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The two-segment model of the human arm is considered; the shoulder and elbow joint

torques (JTs) are simulated, providing a slow, steady rotation of the force vector at any

end-point of the horizontal working space. The sinusoidal waves describe the JTs, their

periods coincide with that of the rotation, and phases are defined by the slopes of the

correspondent lines from the joint axes to the end-point. Analysis of the JTs includes an

application of the same discrete changes in one joint angle under fixation of the other

one and vice versa; the JT pairs are compared for the “shoulder” and “elbow” end-point

traces that pass under fixation of the elbow and shoulder angles, respectively. Both

shifts between the sinusoids and their amplitudes are unchanged along the “shoulder”

traces, whereas these parameters change along the “elbow” ones. Therefore, if we

consider a combined action of both JTs acting at the proximal and distal joints, we

can assume that for the end-point transitions along the “shoulder,” and “elbow” traces

this action possesses isotropic and anisotropic properties, respectively. The model also

determines the patterns of the torques of coinciding and opposing directions (TCD, TOD),

which would evoke a simultaneous loading of the elbow and shoulder muscles with the

coinciding or opposing function (flexors, extensors). For a complete force vector turn,

the relationship between the TCD and TOD remains fixed in transitions at the “shoulder”

end-point traces, whereas it is changing at the “elbow” ones.

Keywords: motor control, electromyography, two-joint movements, joint torques, muscle synergy

INTRODUCTION

Experimental analysis of the central commands that define the parameters of real movements often
combine electromyography (EMG) and kinesiology methods. To describe movements of both the
entire human body and its separate parts, such as upper and lower limbs, standard approaches
of theoretical mechanics are also applied (Hibbeler, 2016). Analysis of multi-joint movements
includes the internal models of inter-segmental dynamics (Hollerbach, 1982). Many movement
control studies have analyzed relatively fast movements, when velocities of the body segments and
their masses are taken into account. To evaluate the central nervous system (CNS) mechanisms
for controlling the movements under study, researchers often apply the inverse internal model
describing details of biomechanical events (Wolpert and Kawato, 1998; Kawato, 1999; Wolpert
and Ghahramani, 2000). Control signals in such a model contain information about the muscle
torques defined by inverse dynamics equations. At least partly, the dynamic simulations use
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the second-order differential equations defining the velocities
and accelerations of different limb segments. An alternative
method including the theory of position-dependent control
(Feldman, 1986, 2011; Bizzi et al., 1992) could be more suitable
for the examination of slow movements when the static states
of the motor system serve as primary elements of the analysis.
An example of this approach is the equilibrium point hypothesis
elaborated by Feldman (2011, 2016). The hypothesis assumes that
the CNS defines the equilibrium states in the forced interaction of
the organism with the environment, while movements constitute
transitions between a series of equilibrium states. One of the
advantages of the static models is the possibility of accounting
for non-linear properties of the neuromuscular system, such as
muscle hysteresis (Kostyukov, 1998). Recent studies on various
problems of the position-dependent control of the robotic arms
can be found elsewhere (Aguilar Ibañez, 2016; Meda-Campana,
2018; Rubio, 2018; Rubio et al., 2018).

Records of slow movements of upper and lower limbs
with parallel EMG analysis are frequently used to find the
relationships between movements and their central commands.
The above approach becomes especially compelling when the
same test movements are repeated many times during an
experiment in order to apply an off-line averaging procedure.
Moreover, thismethod is suitable for the examination of naturally
repeated cyclic movements, such as walking (Bogey and Barnes,
2017) or bicycling (Ting et al., 1999; Wakeling and Horn,
2009). Previously studied examples of voluntarily controlled
movements include cyclic planar movements of the arms (Levin
et al., 2001) and writing and drawing movements (Dounskaia
et al., 2002). Recently, the planar circular movements of the
hand with a fixed wrist were studied during the action of elastic
tangential loads (Tomiak et al., 2016). Such an experimental
model allows one to determine the shoulder and elbow joint
torques (JTs) along the movement trajectory, based on the
load value and lengths of the limb segments. The above-cited
study demonstrates the correspondence between the JTs and
the intensities of EMGs recorded from the appropriate muscles.
During a complete movement period, each of the JTs includes
two components, positive and negative, correlating with activity
in the flexor and extensor muscles, respectively. Timings and
relative durations of the JTs and EMGs waves are dissimilar for
different joints. One of us proposed a simple geometric method
that allows us to define the exact positions of the points where
the JTs change sign, which simplifies the determination of these
points at various curvilinear movement traces in the working
space (Kostyukov, 2016). While analyzing two-joint movements,
we have also suggested an additional method for marking the
sectors of coinciding and opposing synergy along the trajectory
ofmovement (Kostyukov, 2016; Tomiak et al., 2016). The synergy
sectors define the sections of the movement trajectory, in which
muscles of the same or different function (flexors, extensors)
are simultaneously active. A similar procedure for searching the
interrelationships between the JTs and EMGs has been applied

Abbreviations: EMG, electromyography; CNS, central nervous system; JT, joint

torque; TCD, torques of coinciding directions; TOD, torques of opposing

directions; CA, characteristic angle; FSP, force singular point.

to the analysis of the isometric muscle contractions when a
subject must slowly change the direction of the end-point force
in reaction to a visual command signal (Lehedza et al., 2016;
Lehedza, 2017).

