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Abstract

The aim of this study was to determine the efficacy of different dietary fruit pomaces in reduc-

ing lipid oxidation in the meat of turkeys fed diets with a high content of n-3 polyunsaturated

fatty acids (PUFAs). Over a period of 4 weeks before slaughter, turkeys were fed diets with

the addition of 5% dried apple, blackcurrant, strawberry and seedless strawberry pomaces

(groups AP, BP, SP and SSP, respectively) and 2.5% linseed oil. Pomaces differed in the con-

tent (from 5.5 in AP to 43.1 mg/g in SSP) and composition of polyphenols Proanthocyanidins

were the main polyphenolic fraction in all pomaces, AP contained flavone glycosides and dihy-

drochalcones, BP contained anthocyanins, and SP and SSP—ellagitannins. The n-6/n-3

PUFA ratio in all diets was comparable and lower than 2:1. In comparison with groups C and

AP, the percentage of n-3 PUFAs in the total fatty acid pool of white meat from the breast mus-

cles of turkeys in groups BP, SP and SSP was significantly higher, proportionally to the higher

content of α-linolenic acid in berry pomaces. The fatty acid profile of dark meat from thigh mus-

cles, including the n-6/n-3 PUFA ratio, was similar and lower than 3:1 in all groups. Vitamin A

levels in raw breast muscles were higher in group AP than in groups C and BP (P<0.05). The

addition of fruit pomaces to turkey diets lowered vitamin E concentrations (P = 0.001) in raw

breast muscles relative to group C. Diets supplemented with fruit pomaces significantly low-

ered the concentration of thiobarbituric acid reactive substances (TBARS) in raw, frozen and

cooked meat. Our results indicate that the dietary application of dried fruit pomaces increases

the oxidative stability of meat from turkeys fed linseed oil, and strawberry pomace exerted the

most desirable effects due to its highest polyphenol content and antioxidant potential.

Introduction

High consumption of meat and meat products in developed countries is one of the factors

responsible for a high and undesirable ratio of n-6 to n-3 polyunsaturated fatty acids (PUFAs)
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in excess of 10:1 [1]. This applies also to poultry products, which account for more than 40%

of consumed meat [2]. For this reason, an increase in the content of n-3 PUFAs in meat, which

leads to an improvement in the n-6/n-3 PUFA ratio in the human diet, is an important consid-

eration in the process of adding value to poultry products for the health conscious consumer

[3]. This goal can be achieved by supplementing poultry diets with oils rich in n-3 PUFAs,

such as linseed oil [4].

The inhibition of oxidative processes in the dietary lipid fraction and in muscle lipids poses

a key problem in the supplementation of poultry diets with vegetable oils [5]. To address this

issue, poultry diets are commonly enriched with vitamin E and selenium [6], and the search

for new, natural antioxidants, such as polyphenol extracts, continues [7, 8]. Selected polyphe-

nols exhibit powerful antioxidant effects, and they are added to poultry diets to enhance the

beneficial influence of vitamin E and offer greater antioxidant protection for birds and poultry

products [9, 10, 11].

The supplementation of poultry diets with flavonoid extracts increased vitamin E concentra-

tions and decreased the content of malondialdehyde (MDA) in the blood serum of quails and

broiler chickens [9, 10]. The addition of grapeseed extract produced antioxidant effects in

broiler diets and excreta [12]. In another experiment, grapeseed, rosemary and green tea

extracts were not highly effective in inhibiting lipid oxidation in the blood of broilers [13],

which could suggest that the physiological effects of polyphenols are influenced by their source,

method of acquisition and concentrations. The extraction of pure polyphenols requires complex

methods involving alcohol or acetone, which increases the costs of the extraction process.

Pomaces from the production of grape juice are a rich source of polyphenols which

increased antioxidant activity in poultry diets and excreta, inhibited the oxidation of lipids in

body tissues [14] and demonstrated similar antioxidant effects to vitamin E [15]. In poultry

nutrition, similar effects are delivered by other by-products of fruit processing, including

apples whose global annual production reaches 75 million tons [16]. Apple pomace had a posi-

tive influence on blood parameters in pigs [17], but there are no published studies document-

ing the effect of apple pomace on poultry health. The antioxidant effects of strawberry pomace

were also observed in a study of rats [18].

In Poland, annual strawberry production is estimated at 170,000 tons [19], which implies

that strawberry pomace can be widely used in animal nutrition. Strawberry and blackcurrant

pomaces are rich in polyphenols, and they increase the antioxidant capacity of poultry diets,

which could be particularly important in diets with a higher content of vegetable oils.

The objective of this study was to determine whether the inclusion of 5% dried fruit pom-

aces (apple, blackcurrant and strawberry pomaces with various degree of processing) as a

source of polyphenols in turkey diets can increase the antioxidant capacity of diets and limit

oxidative changes in meat with a lowered n-6/n-3 PUFA ratio.

Materials and Methods

Experimental design and diet composition

The experiment was carried out at the Research Laboratory of the Department of Poultry Sci-

ence, University of Warmia and Mazury in Olsztyn (Poland). All experimental procedures

were approved by the Local Animal Care and Use Committee (Olsztyn, Poland), and the study

was carried out in accordance with EU Directive 2010/63/EU for animal experiments. The

study was performed on 525 Big 7 female turkeys aged 1 day to 15 weeks, divided into 5 groups

of 105 birds each. Each group was kept in 7 pens of 15 birds per pen (7 replicates per group).

