Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both
species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in .80%
of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population
of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring
canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs
from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and
demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines,
U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant
differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We
identified 13,221 significant differences (p = 0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than
daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and
mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However
inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour
initiation.
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Introduction

Osteosarcoma is the most common bone tumor in children and

adolescents comprising 20% of all bone tumors and about 5% of

pediatric tumors overall [1,2]. The highest incidence of osteosar-

coma is in the second decade of life, suggesting a relationship

between bone growth and tumor development [3,4]. Significant

improvements in patient survival rates have been achieved

through multimodal therapeutic approaches combining high-dose

chemotherapy and surgical resection [5]. However, despite these

advances, the overall relapse free-survival rate over 5-years has

remained at approximately 65% to 75% and the intensification of

chemotherapy regimens has not improved survival [6,7]. Like the

situation in children, osteosarcoma is the most commonly

diagnosed primary bone tumour of dogs [8]. It generally occurs

on the limbs of middle-aged to older, large breed dogs, with the

distal radius and proximal humerus as common locations [8].

These neoplasms are highly malignant with aggressive local effects

and a high risk of metastasis to the lungs. In dogs, 1-year survival

times are ,20% despite surgery and chemotherapy [8].

In recent years the traditional stochastic model of cancer

development has been challenged by a new model, which

implicates cancer stem cells as the subpopulation of cancer cells

that maintains the malignant phenotype [9]. These cancer stem

cells (CSCs) share several characteristics with embryonic and

somatic stem cells including self-renewal and differentiation

abilities, and represent a small fraction of the cellular population

of the tumour. The role of CSCs was initially established in

leukaemia, and more recently in solid tumours including

melanomas [10,11], glioblastomas [12] and epithelial cancers

[13,14,15,16,17]. Increasing evidence has implicated CSCs in

tumorigenesis and response to treatment of many tumour types

[6,18,19,20]. Significantly, the resistance of these cells to

conventional chemotherapeutic regimes suggests that CSCs play

a major role in drug resistance and treatment failure [21].

Osteosarcoma CSCs have been identified in humans and dogs

suggesting that these cells may be responsible for treatment failure

in this disease [22,23,24,25,26]. The fact that current therapeutic

strategies have not improved survival times for either species in

recent years obviates the explicit need for osteosarcoma CSCs to

be characterized to identify therapeutic targets [19]. As both

canine and human osteosarcoma has been shown to contain a

subpopulation of CSCs, which may drive tumour growth,

recurrence and metastasis, this represents an opportunity to

develop a natural pre-clinical model of a human disease in dogs

that has greater relevance than current induced or xenograft

rodent models [9,27].
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Previously we have identified CSCs in canine osteosarcoma cell

lines [22]. In this present study we isolated CSCs from a primary

osteosarcoma patient presented for treatment at the University of

Edinburgh Veterinary Cancer Centre. We have identified a

subpopulation of cells with stem-like properties in canine

osteosarcoma that is relatively resistant to conventional chemo-

therapy. Global transcriptional analysis and comparison with

parental cells identified COX-2 expression to be significantly

increased in this population. Interestingly, several histological

studies of human and canine osteosarcoma implicate COX-2 in

tumour growth and progression, underpinning therapeutic strat-

egies utilizing COX-2 inhibitors. We find that COX-2 inhibition

had no effect on CSC growth, or resistance to chemotherapy.

However inhibition of COX-2 in daughter cells prevented sphere

formation. Similar findings were also observed in sphere cells

derived from human osteosarcoma cell lines. Based on these

observations, we believe that CSCs play a critical role in

determining the response of osteosarcoma patients to therapy

and COX-2 may play a role in tumour formation and

maintenance. The similarities observed in canine and human

cells underpin the dog as a potential pre-clinical model of

osteosarcoma therapeutics.

Results

Osteosarcoma cells contain a subpopulation of cells with
stem cell characteristics

Previous studies have shown that CSCs derived from a variety

of human tumours form spheroid colonies in defined serum free

culture that favors the proliferation of undifferentiated cells [22].

Here, cells isolated from a primary canine osteosarcoma,

KTOSA5, and human osteosarcoma cell lines, U2OS and

SAOS2, were seeded as single cells at low-density into suspension

cultures in serum-free growth factor supplemented media. After 5–

7 days tumourspheres were clearly visible (Figure 1A, B and C,

respectively). To determine whether tumourspheres can be

expanded in vitro, spheres were dissociated into single cell

suspensions and passaged multiple times in a long-term sphere-

forming assay. These cells repeatedly formed tumourspheres for

up to five subsequent passages when plated under the stated

culture conditions and in the absence of attachment.