Following the approaches proposed by Feldman (2011, 2016),
the slow (quasi-static) movements are traditionally used to
describe the system statics for movement production. In such an
approach, the sets of equilibrium states in the system under study
usually serve to predict its dynamic behavior. Evaluations of the
system statics by temporary changes of the JTs (Lehedza et al.,
2016) allow for providing a satisfactory prediction of the EMGs
in the muscles generating these forces; however, it seems to be
difficult to obtain such data for any point in the working space.
In this theoretical study, we have tried to model the essential
parameters in the positioning of the limb segments that directly
influence the JTs. Two important elements were included in
the modeling. First, to take into account all possible directions
of the generated forces, we used a steady turning of the force
vector within a full cycle of its rotation. Second, to simulate
the force generation, we have considered the JTs as functions of
two variables representing the current values of the joint angles.
Standard methods of analysis allowed us to explore the system
behavior for two sets of positioning traces with sequential fixation
of variables. This approach led us to find the fundamentally
important differences in a combined action of the torques for
different types of positioning within the working space. At the
same time, we comprehend that the model can be applied only to
the analysis of the two-joint muscle contractions in isometry; for
considering a real arm movement, the inertial properties of the
arm segments, as well as the non-linear effects of neuromuscular
dynamics, should be taken into account.

EXPERIMENTAL BACKGROUND AND
SIMULATION METHODS

Figure 1 schematically describes a process of generation of
isometric force by the human hand with an immobilized wrist.
The distal segment is interpreted as an “elongated” forearm;
the arm and the force vector are located within the horizontal
plane passing via the shoulder joint. In experimental studies of
the two-joint isometric arm contractions (Lehedza et al., 2016;
Lehedza, 2017), the subject’s hand grips the top part of a rigid
vertical manipulandum, which allows the researcher to register
the direction and amplitude of the created force. Lehedza et al.
(2016) describe a construction of the manipulandum in detail.
The position of the manipulandum can be changed within the
working space before a subject; the correspondent hand location
coincides with the end-point position of the generated force. In
such experimental setups, lengths of the arm segments do not
usually differ significantly from each other; the possible difference
is not more than 5–7% of the shoulder segment length; therefore,
for the sake of simplicity, the segments are assumed to be of the
same length (Ls = Le = L). The first letters of the “shoulder” (S)
and “elbow” (E) terms designate the proximal and distal joints
the joint angles (αs, αe), the lengths of segments (Ls, Le), and
the torques (Ms, Me). Therefore, our task consists in searching
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the torques Ms and Me, which are necessary to create in the
proximal (S) and distal (E) joints to generate the force vector
F(θ) by the hand in the end-point belonging to the working
space � (Figure 2). The forces created by the hand could vary
in both their amplitude and direction; when the angle argument
θ is changed from 0 to 2π radians, the force vector F(θ) is
turning in the counter clockwise direction. The JTs Ms and Me

are generated by the cooperative action of the shoulder and elbow
muscles. However, we do not consider a possible co-activation
of the antagonistic muscles belonging to each of the joints. It is
assumed that the force amplitude |F| and the length of segments
(L) are constant, so the problem consists in finding the JTs as
function of the angles θ, αs, and αe. For a given force vector,
the maximal effectiveness of the muscles participating in its
creation corresponds to a full inactivity of their antagonists; any
contraction of the antagonists would diminish the forced action
of the agonists. The co-activation introduces indeterminacy in
the system behavior; the co-activation extent can be defined only
in a real experiment.

For computer simulations and graphical plotting, we used
Origin 8.5 software (OriginLab Corporation, USA). The formulae
were computed using the internal language of the software, based
on operations with the worksheets; the used worksheets consisted
of 1,000 rows and from 6 to 15 columns. To change sets of the
fixed parameters in the formulae, we used the replication of basic
worksheets.