The experimental diets differed in their content of dried apple pomace (AP), dried black-

currant pomace (BP), dried strawberry pomace (SP) and dried seedless strawberry pomace
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(SSP) as an additional source of dietary polyphenols. The diets fed to control group (C) turkeys

contained cellulose to level out their crude fiber content. The chemical composition of diets and

different pomace drying methods (AP, BP and SP were dried by convection in the SB-1.5 drum

dryer, whereas SSP was vacuum dried at a temperature of 70˚C) are presented elsewhere [20].

The composition of diets fed to turkeys aged 11–15 weeks is presented in Table 1. The diets

fed to birds aged 1–10 weeks also contained 5% dried fruit pomaces and only soybean oil

(without linseed oil) to level out their energy value. In the last feeding phase, diets were supple-

mented with linseed oil to increase the content of n-3 PUFAs that are more susceptible to oxi-

dation. All diets contained 0.5% of the commercial Extramix premix which provided equal

amounts of vitamins, including vitamin A (all-trans-retinol acetate) - 13 000 IU, vitamin E

(all-rac-α-tocopheryl acetate) - 40 mg and organic Se– 0.3 mg/kg. The level of vitamin E sup-

plementation was substantially higher than that recommended by the NRC [21] for turkeys

Table 1. Composition and nutritional value of diets fed to turkeys at 11–15 weeks of age.

Experimental diet1

C AP BP SP SSP

Component (%)

Wheat 58.41 55.21 57.48 57.23 57.23

Soybean meal 30.83 31.03 29.40 29.34 29.34

Vitacel® cellulose1 2.33 - - - -

Fruit pomace1 - 5.00 5.00 5.00 5.00

Soybean oil 2.84 3.17 2.52 2.84 2.84

Linseed oil 2.50 2.50 2.50 2.50 2.50

Sodium bicarbonate 0.10 0.10 0.10 0.10 0.10

Fodder salt 0.14 0.14 0.14 0.14 0.14

Limestone 1.23 1.23 1.23 1.23 1.23

Monocalcium phosphate 0.55 0.575 0.57 0.55 0.55

Ronozyme P and WX 0.03 0.03 0.03 0.03 0.03

DL-methionine 99% 0.18 0.18 0.18 0.18 0.18

L-lysine 99% 0.29 0.28 0.28 0.29 0.29

L-threonine 0.07 0.07 0.07 0.07 0.07

Premix2 0.50 0.50 0.50 0.50 0.50

Nutritional value (%)

Total protein 21.5 21.5 21.5 21.5 21.5

Crude fat 6.82 7.21 7.16 7.05 7.05

Crude fiber 3.96 3.96 3.94 4.08 4.06

ME, MJ/kg 12.6 12.6 12.6 12.6 12.6

Lysine 1.25 1.25 1.25 1.25 1.25

Methionine 0.48 0.48 0.48 0.48 0.48

Met + Cys 0.86 0.86 0.86 0.85 0.85

Threonine 0.86 0.80 0.80 0.80 0.80

Ca 0.75 0.75 0.75 0.75 0.75

P 0.30 0.30 0.30 0.30 0.30

Na 0.10 0.10 0.10 0.10 0.10

1Dietary treatments with addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace.
20.5% of the Premix provided per kg of diet: all trans-retinol acetate—13000 IU, cholecalciferol—3000 IU, all-rac-α-tocopheryl acetate—40 mg, vitamin K3

−2 mg, vitamin B1−2 mg, vitamin B2−8 mg, vitamin B6−3.5 mg, niacin—65 mg, pantothenic acid—18 mg, folic acid—1.5 mg, biotin—0.2 mg, choline

chloride—400 mg, Mn—100 mg, Zn—80 mg, Fe—50 mg, Cu—8 mg, I—0.8 mg, Se—0.3 mg.

doi:10.1371/journal.pone.0170074.t001
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fed standard commercial diets, but lower than that applied in our earlier experiment [22]

where vitamin E added at 54 mg/kg of diet had no protective effect on the oxidative stability of

meat in turkeys fed diets containing linseed oil.

Analysis of the content and composition of polyphenols in fruit pomaces

and diets

The total phenolic content of turkey diets was determined using the Folin-Ciocalteu reagent,

as described by Singleton et al. (1999) [23], and was expressed in mg of gallic acid equivalents

(GAE) per gram of diet. The composition of polyphenols in fruit pomaces was determined

by HPLC after extraction with acetone in triplicate. A ground analytical sample of 0.5 g was

placed in a test tube, and 4 ml of 70% acetone solution was added. The mixture was sonified at

22˚C for 15 minutes, next the solution was centrifuged (4800 × g) and transferred to a flask.

The above procedure was performed in two replications, and the extracts were combined.

Acetone was distilled in a rotary vacuum evaporator, and dry residues were dissolved in 2 ml

of 70% glycerol. The extract was analyzed in a HPLC system with a DAD detector (Dionex,

Sunnyvale, CA, USA), on a Gemini 5u C18 110A-2509 column, 4.60 mm (Phenomenex, Tor-

rance, CA, USA). Phase A involved 0.05% phosphoric acid solution, and phase B– 0.05% solu-

tion of phosphoric acid in acetonitrile. The applied gradient had a flow rate of 1.25 ml/min:

5 min of stabilization with 4% B, followed by 5 to 12.5 min with 4–15% B, 12.50 to 42.40 min

with 15–40% B, 42.40 to 51.80 min with 40–50% B, 51.80 to 53.40 min with 50% B, and 53.40

to 55 min with 4% B. Column temperature was 25˚C. The analyzed compounds were identi-

fied with commercial standards supplied by Extrasynthese, Genay (France) and Sigma-Aldrich

(St. Louis, USA). The proanthocyanidin content of fruit pomaces was determined in a separate

procedure described by Kennedy and Jones [24]. The polyphenol compositional analysis was

described in detail in another study [25].

