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Previous resting-state functional MRI (fMRI) studies found spontaneous neural activity

in the brains of Pathological Internet Use (PIU) subjects. However, the findings were

inconsistent in studies using different neuroimaging analyses. This meta-analytic study

aimed to identify a common pattern of altered brain activity from different studies.

Resting-state fMRI studies, based on whole-brain analysis methods published before

July 1, 2021, were searched in multiple databases (PubMed, EMBASE, MEDLINE, and

Web of Science). A voxel-based signed differential mapping (SDM) method was used

to clarify brain regions, which showed anomalous activity in PIU subjects compared

with healthy controls (HCs). Ten eligible publications consisting of 306 PIU subjects and

314 HCs were included in the SDM meta-analysis. Compared with HCs, subjects with

PIU showed increased spontaneous neural functional activity in the left temporal pole

of the superior temporal cortex, left amygdala, bilateral median cingulate cortex, and

right insula. Meanwhile, a decreased spontaneous neural activity was identified in the

left dorsolateral superior frontal gyrus and right middle frontal gyrus in the subjects with

PIU. These abnormal brain regions are associated with cognitive executive control and

emotional regulation. The consistent changes under different functional brain imaging

indicators found in our study may provide important targets for the future diagnosis and

intervention of PIU.

Systematic Review Registration: www.crd.york.ac.uk/PROSPERO, identifier:

CRD42021258119.

Keywords: pathological internet use, functional magnetic resonance imaging, SDM, meta-analysis, systematic

review

INTRODUCTION

As related industries, such as smart devices, mature, the Internet has become an essential tool for
learning, working, and playing. According to Internet World Stats (IWS) (1), as of March 2021, the
number of Internet users has reached 5.17 billion, with Asia accounting for 53.4% of the world’s
Internet users. Such a high Internet penetration rate has brought a severe social problem, namely
Pathological Internet Use (PIU). The PIU refers to an inability to control one’s Internet use that
adversely affects daily life, also known as “Internet Addiction (IA)” (2–4). The global average
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prevalence is about 7.02% and is still on the rise (5). Previous
studies have suggested that PIU has a similar neuropathological
basis to substance addiction (6, 7). Although more attention
has been paid to PIU, the pathological mechanism of PIU is
still unclear.

Functional MRI (fMRI) is a common neuroimaging
technique to explore the neuropathological mechanism of
diseases (8). Some fMRI indicators based on whole-brain
analysis, such as functional connectivity (FC), the amplitude
of low-frequency fluctuation (ALFF), regional homogeneity
(ReHo), functional connection density (FCD), voxel-mirrored
homotopic connectivity (VMHC), and cerebral blood flow
(CBF), provided technical support for the comprehensive
exploration of spontaneous neural activity in the brain of
subjects with PIU. Previous studies have suggested that the
limbic system, which is involved in the reward-processing
circuit, and the prefrontal lobe, which is involved in the cognitive
control circuit, are the physiological basis for the formation of
PIU (9–12). However, these findings have been controversial in
resting-state fMRI studies. For example, some researchers found
increased spontaneous brain activity in the superior frontal gyrus
(SFG) of subjects with PIU (13), while others found a decreased
neural activity in this region (14, 15). In addition, the neural
activity in superior temporal gyrus (STG) of subjects with PIU
in resting-state was found to be increased (13), while another
research found it decreased (16). The inconsistent results might
be related to the differences in sample size, imaging analysis
indexes, and demographic characteristics. These differences
make it difficult to understand the neural mechanism of PIU, so
further quantitative exploration is needed.

A systematic and quantitative meta-analysis, such as signed
differential mapping (SDM) analysis, can find consistent
local resting-state abnormalities regardless of all method
differences (17). The SDM meta-analysis method could address
heterogeneity between studies by reconstructing positive and
negative graphs in the same image, thereby counterbalancing
the effect of reporting findings in opposite directions (18).
This voxel-based neuroimaging meta-analysis method has been
validated in psychiatric disorders, such as depression, autism, and
behavioral addiction (19–21). Moreover, researchers have used
this method to find consistent activation results of brain regions
in subjects with PIU in task-state fMRI (22–24). However, the
changes of spontaneous brain activity of PIU in the resting state
remain to be explored.