RESULTS OF MODELING

Determination of the JTs by the Virtual
Work Method
To determine the JTs Ms and Me, which a subject creates
by activation of the corresponding muscles acting around the
proximal and distal joints, we used the method of virtual work
described in detail in textbooks on theoretical mechanics [for
example, (Hibbeler, 2016)]. Thus, the problem is to find the
sum of works produced by the JTs Ms and Me during virtual
infinitesimal changes in the joint angles δαs and δαe (Figure 1A).
On the other hand, this summed work may be equalized to work
produced by the force F(θ) along the corresponding path vector
r, presenting a sum of the two consecutive infinitesimal vectors,
r1 and r2 (Figure 1B):

Msδαs+Meδαe = F · (r1 + r2) = F · r = Fxrx + Fyry. (1)

Figure 1B defines the projections of the force and transition
vectors on the coordinate axes:

Fx = F cos θ; Fy = F sin θ; rx= r1x + r2x; ry = r1y + r2y. (2)

The first transition presented by vector r1 corresponds to a fixed
αe; in this case, hs turns on the angle δαs. The second transition r2
coincides with turning the distal segment on the angle δαe. Due
to small values of δαs and δαe, the lengths of the arcs correspond
closely to the lengths of vectors r1 and r2:

r1 = hsδαs; r2 = Lδαe. (3)

Following Figure 1A, it is possible to define the distance hs
between the shoulder axis S and the end-point H:

hs = L [cos (γs − αs)+cos (γe − γs)]. (4)

Due to the importance of the angles γs and γe for further
considerations, we will call them the characteristic angles (CAs).
The following expressions define these parameters:

γs = tan−1

[

sin+ sin (αs + αe)

cos αs + cos (αs + αe)

]

; γe = αs + αe. (5)

The slopes of vectors r1 and r2 to the abscissa and ordinate axes
are equal to γs+π/2; γe+π/2 and γs; γe, respectively. Therefore,
we can find projections of the vector r on the coordinate axes:

rx = −hsδαs sin γs − Leδαe sin γe; ry = hsδαs cos γs

+Leδαe cos γe. (6)

After applying appropriate substitutions, Equation (1) is as
follows:

Msδαs+Meδαe = −F cos θ(hsδαs sin γs + Lδαe sin γe)

+Fsin θ (hsδαs cos γs + Lδαe cos γe). (7)

Using proper trigonometric conversions, Equation (7) is
transformed as follows:

Msδαs+Meδαe = Fhs sin (θ − γs) δαs + F Lsin (θ − γe) δαe. (8)

Finally, we can write apparent expressions for the shoulder and
elbow JTs:

Ms = Fhs sin (θ − γs) ;Me = FL sin (θ − γe). (9)

Therefore, the combined action of JTs in both joints completely
and uniquely determines the amplitude and direction of the end-
point force F(θ). Within a complete cycle of the force angle
change (0 ≤ θ ≤ 2π), two sinusoids describe changes in the
shoulder and elbow JTs at a given end-point. The sinusoids have
the same period coinciding with the period of the force angle
turning; the CAs γs and γe define shifts of the sinusoids to the
beginning position of the force vector (θ = 0). The elbow JT
has an unchanged amplitude FL within the entire working space,
while the amplitude of the shoulder JT is changed from 2FL (for a
completely extended elbow joint) to zero (in an “idealized” case of
a completely flexed elbow joint). In difference from the previous
models of the human arm (Feldman, 1986, 2011; Bizzi et al., 1992;
Wolpert and Kawato, 1998; Kawato, 1999), the present model
describes the patterns of the JTs for the end-point traces that
pass under consecutive fixation of the elbow and shoulder angles.
Such an approach allows obtaining a simple graphical form of the
JTs presentations, what can be highly effective for a preliminary
evaluation of the characteristics of the two-joint movements in
real experiments.
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FIGURE 1 | Simplified geometry of the two-joint system with designation of the mechanical parameters defining equilibrium with the surrounding space. (A) A right

human arm including the shoulder (S) and elbow (E) joints is chosen as an anatomical analog of the system; a similar two-link configuration is used as a basic element

in the models of the robotic arm. A simplified forced interaction of the hand (H) with the environment is considered for the case of rigid wrist immobilization. Main

characteristics of the system: Ls, Le are the lengths of the proximal (shoulder) and distal (elbow) segments; F(θ) is the vector of the isometric force presenting the

result of the interaction of the joint torques Ms(θ) and Me(θ), which are directed perpendicularly to the plane upwardly/downwardly for counter clockwise/clockwise

turning actions. The problem consists in finding the joint torques Ms(θ) and Me (θ) for all possible directions of the force vector F(θ) (θ ∈ [0, 2π ] rad). Other

designations: hs is the distance between the shoulder joint axis (S) and the hand (H), which is considered the end-point; γs and γe are the angles between axis X’ and

the lines passing via the axes of the joints (S, E) and the end-point (H). The force reaction of the body at the shoulder joint is shown by the vector R = –F(θ). (B)

Graphical presentation of the method of virtual work used to define the functional interdependence between the generated force and joint torques. A detailed

description is presented in the text; note that the simulations in this study have been done under a simplifying assumption that lengths of the proximal and distal

segments are equal to each other: Ls = Le = L.