Analysis of the antioxidant potential of fruit pomaces and experimental

diets

The antioxidant activity of fruit pomaces was measured directly in the 2,2-diphenyl-1-picryl-

hydrazyl (DPPH•) assay according to the method of Hatano [26], and the antioxidant activity

of experimental diets was determined in accordance with the method described by Zielińska

et al. [27]. The antioxidant activity of diets was also measured in the ABTS•+ assay in line

with the method proposed by Re et al. [28] and the photochemiluminescence assay against

superoxide anion radical (• O2
-) according to the method of Popov and Lewin [29]. Measure-

ments were carried out in a temperature-controlled UV-160 1PC spectrophotometer with a

CPS-Controller (Shimadzu, Tokyo, Japan), and the results were expressed in μmol Trolox/g of

sample. The photochemiluminescence assay was used to determine total antioxidant capacity

as the sum of the antioxidant potentials of hydrophilic (ACW) and lipophilic (ACL) fractions.

The ACL fraction was extracted from samples with 80% methanol, followed by a mixture of

methanol and hexane (4:1, v/v). Measurements were performed in a Photochem1 apparatus

with ACW and ACL analytical kits supplied by Analytik Jena (Leipzig, Germany).

Collection, storage and preparation of meat samples for analysis

At 15 weeks of age, seven birds representing the average body weight of each group were

selected for blood collection (blood was collected from the wing vein into sterile tubes contain-

ing EDTA), and slaughtered in a processing plant 8 h after feed withdrawal (the Faculty of Ani-

mal Bioengineering’s slaughterhouse, the University of Warmia and Mazury in Olsztyn). The

Dried Fruit Pomaces in Turkey Feeding
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equipment of the slaughterhouse and all applied procedures gained approval of the Local Ani-

mal Care and Use Committee (Olsztyn, Poland; permission number 78/2012/N). The birds

were electrically stunned (400 mA, 350 Hz), hung on a shackle line and exsanguinated by a

unilateral neck cut severing the right carotid artery and jugular vein. Turkeys were scalded at

61˚C for 60 s, defeathered in a rotary drum picker for 25 s, and manually eviscerated. As

described previously [30], the following indicators of blood plasma antioxidant status were

determined: ascorbic acid concentration, the activities of catalase and superoxide dismutase

(SOD), and the ferric reducing ability of plasma (FRAP).

Carcasses were cooled at a temperature of 12˚C for 30 minutes and stored at a temperature

of 4˚C. After 24 h, the left breast muscle and the left thigh were sampled for analyses. A portion

of the samples was vacuum packaged, frozen at -20˚C and stored for 3 months until analyses of

thiobarbituric acid reactive substances (TBARS). The content of TBARS, retinol and α-tocoph-

erol was determined in raw meat, frozen meat and cooked fresh meat and cooked frozen meat.

Meat samples were cooked in a steam and convection oven (BECK FCV 4 EDS GmbH

Jagsthausen, Germany) for 30 minutes until the temperature inside muscles reached 75˚C.

Analysis of the fatty acid profile, antioxidant status, and color parameters

of meat

The fatty acid profile of diets and meat was determined in samples extracted with a mixture of

chloroform and methanol (2:1, v:v), esterified by Peisker’s method (1964) [31], and subjected

to gas chromatography in a 6890 N gas chromatograph (Agilent Technologies Inc., Palo Alto,

CA) equipped with a flame ionization detector (FID). Column (capillary, 0.32 mm x 30), injec-

tor and detector temperatures were set at 180, 225 and 250˚C, respectively. Helium was applied

as a carrier gas at a flow rate of 0.7 cm3/min. Fatty acids were identified based on their reten-

tion times and were expressed as the percentage of total identified fatty acids. All analyses were

carried out in duplicate.

Tocopherol and retinol concentrations were measured by HPLC (Shimadzu, Japan),

according to the method described by Rettenmaier and Schüep (1992) [32], with the use of

rac-α-tocopherol (Sigma, Switzerland) as the reference standard. Changes in the oxidative sta-

tus of lipids were determined based on TBARS levels, measured by the method proposed by

Draper and Hadley (1990) [33]. Absorbance was measured with the SPECORD 40 spectropho-

tometer (Analityk Jena AG, Germany), and TBARS levels were expressed in nmol of malon-

dialdehyde (MDA) per gram of meat.

The pH of meat (breast muscle) was measured 24 h after carcass chilling (Testo 206–pH2

pH-meter, Testo AG, Lenzkirch, Germany). Hunter L� (lightness), a� (redness), and b� (yel-

lowness) values were determined in breast muscle samples using the MiniScan XE Plus color

difference meter (Hunter Associates Laboratory Inc., Reston, VA, USA). The average of three

readings taken from the cross-section of the muscle free from color defects, bruising and hem-

orrhages was recorded.

Statistical analysis

The results were analyzed statistically using the GLM procedure in Statistica 8.0PL software.

Differences were regarded as significant at p� 0.05. All data were expressed as mean values

with standard error of the mean (SEM).

Results

The inclusion of fruit pomaces did not affect the nutritional value of turkey diets, including

metabolizable energy content and the content of crude protein and major amino acids which

Dried Fruit Pomaces in Turkey Feeding
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were leveled out by minor modifications in the proportions of the main components (soybean

meal and wheat) and the addition of soybean oil (Table 1). The crude fiber content of all diets

approximated 4%.