CD34 is a cell surface marker of hematopoietic stem cells [28],

adipose derived stem cells [29] and cancer stem cells of skin cancer

[30], colorectal adenocarcinoma [31], and gastrointestinal stromal

tumours [32,33]. CD34 expression is also primarily observed in

mesenchymal tumours [34,35]. Here we utilized CD34, to isolated

CD34+ cells from the KTOSA5 cell line by magnetic cell sorting.

The mean (6 SD) number of CD34+ cells was 1.365%60.34%

(n = 8, where n is the number of times the experiment has been

replicated). Western blot analysis confirmed that CD34 expression

was confined to the CD34+ cell population (Figure 1D). Signif-

icantly, only CD34+ cells could form spheres when seeded in

serum-free media (Figure 1E).

To further characterise CD34+ cells as a primitive subpopula-

tion of KTOSA5 cells, we examined the expression of embryonic

stem cell markers Oct4, Nanog and STAT3. Oct4 and Nanog are

transcriptional determinants essential for self-renewal and main-

tenance of the undifferentiated state [36]. Here we show that Oct4,

Nanog, and STAT3 are expressed at a higher level in CD34+
compared to CD34- cells (Figure 1F).

We have previously shown that CSCs derived from a canine

mammary carcinoma cell line have a mesenchymal phenotype

[37]. Here we show a similar expression pattern for KTOSA5

cells, whereby expression of b-catenin was significantly decreased,

and that of Fibronectin, Zeb1 and Vimentin was significantly

increased in CD34+ cells compared to CD34- cells (Figure 1G).

Thus the canine osteosarcoma cell line, KTOSA5, contains a

subpopulation of cells that can survive in the absence of

attachment; forms tumourspheres that can be expanded in vitro;

expresses embryonic stem cell makers, which may be required for

maintaining these cells in a primitive state; and expresses a

mesenchymal phenotype.

Osteosarcoma stem cells exhibit greater resistance to
chemotherapy

To determine whether tumourspheres cells preferentially

survive after treatment with chemotherapeutic agents, tumour-

spheres derived from the canine osteosarcoma cell lines KTOSA5

and CSKOS, and from human osteosarcoma cell lines U2OS and

SAOS2, were dissociated into single cells and treated with

increasing concentrations of the chemotherapeutic drug, doxoru-

bicin. Doxorubicin is an anti-tumour antibiotic DNA damaging

agent and is commonly used in veterinary and human cancer

chemotherapy protocols. We used doses of doxorubicin in cell

culture experiments that correlate to concentrations that can be

achieved in vivo. Cell viability was assayed 72 hours after

treatment. Cells from tumourspheres demonstrated a significantly

increased resistance to the cytotoxic effect of doxorubicin

compared to parental adherent cells (Figure 2A, B, C, and D

respectively). In addition, we compared the colony forming ability

of disassociated spheres and adherent cells from the cell lines,

KTOSA5 and U2OS, after doxorubicin treatment (Figure 3A and

B). Both KTOSA5 and U2OS spheres are resistant to doxorubicin

induced replicative cell death compared to adherent cells. Both

canine and human osteosarcoma spheres are resistant to the

therapeutic dose of DNA damaging agents in vitro, and therefore in

a physiological setting may contribute to tumour repopulation.

Tumourspheres increased invasiveness and
tumourigenicity

The metastatic process involves migration from the tumour

microenvironment and subsequent invasion and attachment at a

secondary site within the body. Here, the invasive capacity of cells

dissociated from tumourspheres and matched adherent cells, was

determined using a Boyden chamber assay. KTOSA5 tumour-

spheres displayed a significantly greater invasive potential com-

pared to adherent cells (Figure 4A, p,0.005). Similar results were

obtained for U2OS cells (Figure 4B, p,0.005). This data is

consistent with the hypothesis that cancer stem cells contribute to

invasion and migration of the tumour.

To evaluate tumourgenicity of the canine osteosarcoma cell

lines, KTOSA5 and CSKOS, we utilised the chicken embryo

chorioallantoic membrane (CAM) model. Chicken embryos were

inoculated with fluorescently labelled dissociated spheres or

adherent cells, directly on to their CAM, at day 7 of development.

Five days after tumour cell inoculation the formation of 3-

dimensional tumours became apparent in 100% of membranes

inoculated with dissociated spheres but not adherent cells. These

micro-tumours were visualized under the fluorescence microscope;

sphere cells were brightly fluorescent and had radiated out from

the 3-dimentional tumour growths, invading the surrounding

blood vessels of the CAM. In contrast, adherent cells were

localised to the initial site of inoculation and weakly fluorescent,

possibly indicating that these cells were dying and unable to

establish growth. Similar results were obtained in both KTOSA5

and CSKOS cell lines (Figure 5A and B, respectively). Thus,

Effect of COX2 Inhibition on Cancer Stem Cells
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spheres have greater in vivo tumourigenic capacity than adherent

cells.