Dependence of the CAs on the Joint Angles
Standard methods, allowing one to analyze the CAs γs and
γe as functions of two variables αs and αe (see Equation 5),
include determination of their dependencies on each of the
arguments when another one is fixed. Therefore, two pairs of the
functions should be considered: (1) γs(αs|αe = const); γe(αs|αe =
const), and (2) γs(αe|αs = const); γe(αe|αs = const). Successive
procedures of the numerical analysis, based on the equations of
the previous section, are presented in Table 1; the results of the
simulations are shown in Figures 2, 3. Figure 2 describes the CAs
γs and γe, as well as their difference (γe – γs), which are defined
depending on αs for fixed values of αe. Figure 3 presents similar
data based on an opposite relationship between the varying and
fixed arguments.

One can see that both γs and γe depend linearly on each of
the arguments, αs and αe, although it is possible to point out
some essential differences. When comparing the dependencies
of the CAs on αs (Figures 2A,B), the slopes of the lines are
equal (δγs/δαs = δγe/δαs = 1), and there is a two-fold difference
in the distance between adjacent lines (1γs = π/20, 1γe =

π/10). On the other hand, the dependencies of the CAs on
αe (Figures 3A,B) demonstrate a coincidence of the distances
between the lines (1γs = 1γe = π/10), while their slopes show a

two-fold difference (δγs/δαe = 0.5; δγe/δαe = 1). Such properties
of the CAs lead to essential distinctions in the corresponding
behavior of their subtraction. The difference between CAs (γe
– γs) defines a relative shift between the JT sinusoids at various
end-point positions within the working space. As shown below
(section Patterns of Activation of the Proximal and Distal
Muscles), such a shift is the primary parameter influencing the
torque patterns of the muscles belonging to different joints. In
other words, in the two-joint movements, the difference between
CAs directly affects the interaction of activity in the muscles of
different joints.

The dependency of (γe – γs) on αs remains constant for
any fixed value of αe, and it linearly rises with the αe increase
(Figure 2C). It should be noticed that a linear increase in the
CA difference (γe – γs) with a rise in αe under fixed values of
αs is associated with a complete coincidence of the separate lines
belonging to different αs (Figure 3C). A definite interest may
present the traces of the CA differences, which are plotted against
the frontal coordinate of the end-point position (compare right
panels in Figures 2C, 3C). For fixed values αe (Figure 2C), these
traces present horizontal lines, shifting in an upward direction
with a rise of αe. In contrast, when αs is fixed, the correspondent
traces have a complex curvilinear appearance, which changes
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FIGURE 2 | Changes in the characteristic angles γs and γe and their difference in dependence on αs provided that αe is fixed. Steps of changes in both arguments

are chosen as π/10 rad; separate dependences from αs are drawn for 10 fixed values of αe, ranging from α
(0)
e = 0 to α

(9)
e = 9π/10 rad. Successive procedures of

numerical analysis are presented in Table 1, left column. The right columns in (A–C) present the same data as in the left ones after changing the end-point angles by

their projections on the X-axis of the working space � (shown in D). For better distinguishing, the traces α
(0)
e and α

(5)
e are marked by open circles. For purposes of the

data treatment, additional quantitative information about slopes of the characteristics and distances between them is placed in squares at the correspondent panels.

Note the same ordinate calibrations in the paired plots of (A–C) and the conformity between the points in these plots and their positioning within the working space �

(D). All dimension characteristics in this and other figures are normalized with respect to the radius of the working space (R = 2 L = 1).

TABLE 1 | Sequences of the procedures used to determine the characteristic angles γe and γs in various end-point positions within the working space.

“Shoulder” end-point traces “Elbow” end-point traces

fixed : αe
(K) = K π

10 ; K = 0 . . . 9;

varying : αs
(i) = i π

10 , i = 0 . . . 9;

fixed : αs
(L) = L π

10 ; L = 0 . . . 9;

varying : αe
(j) = j π

10 , j = 0 . . . 9;

1 x(i|K) = 0.5
[

cos
(

αs
(i)

)

+ cos
(

αs
(i) + αe

(K)
)]

;

y(i|K) = 0.5
[

sin
(

αs
(i)

)

+ sin
(

αs
(i) + αe

(K)
)]

;

x(j|L) = 0.5
[

cos
(

αs
(L)

)

+ cos
(

αs
(L) + αe

(j)
)]

;

y(j|L) = 0.5
[

sin
(

αs
(L)

)

+ sin
(

αs
(L) + αe

(j)
)]

;

2 hs(i|K) =
√

x2(i|K)+ y2(i|K); hs(j|L) =
√

x2(j|L)+ y2(j|L);

3 γe(i|K)− γs(i|K) = cos−1 hs(i|K); γe(j|L)− γs(j|L) = cos−1[hs(j|L)];

4 γs(i|K) = cos−1
[

x(i|K)
hs (i|K)

]

; γs(j|L) = cos−1
[

x(j|L)
hs (j|L)

]

;

5 γe (i|K) = γs (i|K) + [γe (i|K) − γs (i|K)]. γe (j|L) = γs (j|L) + [γe (j|L) − γs (j|L)].