The analyzed fruit pomaces differed in their content and composition of polyphenols

(Table 2). In all pomaces, proanthocyanidins were the main polyphenolic fraction. The lowest

concentration of polyphenols was noted in apple pomace (AP, 5.5 mg/g in HPLC analysis)

which contained proanthocyanidins (4.5 mg/g) and similar amounts of flavone glycosides

(myricetins, quercetins and kaempferol; 0.5 mg/g) and dihydrochalcones (phloridzin and

phloretin; 0.5 mg/g). The polyphenol content of BP was more than 5-fold higher (31.0 mg/g)

in comparison with AP, and in addition to proanthocyanidins (26.0 mg/g), BP also contained

anthocyanins (4.9 mg/g) and trace amounts of flavone glycosides. The polyphenolic fraction of

strawberry pomace was composed of proanthocyanidins and ellagitannin, and the content of

ellagitannin and total polyphenols in SSP was more than 4 times higher than in SP (43.1 and

10.3 mg/g, respectively). Considerable differences in the polyphenolic fraction of fruit pomaces

were reflected in the analyzed values of the antioxidant activity of pomaces, ranging from the

lowest value in AP (32 μmol TE/g) to the highest value in SSP (256 μmol TE/g).

The experimental diets differed in their content of phenolic compounds, which was propor-

tional to polyphenol concentrations in fruit pomaces (Table 3). In comparison with the control

diet, the lowest increase in polyphenol levels (by 0.18 mg/g) was noted in AP diets. Polyphenol

concentrations increased by 0.21 mg/g in BP and SP diets, and by 0.31 mg/g in the SSP diet,

which affected the antioxidant activity of experimental diets. In comparison with the control

diet, the lowest DPPH and ABTS radical scavenging effects were noted in the AP diet, and the

highest–in the SSP diet. The results of chemiluminescence assays revealed that the ACW frac-

tion was the major contributor to the antioxidant capacity of diets, whereas the ACL fraction

played a less important role. In comparison with the control diet, the lowest increase in the

antioxidant capacity of the ACW fraction was observed in group AP (from 0.71 to 1.24 μmol

TE/g), whereas the highest increase was noted in group SSP (to 1.73 μmol TE/g). The total

antioxidant capacity of SP and SSP diets was at least two-fold higher relative to the control

diet.

The compared fruit pomaces differed in their crude fat content and fatty acid profile

(Table 4). In comparison with AP, crude fat content and the percentage of α-linolenic acid in

Table 2. Composition of the polyphenolic fraction in fruit pomaces (mg/g) and the antioxidant activity of pomaces (μmol TE/g; using the 2,2-diphe-

nylpicrylhydrazyl (DPPH) assay).

Apple (AP) Blackcurrant (BP) Strawberry 1 (SP) Seedless strawberry 2 (SSP)

Flavone glycosides3 0.51 0.17 0.99 1.60

Anthocyanins - 4.87 - 0.90

Phenolic acids4 - - - 0.94

Dihydrochalcones5 0.49 - - 0.05

Ellagitannins - - 4.24 15.4

Proanthocyanidins 4.50 26.0 5.10 24.2

Total polyphenols 5.50 31.04 10.33 43.09

Antioxidant activity 32.0 102.8 84.7 256.4

1Unsorted native pomaces dried in a drum dryer.
2Seedless pomace fraction, vacuum dried.
3Myricetin, quercetin and kaempferol glycosides.
4 Sum of p-coumaric and p-benzoic acids.
5 Sum of phloridzin and phloretin.

doi:10.1371/journal.pone.0170074.t002
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total fatty acids were higher in BP, SP and SSP. The n-6/n-3 PUFA ratio was highly differenti-

ated, ranging from nearly 12:1 in AP to 3:1 in BP and below 2:1 in SP and SSP. In comparison

with the control diet, AP and BP diets were characterized by similar concentrations of linoleic

acid (38.3–39.6%) and α-linolenic acid (19.6–20.5%) as well as a similar n-6/n-3 PUFA ratio at

1.9:1 (Table 5). SP and SSP diets were somewhat more abundant in α-linolenic acid (21.5–

22.8%) and had a somewhat lower n-6/n-3 PUFA ratio (1.8:1).

Table 4. Crude fat content and fatty acid profile of various fruit pomaces (% of total fatty acids).

Fruit pomace1

AP BP SP SSP

Crude fat 2.63 13.8 10.4 9.64

Fatty acids

C12:0 0.19 0.04 0.07 0.03

C12:1 0.40 0.07 0.03 0.06

C14:0 0.42 0.12 0.18 0.19

C15:0 0.09 0.05 0.05 0.06

C16:0 10.2 8.92 7.11 6.60

C16:1 0.13 0.13 0.22 0.23

C17:0 0.23 0.11 0.13 0.03

C17:1 0.08 0.06 0.06 0.02

C18:0 2.68 2.03 1.81 1.60

C18:1 Cis9 21.3 15.6 14.2 16.7

C18:2 n-6 47.8 53.6 47.5 44.0

C18:3 n-3 4.91 17.9 27.3 29.0

C20:0 1.43 0.46 0.96 1.34

C20:2 n-6 9.49 0.37 0.09 0.04

C20:4 n-6 0.71 0.44 0.34 0.03

n-6/n-3 PUFA ratio 12:1 3.0:1 1.7:1 1.5:1

1AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace.

doi:10.1371/journal.pone.0170074.t004

Table 3. The polyphenol content and antioxidant capacity of diets containing cellulose or various fruit pomaces.