Analysis of gene expression
We performed gene expression profiling of KTOSA5 spheres

using the Affymetrix GeneChipH Canine 2.0 Array. Cancer stem

cells, represented by sphere cells, differentially expressed (i.e. up-

or down regulated .2-fold with a false discovery rate (FDR) of

0.05) 13,221 genes compared to adherent cells. As a control,

KTOSA5 spheres were also compared to canine mesenchymal

stem cells (MSCs) [38]. Here there were 7,542 significant

differences (FDR of 0.05), indicating that osteosarcoma stem cells

are more similar to mesenchymal stem cells than the bulk adherent

cells from which they were derived. To obtain a manageable

number of gene differences, the FDR was decreased to 0.005.

Under these parameters, 5,685 genes were differentially expressed

in spheres compared to adherent cells. Principle component

analysis shows a distinct separation of the three cell populations

(Figure 6A) and the heatmap shows that CSCs cluster more closely

with MSCs than adherent cells (Figure 6B). Further pathway

analysis showed that the differential expression profile of spheres

encompassed genes involved in a variety of biological processes

and diseases including cell growth, proliferation, development, cell

cycle regulation, apoptosis, protein synthesis, and cell movement

(Figure 6C). Significantly, cancer was the top disease identified in

the analysis (Table 1), indicating that gene expression profiles

associated with cancer are more prevalent in the cancer stem cell

population than the adherent cells. The top ten upregulated genes

in CSCs compared to adherent cells are shown in Table 2.

COX-2 expression is elevated in cancer stem cells
The microarray analysis identified COX-2 expression as being

141-fold up-regulated in KTOSA5 spheres compared to adherent

cells. We confirmed this by qRT-PCR, and showed that COX-2

expression is up-regulated 153-fold in KTOSA5 spheres; 156-fold

in SAOS2 spheres; and 42-fold in U2OS cells (Figure 7A). We also

confirmed that COX-2 is elevated at the protein level in KTOSA

and CSKOS spheres compared to adherent cells (Figure 7B).

Figure 1. Characterisation of osteosarcoma stem cells. Spheres can be isolated from canine KTOSA5 cells (A), the human U2OS cell line (B),
human SAOS2 cell line (C). A small population of CD34+ cells can be isolated from the KTOSA5 cell line by magnetic cell sorting. Only CD34+ cells
express CD34 protein (D) and only CD34+ cells could form spheres (E). Data are representative of three independent experiments (*p,0.001). Reverse
transcriptase (RT)-PCR analysis of Nanog, Oct4, STAT3, and b-actin gene expression levels (F). Western blots analysis of Fibronectin, b-catenin, Zeb1,
and Vimentin, with b-actin as a loading control (G).
doi:10.1371/journal.pone.0083144.g001
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COX-2 has no effect cell viability, colony forming ability
or chemosensitivity of cancer stem cells

To elucidate the role of COX-2 in cancer stem cell biology, we

used the COX-2 inhibitor meloxicam. Increasing doses of

meloxicam had no significant effect on the cell viability of

KTOSA5 cells, and there was no difference between spheres and

adherent cells (Figure 8A). A colony formation assay showed that

COX-2 inhibition by meloxicam could decrease long-term cell

survival, in a dose-dependent fashion, using high doses of the drug.

As before there was no difference between the CD34+ cells,

representing the cancer stem cell population, and the CD34- cells

(Figure 8B). COX-2 inhibition by meloxicam also had no effect on

the resistance of cancer stem cells to doxorubicin treatment

(Figure 8C).

COX-2 is required for tumoursphere formation
To determine if COX-2 has an effect on the ability of cancer

cells to form spheres, KTOSA5 adherent cells were pretreated

with either 0 mM, 0.25 mM, 100 mM, or 600 mM meloxicam and

seeded at 6000 cells per well in serum-free sphere forming media.

After 7 days the number of spheres per field were counted. There

were significantly less spheres in the meloxicam treated plates

compared to the 0 mM vehicle (DMSO) control treated cells

(Figure 9A, p,0.01). To confirm this result with a different COX-

2 inhibitor and in additional cell lines, we treated KTOSA5,

CSKOS, U2OS and SAOS2 adherent cells with increasing doses

(0 mM, 0.04 mM, 10 mM, 50 mM, 100 mM) of the long-acting

COX-2 inhibitor, mavacoxib and seeded the cells appropriately

for a sphere-forming assay (Figure 9B–E, p,0.001). As before,

there was a striking decrease in the number of spheres formed in

all cell lines tested, which is dose-dependent on COX-2 inhibition.