The positions are changed along the lines of the fixed elbow and shoulder joint angles (left and right columns, respectively). Pairs of the indexes noted by small (i, j) and capital (K, L)

letters belong to the varied and fixed parameters, respectively. Figures 2, 3 describe the results of the simulation.

with the increase in αs (Figure 3C). Therefore, one can see
that the torque patterns are not changed in the first case and
demonstrate a complex modification in the second one.

The joint angles αs, αe are defined unambiguously for any end-
point within the working space. Thus, it is possible to change
arguments in plots γs(αs), γe(αs) and γs(αe), and γe(αe), which
are shown in the left panels in Figures 2A,B, 3A,B, replacing
the joint angles by projections of the correspondent points on
the X-axis. The right panels in Figures 2A,B, 3A,B demonstrate
the results of such a change in the variables. The sets of points
in the plots γs(X) presented in Figures 2A, 3A coincide with
each other; the only difference relates to the lines connecting the

points at these plots. The discrepancy between the lines is due
to a difference in the varying and fixed arguments in both sets
(compare Figures 2D, 3D). Two sets of the plots γe(X) presented
in Figures 2B, 3B show similar behavior. The sets of the points
γs(X) and γe(X) demonstrate both similarities and differences.
The similarities consist in the likeness of the point distributions,
both of which take up more areas at the left part of the working
space. The differences lie in the observation that, at the right
part of the working space, the γe(X) points are distributed over
a relatively broader area compared with the γs(X) points. Such a
distribution is mainly well seen near the position of the shoulder
joint axis (X = 0). We also note that the γe(X) points cover a
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FIGURE 3 | Changes in the characteristic angles γs and γe and their difference in dependence on αe provided that αs is fixed. The steps of the joint angles are the

same as in Figure 2; successive procedures of numerical analysis are presented in Table 1, right column. The right columns in (A–C) present the same data as in the

left ones after changing the end-point angles by their projections on the X-axis of the working space � (shown in D). For ease of distinguishing, the traces α
(0)
s and α

(5)
s

are marked by open circles. Quantitative information about slopes of the characteristics and distances between them is placed in squares at the correspondent

panels. Note the same ordinate calibrations in the paired plots of (A–C) and the conformity between the points in these plots and their positioning within the working

space � (D).

more significant range of the angles, compared with the γs(X)
ones (about six radians vs. four).

Dependence of the JTs on the Force
Direction
By using the above CA plots, it is possible to analyze the JTs
at various angles of the end-point force. For simplicity, we do
not take into account potential problems associated with the
existence of two-joint muscles or with the co-activation of the
muscle-antagonists. The controlled changes in the direction of
the isometric force vector (change of angle θ in Figure 1A) are
realized in our experimental conditions as follows [for details see
(Lehedza et al., 2016; Lehedza, 2017)]. A subject creates with his
right hand isometric pressure on an unmovable handle, allowing
one tomeasure both the amplitude and direction of the generated
force. When performing a task of visual tracing of the force
vector, a subject slowly changes the force vector direction under
the command signal specified by a point slowly moving along
a circular trace on the monitor screen. The center of the circle
corresponds to the human’s hand position; its radius defines the
force amplitude.

Figures 4, 5 present the results of computing the JTs Ms (θ)
and Me (θ) for different positions of the subject’s hand. Figure 4
demonstrates the changes in the JTs’ dependencies on αs for

two fixed elbow positions, α(3)e (Figure 4A) and α
(7)
e (Figure 4B).

The Ms and Me families of curves in Figures 4A,B contain the
sinusoids that are consecutively shifting to the right with a rise in
their order, and the shifts are equal for both joints. Such a picture

corresponds to the equality of the gradients of both CAs with
respect to the αs (δγs/δαs = δγe/δαs = 1) (Figure 2A). At the

same time, a change in the fixed parameter [i.e., α(3)e → α
(7)
e in

Figures 4A,B] evokes different shifts of both sets of curves while
keeping a distance between the curves in each of the sets. The
Ms sets of curves shift twice as slowly as the Me ones (1γs =

π/20; 1γe = π/10 in Figures 2A,B). While comparing two Ms

sets relating to different values of the shoulder angle [α(3)e and α
(7)
e

in Figures 4A,B], one can notice a drop in the torque amplitudes,
which corresponds to a shortening of the torque arm hs (see
Equation 9). In contrast, the Me amplitudes remain unchanged
due to the steadiness of the similar parameter coinciding with the
segment’s length L.