Experimental group1

C AP BP SP SSP

Polyphenol content FC2 of diets, mg/g 1.27 1.45 1.48 1.48 1.58

Antioxidant activity of diets

DPPH, μmol TE/g 1.33 1.65 1.91 1.93 2.16

ABTS, μmol TE/g 7.71 7.89 8.18 8.23 9.55

Antioxidant capacity of diets

lipophilic extract, μmol TE/g 0.29 0.36 0.48 0.58 0.48

hydrophilic extract, μmol TE/g 0.71 1.24 1.31 1.42 1.73

total capacity, μmol TE/g 1.00 1.60 1.79 2.00 2.21

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace.
2Polyphenol content was measured with the use of the Folin-Ciocalteu reagent.

doi:10.1371/journal.pone.0170074.t003
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No significant differences in the final body weights of birds or the yields of breast and thigh

muscles in the carcass were observed between experimental groups (Table 6). Breast muscle

yield approximated 24%, and thigh muscle yield exceeded 10%. No significant differences

were noted in the pH24h or color parameters of fresh breast muscle.

Breast meat differed in the percentage of α-linolenic acid in total fatty acids, and significant

differences were noted between groups C and AP vs. groups BP, SP and SSP (P = 0.05)

(Table 7). No significant differences were observed in the concentrations of total saturated

fatty acids, monounsaturated fatty acids and total n-6 PUFAs. In breast muscles, the highest n-

6/n-3 PUFA ratio was determined in group AP (P<0.05 vs. the remaining groups), and a sig-

nificant difference was found between group C and group SPP (SSP>C, P<0.05). In thigh

muscles, no significant differences were observed in the percentages of major fatty acids,

including linoleic acid, α-linolenic acid and total n-3 and n-6 PUFAs (Table 8). The n-6/n-3

PUFA ratio was also similar and lower than 3:1 in all groups.

The applied dietary treatments with fruit pomaces affected selected parameters of blood

plasma antioxidant status in turkeys (Table 9). The highest vitamin C concentration was noted

in group BP, and it differed significantly from those determined in treatments C and SP.

Plasma SOD activity was similar in all groups, and catalase activity was highest in groups AP

and BP (P<0.05 vs. C and SSP). FRAP levels were highest in groups AP and SSP (P<0.05 vs. C

Table 5. Fatty acid profile of experimental diets, % of total fatty acids.

FA Diet1

C AP BP SP SSP

C12:0 0.03 0.00 0.00 0.00 0.00

C14:0 0.09 0.10 0.09 0.08 0.09

C15:0 0.05 0.05 0.05 0.03 0.05

C16:0 12.6 13.6 13.2 10.7 12.6

C16:1 0.14 0.14 0.13 0.11 0.14

C17:0 0.15 0.20 0.22 0.10 0.17

C17:1 0.06 0.07 0.07 0.06 0.06

C18:0 4.05 4.24 4.21 3.68 4.04

C18:1 Cis9 21.6 22.6 22.4 19.9 213

C18:2 n-6 39.6 38.3 38.3 41.6 39.0

C18:3 n-3 20.5 19.7 19.9 22.8 21.5

C20:0 0.30 0.33 0.43 0.28 0.34

C20:1 0.25 0.26 0.26 0.23 0.27

C20:2 n-6 0.09 0.04 0.19 0.04 0.05

C20:4 n-6 0.06 0.03 0.09 0.08 0.05

C22:0 0.33 0.36 0.36 0.32 0.35

C22:6 n-3 DHA 0.15 0.06 0.10 0.09 0.04

SFA 17.6 18.9 18.6 15.2 17.7

UFA 82.4 81.1 81.4 84.8 82.3

MUFA 22.0 23.1 22.9 20.3 21.7

PUFA 60.4 58.1 58.6 64.6 60.6

n-3 PUFA 20.7 19.7 20.0 22.9 21.5

n-6 PUFA 39.8 38.4 38.6 41.7 39.1

n-6/n-3 PUFA ratio 1.9:1 1.9:1 1.9:1 1.8:1 1.8:1

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—

strawberry pomace, SSP–seedless strawberry pomace.

doi:10.1371/journal.pone.0170074.t005
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and SP). The highest vitamin A levels in raw breast meat were determined in meat samples col-

lected in group AP (P<0.05 vs. C and BP treatments). In raw thigh meat, differences approach-

ing statistical significance (P = 0.065) were noted between group C (lowest level) vs. groups

AP, BP and SSP (highest level). Based on vitamin E levels in raw breast meat, the groups were

arranged in the following order: Ca > APb > BPc, SPc, SSPc (P< 0.05).

The dietary treatments influenced TBARS values which are indicative of the advancement

of oxidative processes in raw, frozen and cooked meat (Table 10). The groups were arranged

in the following order based on TBARS levels in raw breast meat: C, AP> BP > SP, SSP

(P = 0.001). The groups were arranged in a somewhat different order based on the TBARS

content of raw thigh meat: C> AP> BP, SP> SSP (P = 0.001). In comparison with group C,

significant differences in TBARS levels were not noted in frozen breast and thigh muscles in

group AP, whereas the lowest TBARS concentrations were found in frozen meat from group

SSP (breast muscle, P<0.05 vs. C, AP; thigh muscle, P<0.05 vs. C, AP, SP). TBARS levels in

cooked fresh meat and cooked frozen meat differed from TBARS concentrations in raw and

frozen meat, but the distribution of values was similar: TBARS values were highest in group C,

significantly lower in group AP and lowest in group SSP.

Discussion

The content and composition of polyphenols in fruit pomaces are determined by the type of

fruit and the amount of compounds that are transferred to juice. Apple pomace contained a

wide variety of compounds belonging to different classes of polyphenols, including flavonols,

flavan-3-ols and chalcones [17, 25]. Proanthocyanidins generally account for more than half of

polyphenols in apple pomace [25]. In the present experiment, proanthocyanidins constituted

80% of the polyphenolic fraction in apple pomace. The total polyphenol content (5.50 mg/g) of

apple pomace was somewhat lower than that reported elsewhere [34], and those differences

could be attributed to variations in fruit composition and fruit processing technologies.