This data indicates that COX-2 plays a central role in sphere

forming ability.

Discussion

The identification of CSCs in osteosarcoma has enormous

implications for therapeutic development. In human osteosarcoma

survival rates have remained static for the past 20 years,

Figure 2. Cancer stem cells are resistant to the cytotoxic effects of doxorubicin. Spheres were isolated from the canine osteosarcoma cell
lines; KTOSA5 (A) and CSKOS (B), and the human osteosarcoma cell lines U2OS (C) and SAOS2 (D). Spheres and adherent cells were treated with the
indicated doses of doxorubicin and cell viability was assayed 48 hr after treatment (* p,0.005).
doi:10.1371/journal.pone.0083144.g002
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development of drug resistance being a major feature of treatment

failure [6,7]. In the dog, a similar situation prevails with 1 year

survival times being well below 20% [8]. The resistance of CSCs

to conventional cytotoxic therapy makes it a prerequisite to

characterize these cells in terms of potential therapeutic targets [9].

Previously we have demonstrated the enrichment of these cells in

established canine osteosarcoma cell lines [22]. In this study we

reinforced the hypothesis of the stem cell basis for osteosarcoma,

by achieving isolation of such a population from clinical samples.

A fundamental property of CSCs is their ability to self-renew

[9]. The sphere-forming capacity of KTOSA5 cells that was

observed following five serial passages under selective culture

conditions demonstrated the presence of a self-renewing cell

population. Furthermore, when inoculated on to the chorioallan-

toic membrane of chicken embryos, spheres were much better at

initiating and establishing tumour growth than adherent cells.

Therefore canine osteosarcoma stem cells, in comparison with

daughter adherent cells, express embryonic stem cell markers; can

self-renew; are resistant to the cytotoxic effects of chemothera-

Figure 3. Spheres are resistant to replicative cell death after doxorubicin treatment. Colony forming ability after doxorubicin treatment
was determined in KTOSA5 cells (* p = 0.008; ** p,0.001) (A) and U2OS cells (£ p = 0.008; ££ p,0.001) (B).
doi:10.1371/journal.pone.0083144.g003

Figure 4. Cancer stem cells show an increased invasive potential in vitro. Invasive ability of KTOSA5 (A, B) and U2OS (C, D) spheres and
adherent cells was analysed using a collagen based invasion assay. Invading cells were quantified by measuring the optical density at 560 nm.
* p,0.005.
doi:10.1371/journal.pone.0083144.g004
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peutic drugs; are more invasive in vitro; and are more tumourigenic

in vivo. Significantly, our microarray data showed vast differences

in the gene expression profiles of KTOSA5 spheres and adherent

cells, with 13,221 significant differences. Data mining for

biologically relevant processes identified that overexpressed genes

in spheres are associated with cancer, cell growth and prolifera-

tion, cell cycle regulation, and organismal survival. Previous

studies have suggested that CSCs derived from bone sarcomas

arise from mesenchymal stem cells (MSC) [39]. Classically MSCs

lack expression of CD34 [40,41], but here we show that a small

subpopulation of CD34+ cells can be isolated from KTOSA5 cells

with characteristics of cancer stem cells. Furthermore, we

compared global gene expression of canine osteosarcoma CSC

to canine MSCs. Although CSCs were more similar to MSCs than

adherent cells, there were still 7,542 significant differences.

Pathway analysis showed that genes associated with cancer,

growth regulation and cell cycle regulation are still differentially

expressed and represent fundamental differences between CSCs

and MSCs.

To identify potential therapeutic targets in the CSC population,

a list of the most differentially expressed genes was compiled. The

top gene upregulated, by 177 fold, in spheres compared to

adherent cells is ALDH3A1. This gene is a member of the

aldehyde dehydrogenase family, which catalyses the oxidation of

aldehydes and serves a detoxifying role [42]. Previous studies have

shown that ALDH1A1 activity is a marker of normal hematopoi-

etic stem cells and of CSC enriched populations of multiple human

malignancies including breast, colon, pancreas, lung and liver

[43,44]. Therefore in canine osteosarcoma cells, ALDH3A1

expression may contribute to the resistance of the CSC pool to

chemotherapeutic drugs.

COX-2 expression is also significantly elevated, by 141-fold, in

the CSC pool. This finding has important biological and

therapeutic implications. Advances in our understanding of the

pathways involved in cancer related inflammation could enable

the development of synergistic therapies that target the tumour

promoting effects of the inflammatory microenvironment [45].