Hence, in this study, we aimed to unearth the consistency
of changes in spontaneous brain functional activity in subjects
with PIU during resting state. The findings of this meta-analysis
will help to understand the pathological basis of PIU and give
evidence for PIU prevention and intervention in the future.

MATERIALS AND METHODS

This study was reported according to preferred reporting
items for systematic review and meta-analysis (PRISMA)
guidelines (25) and registered on PROSPERO (registration
No: CRD42021258119).

Search Strategy
We searched PubMed, EMBASE, MEDLINE, andWeb of Science
(WOS) databases for publications published before July 1,
2021. The following search terms and their derivatives were
used: (“pathological Internet use” OR “problematic Internet use”
OR “Internet addiction” OR “Internet addiction disorder” OR
“Internet use” OR “gaming addiction” OR “Internet gaming
disorder” OR “mobile phone addiction” OR “smartphone
addiction” OR “Internet dependence” OR “mobile phone
dependence” OR “smartphone dependence”) AND (“magnetic
resonance imaging” OR “MRI” OR “functional magnetic
resonance imaging” OR “fMRI”). In addition, we manually
searched the list of references included in the study for other
possible articles. The study was not restricted by country, year
of publication, or publication status.

Inclusion and Exclusion Criteria
Studies were included according to the following eligibility
criteria: (i) participants were diagnosed with any of the accepted
diagnostic criteria for PIU and were not limited by age, sex, or
race; (ii) using resting-state fMRI technique; (iii) peer-reviewed;
(iv) studies that reported standard three-dimensional spatial
coordinates, such as Talairach/Tournoux Spaces or Montreal
Neurological Institute (MNI) Spaces; (iv) fMRI studies using
whole-brain analysis, including whole-brain FC, ALFF, ReHo,
CBF, independent component analysis (ICA), degree centrality
(DC), etc.; (v) original, cross-sectional comparative studies
(subjects with PIU compared with healthy people). The following
types of studies were excluded: (i) participants with other
types of addictive or psychiatric disorders; (ii) literature lacking
anatomical coordinates for the main results; (iii) repeated
publications; (iv) studies with a sample size <15 cases.

Data Extraction
According to the literature retrieval method, the researchers (JW
and QHH) independently downloaded the literature that met
the requirements and removed the duplicates through Endnote
software. After careful reading of the abstract and full text, studies
that met the inclusion criteria were screened out. Any differences
were resolved through discussion by the third (WP) researcher
until a consensus was reached. After that, the Microsoft Excel
spreadsheets were built to extract data from the articles. For any
missing data in the article, we requested the original authors via
email if necessary. If the study was a longitudinal study design,
only baseline data were included in our analysis. Additionally, for
the studies published from the same team using the same batch
of data, only the latest published studies or studies with a large
sample size were included.

The data we extracted from each study were as follows: (i) the
characteristics of the study: first author, year of publication, and
country; (ii) the characteristics of participants: sample size, age,
sex, inclusion criteria, diagnostic methods used, and the severity
of PIU; (iii) neuroimaging methods and results: scanner strength
and brand, head coil (number of channels), the fMRI data
analysis method, peak coordinates of activated brain regions, etc.
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Assessment of Methodological Quality
The quality of all included studies was assessed by the Newcastle-
Ottawa scale (NOS) (26). The NOS includes two types of quality
evaluation lists: the case-control studies and cohort studies. Each

scale contains three dimensions (selection, comparability, and
outcome) and a total of 8 questions. The scale’s overall score
ranges from 0 to 9, with studies scoring seven or more are
considered high-quality (27).