Figure 5 demonstrates the elbow angle-dependent changes
of the JTs. In contrast to the above-described changes, the
amplitudes of the Ms curves change in this case even within the
same set (Figures 5A,B). The interval between curves in the Ms

sets is half that of the Me ones, which is due to a correspondent
inequality in the slopes of CAs (δγs/δαe = 0.5; δγe/δαe = 1, see
Figures 3A,B).

Patterns of Activation of the Proximal and
Distal Muscles
Schematic presentation of various combinations of the activity
of flexor and extensor muscles belonging to different joints, as
is shown in Figures 3D, 4D, allows us to present in graphical
form the changes in the torque patterns (TCD, TOD) for separate
transition movements in the joints. As has been shown for
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FIGURE 4 | Results of numerical simulation of the joint torques Ms and Me (A,B) for different positions of the subject’s hand in the working space � (C). Two sets of

the torque records with fixation of the elbow joint angle in positions 3π/10 [α
(3)
e ] and 7π/10 [α

(7)
e ] rad are chosen. The torques Ms and Me are defined by Equation( 9)

using the characteristic angles presented in Figure 2A. Thicker lines highlight the torque traces for shoulder positions α
(0)
s and α

(5)
s . Horizontal lines in (D) mark phases

of the sign coincidence of the shoulder and elbow torques, both positive (M+
s M+

e ) and negative (M−
s M−

e ), in different traces. Throughout the study, the torques are

defined for the action of unit forces at the hand positions; therefore, their calibrations are given in arbitrary units.

two-joint circular movements under a tangential load, central
commands to the muscles depend predominantly on positions
of the force singular points (FSP), where the JTs change their
directions (Kostyukov, 2016; Tomiak et al., 2016). In the above-
cited studies, the torque patterns in two-joint movements
are considered through the functions of the simultaneously
contracted muscles that belong to different joints. The TCD
corresponds to contractions of the muscles of the same function
(flexors–flexors; extensors–extensors), while the TOD belongs to
combinations of the muscles of the opposite modalities (flexors–
extensors; extensors–flexors). The proposed approach allows us
to analyze the torque patterns for isometric contractions using
the CAs (Figure 6). For changes in the force vector angle from 0
to 2π rad, the lines, which are used to designate the CAs, γs and
γe, define two pairs of the torque sectors: TCD (M+

e M
+
s , M

−
e M

−
s )

and TOD (M+
e M

−
s , M

−
e M

+
s ) (Figures 6A,B). The weights of the

torque sectors (see Figures 6C) are defined as follows:

wTOD =
(γe − γs)

π
; wTCD = 1−

(γe − γs)

π
. (10)

The maximal weight of the TCD, equal to 1, relates to a fully
extended elbow joint (αe = 0) for any αs. A rise in the αe
decreases the TCD weight linearly, converging to a limit value
of 0.5 in a hypothetical case of a complete joint flexion (αe
= 180◦), whereas the weight of the TOD rises from 0 to 0.5
during an increase in the αe from 0 to 180◦. Therefore, one
can conclude that in movements around the shoulder joint, the
torque patterns remain invariable; at the same time, they are
noticeably dependent on the elbow joint angles. During a rise
in the αe, the weights of TCD and TOD change linearly in
the opposite direction, whereas the relationship between them
remains unvaried for any fixed αe.

DISCUSSION

The JTs that accompany generation of forces by the human right
hand are simulated in our study in a framework of a two-joint
model of the right arm placed horizontally. The simulation is
based on a method of virtual work [for example, see (Hibbeler,
2016)] that had allowed us to define the JTs at each of two
joints for any direction of the end-point force and position in
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FIGURE 5 | Results of the numerical simulation of the joint torques Ms, Me (A,B) for different positions of the subject’s hand in the working space � (C). Scheme of

the data presentation coincides with that in Figure 4; two sets of the torques with fixation of the shoulder joint angles α
(0)
s and α

(5)
s are considered The torques Ms and

Me are defined by Equation (9) using the characteristic angles presented in Figure 2B. Thicker lines highlight the torque traces for the elbow joint angles α
(0)
e and α

(5)
e .