Cyclooxygenase-2 (COX-2) is an inducible prostaglandin synthe-

tase with a key role in regulating inflammation [46]. There is now

mounting evidence to suggest that COX-2 and prostaglandins

(PGs) play a vital role in various aspects of carcinogenesis including

the promotion of angiogenesis and the down-regulation of

apoptosis [46,47,48,49]. Previous studies have shown that COX-

2 is not expressed in normal bone in dogs [50] whereas 77% of 44

osteosarcomas were found to be positive for COX-2 expression

[51]. A more recent study confirms this data [52]. COX-2

expression has also been established as a marker in human

osteosarcoma, and COX-2 inhibition has been suggested as a

possible way of improving therapeutic outcome [53,54,55]. Given

the postulated links between COX-2 and tumour development, we

aimed to investigate the antitumor activity of COX-2 inhibitors in

osteosarcoma cell lines and derived CSCs. Previous studies have

examined the expression of key inflammatory mediators to

determine whether COX-2 inhibition can block the induction of

inflammation in these cells, and have shown that COX-2

expression correlates with tumour grade and survival [55].

Interestingly, the data suggests COX-2 overexpression in the

primary tumour correlates with the occurrence of distant

metastasis in patients with osteosarcoma and also may affect

Figure 5. Osteosarcoma spheres are enriched for higher tumourigenicity in vivo. Disassociated spheres and adherent, of KTOSA5 cells (A)
and CSKOS cells (B), were inoculated directly onto the chorioallantoic membrane of a chicken embryo at day 7 of development. All cells were
fluorescently labelled and imaged 5 days after inoculation.
doi:10.1371/journal.pone.0083144.g005
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post-metastatic survival [55]. Similarly, in a model of breast cancer

metastasis to the bone, COX-2 plays a key role in the development

of osteolytic bone metastasis [56]. In breast cancer stem cells,

isolated from the primary tumours of HER2/Neu transgenic mice,

COX-2 expression was upregulated 30-fold in spheres compared

to adherent cells, and constituted part of an eight-gene signature

that correlated with breast cancer patient survival [57]. Further-

more, transfection of COX-2 into the ER-positive breast cancer

cell line, MCF7, increased the ability of MCF7 cells to grow as

tumourspheres [58]. However, to date there have been no such

Figure 6. Gene expression analysis of canine osteosarcoma stem cells. A three-dimensional representation of a principle component
analysis of expression microarray data derived from KTOSA5 adherent cells, spheres and mesenchymal stem cells (MSC) (A). Heirarchial clustering
analysis of the expression data (cut off p-value of 0.005). Expression values are represented by colours: blue squares represent low-expressed genes,
red squares represent high-expressed genes (B). Biological process analysis of differentially expressed genes in KTOSA5 spheres compared to
adherent cells (FDR = 0.005) (C).
doi:10.1371/journal.pone.0083144.g006

Effect of COX2 Inhibition on Cancer Stem Cells
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studies relating to the effects of COX-2 on osteosarcoma stem

cells. Having demonstrated that COX-2 expression is significantly

elevated in the CSC population we hypothesized that COX-2

inhibition could serve to target this population as part of an overall

therapeutic strategy. Initially, we investigated whether COX-2

inhibition would inhibit cell viability. Increasing doses of

meloxicam had no significant affect on the cell viability of CSCs

or adherent cells. However, high doses of meloxicam, 400 mM and

600 mM, could decrease long-term cell survival of both CSCs and

adherent cells. These results are consistent with a previous study

showing that growth inhibition of the canine osteosarcoma cell

line, D17, was seen after 48 hr treatment with 400 mM and

600 mM meloxicam [59]. We also show that COX-2 inhibition by

meloxicam did not improve sensitivity of CSCs to conventional

chemotherapeutic drugs. However, although we demonstrate that

COX-2 inhibition had no effect of CSC viability or chemo-

resistance, there was a significant effect on the sphere-forming

capacity of daughter cells. We consistently showed that COX-2

inhibition by either meloxicam or mavacoxib induced a dose-

dependent decrease in sphere forming ability in all canine and

human osteosarcoma cell lines tested. Importantly, the lowest

doses we tested, 0.04 mM mavacoxib and 0.25 mM meloxicam,

can be achieved in vivo. In dogs the mean plasma concentration of

mavacoxib is 1.35–2.88 mM on day 14 when the drug is

administered at 2 mg/ml on day 0, day 14 then monthly [60].