FIGURE 1 | A flow chart of the study selection process.
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Meta-Analysis
Before the SDM meta-analysis, we will conduct a descriptive
analysis of all the included studies. Then, a voxel-based
meta-analysis was performed on the included literature using
SDM software (http://www.sdmproject.com) to evaluate the
differences in brain activity between participants with PIU
and healthy controls. Firstly, according to the requirements
of the SDM software manual (www.sdmproject.com/manual/),
the sample size, peak coordinates, corresponding t value of
peak points, and threshold information of each study were
imported into the software. For studies where statistical t-
values were not reported, SDM provided a converter to convert
statistical values such as z or p-values to t values. Secondly, for
each study, standard Talairach maps (with both positive and
negative effect sizes) of gray matter differences were recreated
separately. Thirdly, random effect analysis was performed to
obtain the mean maps of all studies (28). In our study, the
statistically significant threshold was set to at least 20 voxels
and uncorrected p < 0.005. Radua et al. (29) suggested that the
sensitivity and specificity of the study results could maintain
the optimal balance when the P-value was set at 0.005. This
threshold has also been applied in previous meta-analysis
studies (30, 31).

The heterogeneity among the original studies was tested using
the random-effects model of I2 statistics. When I2 statistics
were 0, 25, 50, and 75%, it represented non-heterogeneity, low
heterogeneity, medium heterogeneity, and high heterogeneity,
respectively. Besides, meta-regression analysis was used to
understand the source of heterogeneity between studies. The
threshold of meta-regression analysis was set as p < 0.0005 and
cluster size ≥10 voxels (28). Additionally, to verify the stability
of the results of the meta-analysis, the leave-one-out jack-knife
sensitivity analysis will be used. Finally, MRIcroGL software was
used to present brain clusters with significant differences in the
MNI standard spatial template.

RESULTS

A total of 781 articles were retrieved. After the screening

procedure, 10 studies (13–16, 32–37) met eligibility criteria and
were included in the systematic review (see Figure 1).

Description of the Included Studies
About 306 subjects with PIU (252 males) and 314 healthy

controls (HCs) (251 males) were included in the systematic

review (see Table 1 for study details). The subjects with PIU
were well-matched in age and gender distribution with healthy
controls. All of the studies involved people under the age
of 30, and five included adolescents (15, 32–34, 36). Studies

included more male participants than female participants, and

four included only male participants (16, 32, 34, 35). Of the ten
studies, nine were from China (13–15, 32–37) and one from
South Korea (16). Ten studies comprised the following groups

with PIU: internet gaming disorder (IGD) groups (n = 6) (14–

16, 32, 34, 35), the internet gaming addiction (IGA) group (n =
1) (33), the IA group (n = 2) (36, 37), and the internet addiction

disorder (IAD) group (n = 1) (13). Three studies used Young’s
Internet Addiction Test (IAT) (16, 32, 37), and five studies used
the Chen Internet Addiction Scale (CIAS) (14, 15, 33–35) to
evaluate the severity of Internet addiction.

Table 2 provides detailed information on the research
methods used in each study. Six studies (13, 14, 32, 34, 36, 37)
used one diagnostic method for PIU, and three studies (15, 16,
33) used two diagnostic methods for PIU. Notably, among the
diagnostic criteria they used, the modified Young’s Diagnostic
Questionnaire for Internet Addiction criteria by Beard (38) was
the most widely used. All studies used a 3T MRI scanner to
acquire data. There were two studies for whole-brain FC analysis
(15, 35), two studies for ReHo analysis (13, 16), two studies for
ALFF analysis (14, 34), two studies for FCD analysis (32, 37), one
study for ICA (36), and one study for CBF analysis (33).

TABLE 1 | Demographics and clinical characteristics included in this study.