Horizontal lines in (D) mark phases of the sign coincidence of the shoulder and elbow torques. Other designations are similar to those in Figure 4.

the working space. When the frontal slopes of the force vectors
(angle θ) change in the range 0–2π, the JTs Ms and Me are
presented in dependency on the angle by the sinusoidal functions
of different amplitudes and phase lags. The CAs γs and γe define
the phase lags of the sinusoids; the elbow JTs are not changed,
being equal to the product of the force amplitude and segment
length FL; the shoulder JTs, equal to Fhs, vary with the distance
from the axis of the shoulder joint to the end-point, hs. For
a complete cycle of the force vector turning, the relative times
of the flexor and extensor contractions in each of the joints
are equal. From the basic geometric definitions, it follows that
γe ≥ γs for the entire working space (see Figure 1). Therefore,
during continuous turning of the end-point force vector in the
counter clockwise direction, the shoulder flexors should always
be activated earlier than the elbow flexors, and this has been
demonstrated experimentally (Lehedza et al., 2016; Lehedza,
2017).

When considering the isometric muscle contractions for
different end-point positions in the curvilinear coordinate system
{αs; αe}, it is entirely reasonable to evaluate changes of the
shoulder and elbow torque waves for isolated changes in the joint
angles, i.e., during the end-point transitions along the “shoulder”

and “elbow” traces (Figure 6). The gradients of the phase shifts
for the both Ms and Me waves coincide with each other along
the “shoulder” traces: δγs/δαs = δγe/δαs = 1, while along the
“elbow” traces, the Ms phases shift half as fast as the Me: δγs/δαe
= 0.5; δγe/δαe = 1 (Figure 7). Taking into account experimental
findings of the correspondence between the timings of the EMGs
and related parts of the JTs waves (Lehedza et al., 2016; Lehedza,
2017), the above results may be applied to predict the shifts of
the central commands for the respective muscle contractions
(Figure 7). In the end-point transitions along the “shoulder”
traces (αs-varying; αe-fixed), shifts between Me and Ms waves
remain unchanged; therefore, the torque waves are changing in
an isotropic manner. In contrast, for the end-point transitions
connected with the shoulder joint and fixed elbow one, the
torques waves demonstrate the anisotropicmanner of changing.

The central commands to themuscles in two-jointmovements
depend predominantly on the relative positions of FSPs, where
the JTs change their directions (Lehedza et al., 2016; Tomiak
et al., 2016; Lehedza, 2017). The FSPs may be used to identify
different zones of the torques of coinciding and opposing
directions (TCD, TOD), which would evoke a simultaneous
loading of the elbow and shoulder muscles with the coinciding
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FIGURE 6 | Schematic presentation of the patterns of the torques of coinciding and opposing directions (TCD, TOD) in dependence on the positioning of the

end-points within the working space. (A) The torque combinations are depicted by the shadowed (TCD) and white (TOD) sectors at the circles interposed in the nodes

of intersection of the “shoulder” and “elbow” end-point traces with fixed values of αe and αs, respectively. (B) Combinations the joint torques and related patterns of

loading of the flexor (f) and extensor (e) muscles belonging to different joints. (C) Changes in the TCD and TOD weights in dependency on the elbow joint angle (plot in

accordance with Equation 10).

or opposing function (flexors, extensors). The distribution of
the CA difference (γe – γs) in the working space defines the
TCD and TOD sectors (Figure 6). A maximal weight of the
TCD (equal to 1) corresponds to a fully extended elbow joint
(αe = 0) for any αs-value. The weight is linearly decreased with
a rise of αe, converging to a limit value 0.5 at the hypothetical
case of the complete flexed elbow, αe = 180◦. Contrastingly,
the TOD weight rises from 0 to 0.5 during the αe increase of
from 0 to 180◦. Therefore, the torque patterns are not changed
for the isolated movements around the shoulder joint, being,
at the same time, noticeably dependent on the elbow joint
angles. During a rise of the αe, weights of the TCD and TOD
change linearly in opposite directions; however, for fixed αe, the
relationship between the torque patterns remains unvaried for
all αs-values (Figure 6B). A predominance of the TCD effects
for the entire working space can exert an essential influence on
the central commands to the muscles. If we assume an equal
probability for all possible directions of the end-point forces

in a variety of movement programs, one can encounter more
frequently the associations of descending activities to the muscles
of the same function in different joints (i.e., flexors–flexor or
extensors–extensors). The predominance of the TCD effects
becomes more and more pronounced with the increase in the
end-point distances from the proximal joint; and their maximal
weight is achieved at the circular boundary of the working space
(Equation 10; Figure 6C). Such a pattern of the torque effects can
provide some simplification of both descending motor programs
and their realization at the spinal level. At the same time, the
above inferences might be related only to a restricted class of
movement tasks associated with a generation of the isometric
forces F(θ) in all possible directions (0 ≤ θ < 2π) and locations
of the end-points within the working space.