Similarly, the mean plasma concentration in dogs subcutaneously

Table 1. Top biological functions of differentially expressed genes in KTOSA5 spheres compared to adherent cells (FDR = 0.005).

p-value Number of Molecules

Diseases and Disorders

Cancer 4.16E-20–4.95E-04 875

Infection Mechanism 7.19E-11–5.19E-04 359

Gastrointestinal Disease 2.08E-10–5.17E-04 377

Infectious Disease 2.87E-10–1.41E-04 345

Neurological Disease 4.56E-10–5.19E-04 827

Molecular & Cellular Functions

Cellular Growth & Proliferation 2.20E-26–4.98E-04 731

Cell Death 1.99E-23–5.19E-04 705

Cell Cycle 1.87E-20–5.19E-04 364

RNA Post-translational Modification 4.35E-13–5.19E-04 98

Protein Synthesis 4.45E-11–4.11E-04 167

Physiological System Development & Function

Organismal Survival 3.10E-11–1.04E-10 240

Organismal Development 3.05E-08–3.89E-04 299

Skeletal & Muscular System Development 3.60E-08–4.11E-04 90

Tumour Morphology 7.59E-07–2.11E-04 69

Cardiovascular System Development 8.29E-07–4.08E-04 137

doi:10.1371/journal.pone.0083144.t001

Table 2. Top ten upregulated genes in KTOSA5 spheres compared to adherent cells (FDR = 0.005).

Gene Symbol Gene Name Accession Number Gene Ontology Fold Change

ALDH3A1 Aldehyde Dehydrogenase 3 Family,
Member A1

E2RB52 Aldehyde metabolic process 177.26

PTGS2 Cycloxygenase 2 Q8SPQ9 Cell proliferation 141.31

PDK4 Pyruvate dehydrogenase kinase E2RKY0 Protein phosphorylation 120.81

SNCG Synuclein gamma F1Q2N7 Unknown 79.19

IL6 Interleukin-6 P41323 Immune response 60.85

PTGER2 Prostaglandin E2 receptor EP2
subtype

Q9XT82 Signal transduction 46.10

RGS1 Regulator of G-Protein Signaling F6XTL6 Termination of G-protein coupled
receptor signalling

31.10

CXCL14 Chemokine (C-X-C motif) ligand 14 E2RCZ4 Immune response 30.59

SERPINB2 Serpin Peptidase inhibitor, Clade B,
member 2

E2R079 Serine-type endopeptidase 30.57

CCL24 C-C motif chemokine 24 Q68Y68 Immune response 29.49

doi:10.1371/journal.pone.0083144.t002
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administered with a single dose of meloxicam at 0.2 mg/kg after

24 hr is 1.32 mM–2.09 mM [61]. This signifies that the doses we

have tested are clinically relevant.

Our data is consistent with a previous study in which mouse

embryonic stem cells lacking functional COX-2 have a normal

growth rate and differentiation potential but are profoundly

compromised in their ability to form aggressive teratocarcinomas

in vivo [62]. Taken together this data indicates that COX-2 plays a

major role in tumour initiation. Further experimentation is

required to determine if inhibition of COX-2 can prevent

metastasis, and to evaluate the potential of COX-2 inhibitors as

chemopreventative agents of osteosarcoma.

Materials and Methods

Cell Culture and Sphere Formation
Canine osteosarcoma cells; KTOSA5 and CSKOS were grown

in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen,

Paisley, UK) supplemented with 10% fetal bovine serum and

100 mg/ml streptomycin (Invitrogen, Paisley, UK). The KTOSA5

cell line was derived from an osteosarcoma affecting the right hind

limb of an 8-year-old, chemotherapy naı̈ve, female entire

Rottweiler (approved by the University of Edinburgh Veterinary

Ethical Review Committee). The CSKOS cell line (previously

called KOS-003) was characterized by Hong et al., 2010 [63] and

was a kind gift from Chand Khanna, NIH. Canine Mesenchymal

Stem Cells (MSCs) were derived from canine bone marrow as

described by Hodgekiss-Geere et al., 2012 [38]. Briefly, primary

canine MSCs were isolated from bone marrow aspirates and

characterized using marker expression and morphology (expres-

sion of CD44 and STRO-1, but not CD34 or CD45). Human

osteosarcoma cells; U2OS and SAOS2 were grown in DMEM

(Invitrogen, Paisley, UK) supplemented with 10% fetal bovine

serum and 100 mg/ml streptomycin.

For anchorage-independent culture, osteosarcoma cells were

plated as single cells in ultralow attachment 6-well plates (Corning,

CA, USA) at low cell density (1.56104 cells/ml). Cells were grown

in serum-free conditional medium, which contained William’s E

Medium with GlutaMAX supplemented with putrescine

(100 mM), sodium selenite (30 nM), transferring (25 mg/ml),

insulin (20 mg/ml) (Sigma Biochemicals, Dorset, UK), human

recombinant bFGF (10 ng/ml) and EGF (10 ng/ml) (Peprotech,

NJ, USA). Additional growth factors (100 mg/ml) were added to

the media every other day. All cell cultures were maintained at

37uC in a humidified CO2 incubator.