First author

(publication year)

Country Types of PIU Sample size Gender (M/F) Age (years) Clinical characteristics of PIU

PIU HCs PIU HCs PIU HCs IAT Score CIAS Score

Xin Du (32) China IGD 27 35 27/0 35/0 17.07 ± 3.55 16.80 ± 2.34 68.19 ± 11.79 –

Qi Feng (33) China IGA 15 18 13/2 14/4 16.93 ± 2.34 16.33 ± 2.61 – 66.73 ± 3.01

Xu Han (34) China IGD 26 30 26/0 30/0 16.81 ± 0.75 17.00 ± 0.89 – 71.88 ± 5.56

Heejung Kim (16) Korea IGD 16 15 16/0 15/0 21.63 ± 5.92 25.40 ± 5.29 75.81 ± 4.72 –

Jun Liu (13) China IAD 19 19 11/8 11/8 21.00 ± 1.30 20.00 ± 1.80 – –

Lu Liu (35) China IGD 74 41 74/0 41/0 22.28 ± 1.98 23.02 ± 2.09 – 78.46 ± 8.40

Yawen Sun (14) China IGD 53 52 30/23 30/22 21.87 ± 3.08 (M) 20.73 ± 2.16 (M) – 74.43 ± 9.19 (M)

21.91 ± 2.92 (F) 21.09 ± 3.85 (F) 74.35 ± 9.21 (F)

Yao Wang (15) China IGD 17 24 13/4 18/6 16.94 ± 2.73 15.87 ± 2.69 – 64.59 ± 6.43

Lubin Wang (36) China IA 31 50 21/10 35/15 15.00 ± 1.30 15.10 ± 0.50 – –

Yang Wang (37) China IA 28 30 21/7 22/8 21.32 ± 1.96 21.73 ± 2.08 73.89 ± 6.76 –

F, female; M, male; HCs, healthy controls; PIU, pathological Internet use; CIAS, Chen Internet addiction scale; IAT, young’s Internet addiction test; IGD, Internet gaming disorder; IGA,

internet gaming addiction; IA, internet addiction; IAD, internet addiction disorder.
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TABLE 2 | Methodological characteristics included in the study.

First author (year) Diagnostic criteria MRI scanner Methods MRI head coil Research types NOS quality score

Xin Du (32) Young’s Diagnostic

Questionnaire for IA

Siemens MRI scanner (3T) FCD – Case-control 5

Qi Feng (33) (1) DSM-IV

(2) The modified

Diagnostic

Questionnaire for IA

criteria by Beard

GE MRI scanner (3T) CBF Standard Case-control 6

Xu Han (34) The modified

Diagnostic

Questionnaire for IA

criteria by Beard

GE MRI scanner (3T) ALFF, seed-based FC Standard Case-control 5

Heejung Kim (16) (1) DSM-V

(2) YIAT

Philips MRI scanner (3T) ReHo Standard Case-control 7

Jun Liu (13) The modified

Diagnostic

Questionnaire for IA

criteria by Beard

Siemens MRI scanner (3T) ReHo Standard Case-control 5

Lu Liu (35) – Siemens MRI scanner (3T) FC – Case-control 5

Yawen Sun (14) The modified

Diagnostic

Questionnaire for IA

criteria by Beard

GE MRI scanner (3T) ALFF, seed-based FC Standard Case-control 6

Yao Wang (15) (1) DSM-IV

(2) The modified

Diagnostic

Questionnaire for

Internet Addiction

criteria by Beard

GE MRI scanner (3T) FC Standard Case-control 6

Lubin Wang (36) The modified

Diagnostic

Questionnaire for IA

criteria by Beard

Philips MRI scanner (3T) ICA – Case-control 8

Yang Wang (37) Young’s Diagnostic

Questionnaire for IA

GE MRI scanner (3T) FCD Standard Case-control 6

ALFF, amplitude of low-frequency fluctuation; CBF, cerebral blood flow; DSM, the diagnostic and statistical manual of mental disorders; FC, functional connectivity; FCD, functional

connectivity density; IGD, Internet gaming disorder; IA, internet addiction; IAD, internet addiction disorder; ICA, independent component analysis; IGA, internet gaming addiction; NOS,

Newcastle-Ottawa scale; PIU, pathological Internet use; ReHo, regional homogeneity; YIAT, young’s Internet addiction test.

Quality Assessment Results
The average NOS score for the ten studies was 6.1 (see Table 2
and Supplementary Table S1). Two case-control studies (16, 36)
were considered high quality, with NOS scores above 7. Among
the remaining case-control studies, six had NOS scores of 6
(14, 15, 33–35, 37), and two had NOS scores of 5 (13, 32).