In our experiment, dried blackcurrant pomace contained 31.0 mg/g total polyphenols,

including anthocyanins and proanthocyanidins at a 1:5 ratio. In another study [35], the poly-

phenol content of dried blackcurrant pomace was determined at 6 mg/g, with an estimated

85% share of anthocyanins. The above findings could suggest that the polyphenol content of

berries determined by HPLC can be underestimated if the extraction yield of polymerized

proanthocyanidins and the range of the identified fractions are insufficient [36]. In our study,

Table 6. Final body weights of turkeys, the yields of breast and thigh muscles in the carcass, and breast meat color parameters.

Experimental group1 SEM P

C AP BP SP SSP

Final body weight, kg 10.4 10.6 10.5 10.4 10.6 0.045 0.779

Thigh muscles yield, % 10.3 10.0 10.8 10.4 10.6 0.740 0.287

Breast meat:

Muscle yield, % 23.6 23.6 24.2 24.1 24.2 1.591 0.880

pH24h 5.67 5.70 5.88 5.72 5.69 0.213 0.313

L* 51.6 52.6 52.8 52.4 52.7 2.141 0.838

a* 5.21 5.72 5.14 5.44 4.84 0.984 0.461

b* 10.5 11.0 11.2 10.8 10.6 0.960 0.574

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace. Values are means of 7 observations per treatment. L*—lightness, a*—redness, b*—yellowness.

SEM–standard error of the mean.

doi:10.1371/journal.pone.0170074.t006
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the results of HPLC indicate that the extraction yield of proanthocyanidins was sufficient. It

should also be stressed that the blackcurrant pomace used in the present study contained sig-

nificant amounts of anthocyanins which are susceptible to degradation and are rarely present

in pomaces due to their considerable loss during juice production [37].

Other authors demonstrated that anthocyanins [19], free and bound ellagic acid [38] and

proanthocyanidins [39] are the major polyphenols in strawberries, whereas flavonols occur in

small amounts [38]. The proanthocyanidin content of strawberry pomace can reach 2.5% on a

dry weight basis because those compounds are bound to cell wall polysaccharides and are less

likely to be transferred to fruit juice [40]. In our study, seedless strawberry pomace contained a

wide range of polyphenols (flavone glycosides, anthocyanins, phenolic acids, dihydrochal-

cones, ellagitannins and proanthocyanidins) whose total content reached 43 mg/g and was

similar to the values noted by other authors [18, 41]. The polyphenol content of SP (containing

seeds) was 3 times lower, and the composition of polyphenols was limited to ellagitannins,

proanthocyanidins and small amounts of flavone glycosides. For this reason, dietary inclusion

of SP increased polyphenol levels from 1.27 mg/g in the control diet to 1.48 mg/g in the SP diet

Table 7. Fatty acid profile of turkey breast muscles, % of total fatty acids.

FA Experimental group1 SEM P

C AP BP SP SSP

C12:0 0.04 0.04 0.04 0.04 0.04 0.001 0.976

C14:0 0.49 0.47 0.47 0.46 0.46 0.005 0.465

C14:1 0.13 0.13 0.12 0.10 0.12 0.005 0.373

C15:0 0.10 0.11 0.11 0.10 0.10 0.001 0.476

C16:0 21.9 21.8 21.4 21.4 21.4 0.105 0.360

C16:1 4.01 4.09 3.73 3.28 3.77 0.154 0.511

C17:0 0.16 0.17 0.18 0.18 0.17 0.004 0.377

C17:1 0.16 0.15 0.15 0.17 0.14 0.005 0.367

C18:0 8.04 7.78 8.06 8.46 7.95 0.152 0.728

C18:1 Cis9 23.5 23.67 22.4 22.2 22.8 0.354 0.648

C18:2 n-6 26.4 27.2 27.1 27.2 26.9 0.231 0.839

C18:3 n-3 9.84b 9.60b 10.7a 10.7a 10.9a 0.143 0.005

C20:0 0.10 0.11 0.13 0.12 0.10 0.005 0.272

C20:1 0.17 0.17 0.16 0.17 0.16 0.002 0.288

C20:2 n-6 0.27 0.26 0.32 0.27 0.24 0.014 0.473

C20:4 n-6 2.69 2.47 2.87 2.94 2.66 0.110 0.712

C20:5 n-3 0.48 0.41 0.52 0.53 0.49 0.021 0.392

C22:0 0.09 0.09 0.10 0.10 0.09 0.004 0.753

C22:5 n-3 0.96 0.85 1.05 1.07 1.02 0.048 0.621

C22:6 n-3 0.52 0.43 0.44 0.55 0.45 0.028 0.626

SFA 30.9 30.5 30.4 30.8 30.3 0.180 0.845

MUFA 27.9 28.2 26.6 26.0 27.0 0.499 0.602

PUFA 41.2 41.3 43.0 43.25 42.8 0.428 0.390

n-6 PUFA 29.9 30.3 30.8 30.9 30.3 0.309 0.847

n-3 PUFA 11.3b 10.9b 12.2a 12.31a 12.4a 0.154 0.002

n-6/n-3 PUFA ratio 2.6b 2.8a 2.5bc 2.5bc 2.4c 0.026 0.001

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace. Values are means of 7 observations per treatment.
a, b, c–values marked with different letters in rows differ significantly (P�0.05). SEM–standard error of the mean.

doi:10.1371/journal.pone.0170074.t007
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and 1.58 mg/g in the SSP diet. The lower polyphenol content of SP can probably be attributed

to two factors: the presence of seeds, which are less abundant in polyphenols than fruit flesh,

and higher temperature of convection drying than vacuum drying of seedless pomace (70˚C).

In other study [42], polyphenol levels in dried fruit decreased with an increase in drying

temperature.