Magnetic cell sorting
Cells were labelled with CD34 microbeads and sorted using the

Miltenyi Biotec CD34 cell isolation kit according to the

manufacturer’s protocol (Miltenyi Biotec, Surrey, UK). Briefly,

cells were resuspended in 300 ml PBS solution (pH 7.2, 0.5% BSA,

2 mM EDTA) per 108 cells. Then blocking reagent FcR (100 ml/

108 cells; Miltenyi Biotec, Surrey, UK) and CD34 microbeads

(100 ml/108 cells) were added and mixed at 4uC for 30 minutes

with rotation. Cells were washed in 206 volume with PBS

solution. The pellet was resuspended in 500 ml PBS solution and

added to a pre-washed magnetic separation (LS) column on the

magnetic holder. The column was washed four times and the cells

were collected as the negative fraction. The column was removed

from the magnetic holder and the positive fraction was collected.

Sphere forming efficiency
The sphere forming ability of CD34 sorted cells, and cells

treated with the indicated dose of COX-2 inhibitor, was

determined by resuspending cells in serum-free conditional

medium at a density of 20,000; 10,000; 5,000; or 2,000 cells/

well in 6 – well low adherence plates (Corning, CA, USA). All

experiments were conducted in triplicate. Plates were maintained

at 37uC in humidified CO2 incubator and were fed every other

day. After 10 days colonies were counted under the microscope in

10 fields per well.

Cytotoxic Drug Treatment
Cells were treated with either doxorubicin (Pharmacia/Pfizer,

Sandwich, UK), meloxicam (Sigma-Aldrich, MO, USA) or

mavacoxib (TrocoxilTM, Zoetis, London, UK) within the indicated

dose range. All drugs were dissolved in dimethyl sulfoxide, and

diluted in media immediately before use. Vehicle controls were

included in all experiments.

Figure 7. Cancer stem cells express a higher level of COX-2. Validation of microarray with qRT-PCR (A). Expression of COX-2 protein (B).
doi:10.1371/journal.pone.0083144.g007
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Analysis of Cytotoxicity
Cells were seeded in quadruplet in opaque 96-well plates

(Corning, CA, USA) at 500 cells per well. Serial dilutions of either

doxorubicin or meloxicam were added to the appropriate cells the

following day or as indicated. Dose-response curves were

generated 72 hours after exposure. Cytotoxicity was measured

using the CellTiterGloH Luminescent Cell Viability Assay

(Promega, Madison, USA), which quantifies the number of viable

cells in culture based on quantification of ATP present.

Luminescence was recorded by luminometor (Viktor3, PerkinEl-

mer, Massachusetts, USA). Data was averaged and normalized

against the average signal of untreated/vehicle control treated

samples.

Colony Formation Assay
Cells were trypsinised into single cells and seeded at 500 cells/

10 cm plate. The cells were treated with the indicated dose of

doxorubicin or meloxicam whilst in suspension. Plates were

incubated at 37uC in humidified CO2 incubator until colonies

were visible. Growth media was changed once a week. The

colonies were fixed by incubating with ice-cold methanol for

5 minutes at room temperature. Colonies were stained with

Giemsa stain (Invitrogen, Paisley, UK) according to the manufac-

turer’s instruction. The total number of colonies was counted.

Invasion assay
The cell invasion ability of isolated cells was determined using

the QCMTM collagen-based cell invasion assay kit (Millipore, MA,

Figure 8. COX-2 inhibition has no effect on cell viablilty or chemo-resistance of cancer stem cells. Dissociated KTOSA5 spheres and
adherent cells (A), and CD34 sorted KTOSA5 cells (B) were treated with the indicated doses of meloxicam and cell viability was assayed 72 hr after
treatment. KTOSA5 CD34- and CD34+ cells were treated with both indicated doses of meloxicam and 0.05 mM doxorubicin, cell viability was assayed
72 hr after treatment.
doi:10.1371/journal.pone.0083144.g008
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USA) according to the manufacturer’s instructions. Cells were

seeded into the upper inserts at 16105 cells per insert in William’s

E Medium with GlutaMAX. Outer wells were filled with William’s

E Medium with GlutaMAX. Cells were incubated at 37uC with

5% CO2 for 48 hours. The non-invading cells were removed.

Cells that migrated through the gel insert to the lower surface were

stained and quantified by colorimetric measurement at 560 nm.