Main Meta-Analysis Results
The primary meta-analysis results were summarized in Table 3

and Figure 2. Compared with HCs, subjects with PIU had
increased spontaneous neural activity in the left temporal pole
of the STG (STGtp)/left amygdala (AMY) (408 voxels, peak
coordinate: −26, 4, −26), bilateral median cingulate cortex
(MCC) (364 voxels, peak coordinate: 0, −12, 38), and right
insula (IN) (21 voxels, peak coordinate: 34, −6, 10). Decreased
spontaneous neural activity in subjects with PIU was seen in the
left dorsolateral SFG (SFGdl) (30 voxels, peak coordinate: −28,
60, 0) and right middle frontal gyrus (MFG) (20 voxels, peak
coordinate: 32, 58, 0).

After SDM meta-analysis, we conducted heterogeneity
analysis and meta-bias test for the statistically significant brain
regions above. As shown in Table 3, the I2 statistics of all
peak coordinate brain regions were <25%, indicating a low
heterogeneity. In addition, meta-bias test results showed no
publication bias in each peak voxel level (p > 0.05). After meta-
regression analysis, we found no significant influence of age
and gender on the main findings. Due to the different types
of other clinical variables reported in each study (such as time
spent online, medication, etc.), these clinical variables were not
included in the meta-regression analysis.

Sensitivity Analysis Results
Jack-knife sensitivity analysis was to remove one study, in turn,
and re-conduct mean analysis on the remaining studies to judge
the stability of SDM meta-analysis results. A total of 10 mean
analyses were performed in this systematic review. As shown
in Table 4, the cluster results of the four brain regions (left
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TABLE 3 | Abnormal resting state neural activity in subjects with Pathological Internet Use (PIU) compared with healthy controls (HC) (voxels ≥ 20).

Cluster No. Voxels (voxels) SDM-Z P-value Brain region Brodmann area MNI coordinate I2 Meta bias test (p-value)

x y z

PIU > HCs

1 408 3.820 0.00007 (Undefined) BA 28 −26 4 −26 7.20% 0.922

3.705 0.00011 LSTGtp BA 38 −26 12 −30

3.531 0.00021 L AMY BA 28 −22 −4 −24

2.953 0.00158 L AMY BA 34 −30 −4 −14

2.823 0.00238 L AMY BA 34 −26 −2 −14

2 364 3.609 0.00015 L MCC BA 23 0 −12 38 8.04% 0.683

3.420 0.00031 L MCC BA 23 −4 −22 44

3.388 0.00035 R MCC BA 23 2 −10 34

3.371 0.00037 R MCC BA 23 8 −20 42

3 21 2.953 0.00157 R IN BA 48 34 −6 10 2.15% 0.999

PIU < HCs

4 30 −3.110 0.00093 L SFGdl BA 11 −28 60 0 23.33% 0.489

5 20 −3.199 0.00068 R MFG BA 11 32 58 0 17.21% 0.5

L, left; R, right; HCs, healthy controls; PIU, pathological Internet use; AMY, Amygdala; BA, Brodmann area; IN, insula; MCC, median cingulate cortex; MFG, middle frontal gyrus; MNI,

Montreal neurological institute; SFGdl, dorsolateral superior frontal gyrus; STGtp, temporal pole of the superior temporal gyrus; 1 voxel was 2mm × 2mm × 2mm.

STGtp/left AMY, left MCC, left SFGdl, right MFG) showed
high stability.

DISCUSSION

This study is the first to use quantitative SDM meta-analysis to
integrate abnormal neural activity in resting-state fMRI studies
of subjects with PIU. We found that local neural activity of
STGtp, AMY, MCC, and IN increased in the subjects with PIU,
while the local neural activity of SFGdl and MFG decreased.
These abnormal brain regions were closely related to the
cognitive executive control and emotional regulation functions
of the subjects with PIU. Our findings provided a reference for
exploring the pathological mechanism of PIU.