In this experiment, the differences in the antioxidant activity of fruit pomaces and turkey

diets corresponded to the differences in their polyphenol content. The lowest level of antioxi-

dant activity was noted in apple pomace (32 μmol/TE/g), and it was similar to that reported by

other authors [42]. The antioxidant capacity of berry pomaces was many times higher than

that of apple pomace, proportionally to polyphenol concentrations. Other authors reported

high correlations between the polyphenol content of fruit pomaces or extracts and their anti-

oxidant activity [43]. The above observation largely explains the difference in the antioxidant

activity of pomaces from native strawberries and seedless strawberries (84.7 vs. 256.4 μmol/

TE/g), which could also be attributed to the lower temperature of vacuum drying of SSP than

the temperature of convection drying of SP. In a study by Wojdyło et al [42], the antioxidant

Table 8. Fatty acid profile of turkey thigh muscles, % of total fatty acids.

FA Experimental group1 SEM P

C AP BP SP SSP

C12:0 0.05 0.05 0.05 0.05 0.05 0.001 0.619

C14:0 0.59 0.55 0.58 0.56 0.56 0.006 0.072

C14:1 0.13 0.11 0.13 0.10 0.12 0.005 0.444

C15:0 0.11 0.11 0.12 0.11 0.11 0.002 0.238

C16:0 22.1 21.7 22.2 21.7 22.0 0.133 0.716

C16:1 3.95 3.66 3.94 3.17 3.59 0.171 0.659

C17:0 0.18 0.19 0.20 0.20 0.19 0.004 0.629

C17:1 0.15 0.18 0.16 0.15 0.14 0.006 0.425

C18:0 8.23 8.56 8.42 9.00 8.65 0.149 0.637

C18:1 Cis9 21.8 21.8 22.0 20.6 21.3 0.285 0.597

C18:2 n-6 28.7 28.8 27.8 28.9 28.7 0.243 0.629

C18:3 n-3 10.3 9.90 10.3 10.73 10.2 0.125 0.413

C20:0 0.12 0.12 0.12 0.14 0.12 0.003 0.106

C20:1 0.18 0.18 0.17 0.17 0.17 0.002 0.553

C20:2 n-6 0.21 0.23 0.22 0.24 0.25 0.005 0.302

C20:4 n-6 1.95 2.30 2.21 2.47 2.32 0.076 0.312

C20:5 n-3 0.39 0.39 0.40 0.45 0.41 0.016 0.777

C22:0 0.08 0.09 0.09 0.10 0.09 0.003 0.219

C22:5 n-3 0.56 0.68 0.65 0.75 0.69 0.028 0.381

C22:6 n-3 0.29 0.34 0.26 0.37 0.32 0.016 0.248

SFA 31.4 31.4 31.8 31.9 31.8 0.164 0.845

MUFA 26.2 26.0 26.4 24.2 25.4 0.451 0.304

PUFA 42.3 42.6 41.8 43.9 42.9 0.417 0.640

n-6 PUFA 31.2 31.7 30.6 32.1 31.7 0.297 0.619

n-3 PUFA 11.1 10.9 11.2 11.8 11.2 0.147 0.421

n-6/n-3 PUFA ratio 2.8 2.9 2.7 2.7 2.8 0.026 0.116

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace. Values are means of 7 observations per treatment.

SEM–standard error of the mean.

doi:10.1371/journal.pone.0170074.t008
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activity of fruit pomace was negatively correlated with drying temperature. The high antioxi-

dant activity of strawberry pomaces and the considerable difference between both types of

pomace could also be explained by the presence of ellagitannins which are reportedly highly

effective radical scavengers and which effectively inhibit the oxidation of human LDL [44].

The results of previous experiments indicate that crude fiber content is more than 4 times

higher in berry pomaces than in apple pomace [35] and that α-linolenic acid has a higher

share of the total fatty acid pool [45]. Similar observations were made in this experiment,

where a higher content of α-linolenic acid lowered the n-6/n-3 PUFA ratio of blackcurrant

and strawberry pomaces (below 3:1) relative to apple pomace (around 10:1). Our results sug-

gest that berry pomaces can be an additional source of PUFAs, in particular linolenic acid, but

the amount of oil introduced to turkey diets with 5% fruit pomace was relatively low (around

Table 9. Blood plasma antioxidant status and vitamin E and A levels in turkey meat.

Experimental group1 SEM P

C AP BP SP SSP

Blood plasma:

Vitamin C, μg/L 113b 145ab 202a 146b 142ab 9.001 0.049

SOD, U/mL 25.3 25.2 25.2 25.2 25.2 0.027 0.263

Catalase, U/mL 5.39b 7.14a 7.02a 6.15ab 5.75b 0.182 0.002

FRAP, μmol/L 20.4c 50.2a 43.4ab 31.3bc 56.0a 2.821 0.001

Breast muscle

Vitamin E, μg/g 2.56a 2.14b 1.77c 1.64c 1.67c 0.070 0.000

Vitamin A, μg/g 0.19b 0.23a 0.19b 0.20ab 0.20ab 0.004 0.008

Thigh muscle

Vitamin E, μg/g 1.84 1.78 1.812 1.27 1.79 0.096 0.100

Vitamin A, μg/g 0.16 0.19 0.19 0.17 0.19 0.005 0.065

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace. Values are means of 7 observations per treatment. FRAP–ferric reducing ability of plasma; SOD–superoxide dismutase activity.
a, b, c–values marked with different letters in a row differ significantly (P�0.05). SEM–standard error of the mean.

doi:10.1371/journal.pone.0170074.t009

Table 10. Thiobarbituric acid reactive substances (TBARS) levels in turkey thigh and breast meat (nmol MDA/g).