Chick Embryo Chorioallantoic Membrane Assay
Fertilised ISABrown layer strain chicken eggs (Roslin Institute

Poultry Unit) were incubated in a humidified rotary incubator at

37uC. On day 3, a small window was opened in the shell after

removal of 2–3 ml of albumin, to detach the CAM from the shell

and to disclose the underlying CAM vessels. The window was

sealed with tape and incubation was continued until day 7. On day

Figure 9. COX-2 inhibition suppresses sphere forming ability. KTOSA cells were pre-treated for 24 hr with the indicated doses of meloxicam
prior to assaying for sphere forming ability (* p,0.001) (A). KTOSA5 (B), CSKOS (C), U2OS (D) and SAOS2 (E) cells were pre-treated for 24 hr with the
long-acting COX-2 inhibitor mavacoxib prior to assaying for sphere forming ability (* p,0.001).
doi:10.1371/journal.pone.0083144.g009
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7, Single cell suspensions of adherent cells and mammospheres

were labelled with PKH26 (Sigma-Aldrich, MO, USA), a red

fluorescent live cell membrane dye, according to manufacturers’

instructions. Viable 105 (n = 4) cells were suspended in a 1:1

mixture of serum-free media:matrigel, and 25 mL were inoculated

directly onto the CAM. The embryos were resealed and incubated

without turning. At day 12, tumour growth and location were

determined.

Protein detection
Cells were lysed in urea lysis buffer (7 M urea, 0.1 M DTT,

0.05% Triton X-100, 25 mM NaCl, 20 mM Hepes pH 7.5).

Equal amounts of protein were separated by SDS polyacrylamide

gel electrophoresis (SDS PAGE), transferred to Hybond-C

nitrocellulose membrane (Amersham Pharmacia Biotech, Buck-

inghamshire, UK) and hybridised to an appropriate primary

antibody and HRP-conjugated secondary antibody for subsequent

detection by ECL. Antibodies against Fibronectin and b-catenin

were purchased from BD Biosciences (Oxford, UK). Anti-Zeb1,

Anti-vimentin and b-actin were purchased from Abcam (Cam-

bridge, UK). Anti-COX-2 (C-20) was purchased from Santa Cruz

biotechnology (Texas, USA). Secondary antibodies were HRP-

conjugated rabbit anti-mouse IgG and swine anti-rabbit IgG, were

obtained from DakoCytomation (Glostrup, Denmark).

RNA extraction and reverse transcription PCR analysis
Total cellular RNA was extracted using RNeasyH kit (Qiagen,

CA, USA) and RNA quality was determined by A260 measure-

ment. Semi-quantitative RT-PCR analysis of mRNA expression of

stem cell specific genes including Oct4, Nanog and STAT3 was

performed using HotStar Taq polymerase (Qiagen, CA, USA) and

specific primers (Table 3.)

Qualitative real-time PCR
Total RNA was reverse transcribed using the omniscript RT Kit

(Qiagen, CA, USA) according to the manufacturer’s instruction.

Real-time PCR was performed on 50 ng of amplified RNA using a

Stratagene M63000p qPCR system (Aligent, CA, USA), using the

PlatinumH SYBRH Green qPCR SuperMix-UDG according to

manufacturer’s instruction (Invitrogen, CA, USA). Relative gene

expression levels were obtained by normalization to the expression

levels of housekeeping genes (B2MG, RPL8).

Gene expression profiling using cDNA microarrays
RNA was isolated from frozen cell pellets of KTOSA5 spheres,

adherent cells and MSCs with TriReagent (Sigma-Aldrich, MO,

USA) according to manufacturer’s instruction. Four independent

replicates were used for each cell type. Total RNA quality was

determined by Bioanalyser (Agilent, CA, USA) before further

manipulation. Complementary RNA preparation and hybridiza-

tion were performed by ARK-Genomics (Edinburgh, UK) using

Affymetrix GeneChipH Canine Genome 2.0 Array (42,800 probe

sets). Basic data analysis was performed using the Partek Genomics

Suite (Partek Inc, MO, USA). Pathway analysis was performed

using Ingenuity Pathway Analysis (IPA, Ingenuity systems;

https://www.analysis.ingenuity.com). Genes from the dataset that

met the log ratio cut-off of 1.5 were considered for the analysis. To

identify the most relevant canonical pathways, we selected those

that were statistically significant with a p value,0.005. All

microarray data has been submitted to the NCBI Gene Expression

Omnibus database (accession number GSE52063).

Statistical analysis
Data were expressed as a mean + SD. Statistical analysis was

performed with MinitabH statistical software (PA, USA) using

analysis of variance and student’s t test or mann-whitney test. The

criterion for significance was p,0.05 for all comparisons.
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