The present study includes the analysis of the steady states in
two-joint movements, whereas real fast movements are inevitably
much more complicated and diversified. Directional preferences
in the arm movements were previously revealed for horizontal
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FIGURE 7 | Schematic description of possible differences given changes in the central commands to muscles during the end-point transitions along “shoulder” and

“elbow” traces. These differences can be strongly connected with related patterns of the JT changes: isotropic in the first case and anisotropic in the second. Isotropy

and anisotropy in changes to the JTs along the “shoulder” and “elbow” traces could be directly related to the equality (inequality) of the relative changes to the CAs γs

and γe with respect to the correspondent joint angles.

arm movements and interpreted by a simplified joint control
program that involves predominantly passivemotion at either the
shoulder or elbow (Dounskaia and Goble, 2011; Dounskaia et al.,
2011; Dounskaia and Wang, 2014). In studies of skilled throwing
in baseball, Hirashima et al. (2007) supported the idea that the
CNS could control complex movements by using a hierarchical
strategy such as described by the leading joint hypothesis
proposed by Dounskaia (2005). The theory suggests that
planning of complex movement becomes simpler by choosing
one “leading” joint, which provides the dynamic foundation
for the entire movement. The kinematics of the leading joint
is controlled actively with agonist-antagonist muscle activity
similar to that used for the control of single-joint movements.
The adjacent “subordinate” joint is strongly influenced by passive
dynamics, with activity in the “subordinate” muscles used to
adjust the joint kinematics to meet the requirements of the
task. In two-joint arm movements, the shoulder joint is usually
considered the “leading” one due to a large volume of the
musculature and higher inertia of the upper arm. However, fast
movements, in which the elbow plays the leading role while the
shoulder is subordinated, have been described as well (Debicki
et al., 2011).

Subjects can produce arm movements with different speeds
and trajectories. In general, however, it is unclear how the CNS
plans and coordinates shoulder and elbowmotions. The so-called
“interaction torques” participate in fast movements, which arise
at one joint due to the rotation of adjacent joints (Hollerbach and

Flash, 1982). For example, rotation of the proximal shoulder joint
influences the motion of the distal elbow and wrist joints through
interaction of the torques in the proximal-to-distal direction;
similarly, rotation of the distal joints can influence proximal joint
motion (Latash et al., 1995; Gribble and Ostry, 1998; Dounskaia
et al., 2002; Debicki et al., 2011). On the other hand, in statics
(during isometric contractions or slow movements), it seems
possible to exclude the above intersegmental interactions. In
difference from existing models of the two-joint movements,
we concentrated main attention on the positioning of the end-
point force vector within the working space. Such an approach
allows finding the patterns of the JTs that provide various slopes
of the generated efforts in any point of the space. As follows
from the present consideration, it is possible to evaluate the
interdependence between the end-point force and the JTs at the
both joints.

We would like to stress that any consideration of the
equilibrium states in two-joint arm movements must also
take into account the numerous non-linear properties of a
transformation of the efferent signals to muscle contraction.
At least three essential elements of uncertainty are present in
the static states of the arm under given conditions of loading.
First, the prehistory of activation and movement strongly affects
the steady states in the system; these processes are directly
related to muscle hysteresis (Kostyukov, 1998). Second, both
agonist and antagonist muscles provide the resultant torque
in each joint; co-activation of the antagonists can constitute a
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substantial source for the uncertainty in the equilibrium states
of the joints (Gorkovenko et al., 2012). Third, the redistribution
activity among different parts of individual muscles and between
different muscles can be highly expressed, which inevitably leads
to ambiguity of motor control.

CONCLUSIONS

The two-segment model of the human arm simulates the
shoulder and elbow JTs, providing a slow, steady rotation of
the force vector in any end-point of the horizontal working
space. The model can be only applied to the analysis of the two-
joint muscle contractions in isometry; for considering a real arm
movement, the inertial properties of the arm segments, as well
as the non-linear effects of neuromuscular dynamics, should be
taken into account.

For the force vector slowly rotating at a constant speed, two
sinusoidal waves of the same period, equal to that of rotation,
describe the elbow and shoulder JTs; the phases of the sinusoids
coincide with the slopes of the correspondent lines from the joint
axes to the end-point.

For the analysis of the JTs, we propose considering
the “shoulder” and “elbow” end-point traces, in which the
correspondent joint angle changes under fixation of the other
one. Both shifts between the shoulder and elbow JTs and
their amplitudes remain unchanged along the “shoulder” tracks,
whereas these parameters change essentially at the “elbow” ones.

Therefore, the combined action of both JTs possesses isotropic
and anisotropic properties at the “shoulder,” and “elbow” traces,
respectively.

The proposed model determines the patterns of the TCD,
TOD, which would evoke a simultaneous loading of the
elbow and shoulder muscles with the coinciding or opposing
function (flexors, extensors). The relationship between the
TCD and TOD remains fixed in transitions at the “shoulder”
end-point traces, whereas it is changing at the “elbow”
ones.
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