Executive control dysfunction is a common feature in the
subjects with PIU (39). In our study, multiple brain regions
are involved in the executive control function of the brain,
mainly including STGtp, SFGdl, and MFG. The STGtp is an
important component of the temporal lobe, located in front
of STG, and participates in a variety of important cognitive
functions (40). Studies have found that the patients with cognitive
impairment had reduced STG cortical thickness and increased
neural activity compared with normal subjects (41–43). Besides,
a recent neuroimaging meta-analysis of PIU has shown that STG
was hyperactivated in the executive control tasks, suggesting that
STGwas involved in the executive control function of the subjects
with PIU (24). These studies suggested that increased neural
activity of STGtp in the subjects with PIU in the resting state may
be a compensatory mechanism for executive control function
deficits in the subjects with PIU.

The SFGdl and MFG were also important to brain regions for
the executive control function. These regions were located in the
frontal cortex, associated with the executive control network, and

regulated other cognitive functions (44–46). A previous meta-
analysis found that the subjects with PIU showed abnormal
frontal cortex activation in multiple cognitive tasks (22). A recent
study has revealed that the reduced SFG gray matter volume
played a mediating role in the influence of emotional reflection
in PIU (47). Other studies found that abnormal activation of
SFG and MFG might be involved in the control of impulsivity
in the subjects with PIU (48, 49). In our study, the decreased
neural activity in SFGdl and MFG in the subjects with PIU may
indicate the decreased control ability of the subjects with PIU
to impulsivity.

Mood changes are another common complication in the
subjects with PIU (50). Ourmeta-analysis showed that there were
brain regions associated with emotion regulation, such as the
AMY. This finding is consistent with previous reports of AMY
dysfunction in PIU (51, 52), as well as with other addictions (53,
54). The AMY is an important component of the basal ganglia
and is involved in integrating and processing information about
emotions and rewards (55–57). Previous studies have suggested
that AMY could regulate both positive and negative emotions
(58). Subsequent studies have found the role of the central
nucleus of the AMY in negative emotions accompanying reward
loss (59) and the effect of the glutamate pathway from basolateral
AMY to nucleus accumbens (NAc) on controlling reward-
seeking behaviors (60). Therefore, the increase in spontaneous
neural activity in AMY reflects the higher susceptibility to mood
changes in the subjects with PIU and abnormalities in the reward
system in the brain of the subjects with PIU.

Additionally, abnormalities in the salience network (e.g.,
IN, MCC) were found in the subjects with PIU. The salience
network is a neural system for perceiving and responding to
homeostatic demands and is closely related to diseases such as
addiction and depression (61–63). The IN and cingulate are
the key nodes of the Salience network (64). Previous studies
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FIGURE 2 | Meta-analytical results of the contrast of Pathological Internet Use (PIU) vs. healthy controls (HC). (A) Red regions showing significant increases in the left

temporal pole of the STG (STGtp), left amygdala (AMY), bilateral median cingulate cortex (MCC), and right insula (IN). (B) Blue regions showing significant decreases in

the left dorsolateral SFG (SFGdl) and right middle frontal gyrus (MFG).
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TABLE 4 | Results of sensitivity analysis of Jack-Knife.

First author (year) Increased brain regions Decreased brain regions

L STGtp/L AMY L MCC R IN L SFGdl R MFG

Xin Du (32)
√ √

×
√ √

Qi Feng (33)
√ √

×
√ √

Xu Han (34)
√ √

×
√ √

Heejung Kim (16)
√

× ×
√ √

Jun Liu (13)
√ √ √ √ √

Lu Liu (35)
√ √ √ √ √

Yawen Sun (14)
√ √ √

× ×

Yao Wang (15)
√ √ √

× ×

Lubin Wang (36)
√ √ √ √ √

Yang Wang (37) × ×
√ √ √

√
, the brain region was still present after the study was removed; ×, the brain region was not included in the results after the study was removed; L, left; R, right; AMY, Amygdala; IN,

insula; MCC, median cingulate cortex; MFG, middle frontal gyrus; SFGdl, dorsolateral superior frontal gyrus; STGtp, temporal pole of the superior temporal gyrus.

have found that subjects with PIU have increased cortical
thickness in IN (65), while decreased gray matter density
in IN and MCC than HCs (66–68). These findings suggest
structural abnormalities in the salience network of the subjects
with PIU, which may lead to functional problems of the
salience network. A recent meta-analysis of behavioral addiction
has also found that neural activity in MCC increased when
behavioral addicts were exposed to addiction-related cues (69).
Furthermore, neural activity in the IN significantly increased
when the subjects with PIU were exposed to game cues (70, 71).
Therefore, the salience network abnormalities we found in the
subjects with PIU were related to their excessive craving for
addictive cues.

Furthermore, our study confirmed that PIU and addiction
had similar neuronal activation patterns. The results of a
systematic review of addiction showed that the changes of
spontaneous neural activity in frontal and temporal regions
were found in both substance addiction and behavior addiction
(72, 73). These abnormal functional activity changes in brain
areas were mainly related to emotion and cognitive control.
This suggested that both PIU and addiction showed functional
impairments in brain regions associated with cognitive and
emotional processing. The difference was that the patients with
substance addiction showed spontaneous changes in neural
activity in the striatum in their resting state (72). Although
the striatum was also found to be involved in the processing
of rewards in the subjects with PIU during task fMRI studies
(74, 75). However, in our study, no consistent neural activity
was found in the striatum of the subjects with PIU in the
resting state. Moreover, these findings were indirect rather than
direct comparisons of neuronal activity patterns between PIU
and addiction. More research is needed in the future to explore
differences in neuronal activity patterns between PIU and other
addictive disorders.

There are several limitations to this study. The first is that our
study only included fMRI data from the whole-brain analysis,

not data based on the region of interest (ROI) analysis. As
different researchers choose different ROIs, this also increases
the difficulty of data combination. Thus, whole-brain analysis
studies avoid inconsistencies in the choices of ROI to researchers.
Second, the studies we included used different analysis methods
and imaging modalities. Hence, the heterogeneity due to method
differences cannot be completely excluded. For example, the
results of FC, FCD, and ICA analysis can reflect the connections
between different brain regions or brain networks. The results
of the ReHo and ALFF methods can reflect the characteristics
of local neural activity in the brain (76, 77). The CBF is the
main indicator of arterial spin labeling (ASL). The ASL is also
an fMRI technique, which can reflect the brain metabolism and
neural activity of subjects in the resting state (78). However, the
research results of different modes and analytical methods could
reflect the situation of a certain field more comprehensively.
In addition, previous fMRI meta-analysis studies also combined
fMRI studies with different analysis methods (79, 80). Therefore,
when the number of studies using a single analysis method
is not enough, it is feasible to combine the results of fMRI
studies using multiple analysis methods. Second, due to the
small number of included studies, the results might be subject
to random error. It is worth noting that the heterogeneity
test showed low heterogeneity in the results of this study.
Sensitivity analysis also suggested that the results of this study
were highly reproducible. Therefore, our study could be used as
a preliminary study to reflect the characteristics of spontaneous
neural activity changes in the brain of the subjects with PIU in
resting state. Third, PIU may have some comorbidities (such as
anxiety and depression disorders) that were not considered in
our study. Due to the small number of studies that we included,
a subgroup analysis was not possible. Finally, the cases in our
study were all Asian. Therefore, our results can only represent
the neuroimaging characteristics of the subjects with PIU in Asia.
We also look forward to further neuroimaging studies of PIU in
more countries.
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CONCLUSION

Our study identified consistent changes in brain regions in
subjects with PIU from different fMRI studies. The subjects with
PIU showed abnormal functional activity in brain regions and
functional brain networks involved in cognitive executive control
and emotional regulation, which constitute the core symptoms
of PIU. These consistent changes in brain regions may provide
important targets for the future diagnosis and intervention
of PIU.
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