Experimental group1 SEM P

C AP BP SP SSP

TBARS in thigh meat

fresh raw meat 137a 113b 98.1c 81.0c 60.5d 4.842 0.001

frozen raw meat 178a 173a 132bc 147b 117c 4.550 0.000

cooked fresh meat 154a 136b 95.1c 78.9cd 73.6d 5.681 0.000

cooked frozen meat 135a 110b 72.5c 58.7d 43.9e 5.733 0.000

TBARS in breast meat

fresh raw meat 115a 118a 102b 50.0c 45.9c 5.631 0.001

frozen raw meat 137a 126ab 97.6bc 96.3bc 70.2c 6.381 0.004

cooked fresh meat 198a 167b 134c 115d 105d 6.031 0.001

cooked frozen meat 160a 128b 100c 99.7c 87.7d 4.453 0.000

1Dietary treatments with the addition of: C–cellulose, AP–apple pomace, BP—blackcurrant pomace, SP—strawberry pomace, SSP–seedless strawberry

pomace. Values are means of 7 observations per treatment.
a, b, c, d, e–values marked with different letters in rows differ significantly (P�0.05). SEM–standard error of the mean.

doi:10.1371/journal.pone.0170074.t010
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0.5–0.6%). For this reason, significant differences were not observed in the fatty acid profile of

experimental diets.

A higher content of polyphenols in diets enriched with fruit pomace did not affect the final

body weights of turkeys or the yields of breast and thigh muscles in the carcass. The above

resulted from balanced feed intake and feed conversion as well as similar carcass quality

parameters in all groups, which was discussed in a separate study [35]. Other authors demon-

strated that a moderate increase in the polyphenol content of diets has no adverse effect on

feed intake or the growth rate of birds [14, 46], and performance parameters deteriorated only

when the dietary inclusion levels of polyphenols exceeded 2.5 g/kg [46].

In all experimental groups, the n-6/n-3 PUFA ratio in breast and thigh muscles was below

3:1, and remained within the range recommended for the prevention of circulatory system dis-

eases [47]. The above confirms that the addition of linseed oil to bird diets contributes to the

health benefits of poultry meat. A similar fatty acid profile was noted in thigh meat, whereas

the addition of apple pomace to turkey diets increased the n-6/n-3 PUFA ratio of breast meat

relative to berry pomaces and the control group. All diets, including the control treatment,

were characterized by a similar n-6/n-3 ratio, but its value was considerably higher in apple

pomace than in other pomaces. This could suggest that fatty acids from pomaces are more

readily transferred into breast muscles than other dietary fatty acids. Other authors [48] found

that linoleic acid is more likely to be accumulated in dark meat, whereas n-3 long-chain fatty

acids tend to be deposited in the white meat of chickens. The fat content of white meat from

turkey breast is only 1%, and it is significantly lower than in dark meat from thighs, which

accumulates most dietary PUFAs [49].

The antioxidant effects of polyphenol-containing byproducts have been rarely studied in

poultry, and the reported results are ambiguous. In some experiments, diets with higher levels

of polyphenols stimulated the activity of superoxide dismutase and glutathione peroxidase in

the blood [13] or increased vitamin E concentrations in the blood of quails [9]. In the present

study, the dietary inclusion of different fruit pomaces was accompanied by health-promoting

changes in blood plasma vitamin C (in BP treatment), catalase (groups AP and BP) and FRAP

(groups AP and SSP) values, pointing to the involvement of different mechanisms. Those effects

could be attributed, at least partially, to polyphenolic metabolites that can reach internal tissues,

as demonstrated in previous studies conducted on laboratory rodents [50, 51]. The results of

experiments with rodents, summarized by Manach et al [52], revealed that polyphenols and

their metabolites may be detected in a wide range of tissues, including the brain, heart, bones

and skin. The tissue distribution of selected polyplenols was investigated in experiments per-

formed on pigs [53, 54, 55] and broilers [56, 57]. Recent studies conducted by members of our

research team [50, 51] demonstrated that measurable amounts of strawberry polyphenol metab-

olites could be found in the blood and urine of rats fed diets containing strawberry pomace,

extracts and pure polyphenols (e.g. ellagic acid). In those studies, different groups of metabolites

were detected, including urolithin A, nasutin A, urolithin A-glucuronide, nasutin A-glucuro-

nide, iso-nasutin A-glucuronide and ellagic acid dimethyl ether glucuronide (DMEAG). Other

authors [58] have recently provided new data about the potent antioxidant activity of urolithin

A (UA) derived via microbiota-mediated conversion of strawberry ellagic acid.

In the present study, the vitamin E content of thigh meat was similar in all groups, and vita-

min E levels in breast meat were even lower than in the control group. The above could be

attributed to the fact that fruit pomaces were more likely to increase the antioxidant activity of

the hydrophilic fraction than the lipophilic fraction of turkey diets. According to some authors,

there is evidence to suggest that dietary supplements rich in polyphenols can act similarly to

dietary vitamin E in the prevention of breast and thigh meat oxidation in chicken, but without

any deterioration in tissue reserves of that vitamin [14]. Dietary grape pomace did not
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influence vitamin E reserves in thigh meat of growing chickens [59]. Other authors [60] dem-

onstrated that the antioxidant activity of polyphenols is determined by α-tocopherol levels in

the diet, and that polyphenols can partially replace vitamin E or exert antioxidant effects inde-

pendently. Recent study showed that dietary polyphenol-rich pomegranate by-product consid-

erably reduced lipid oxidation of broilers meat [61]. Our findings suggest that polyphenols

and their metabolites exert antioxidant effects on muscles (refer to lower TBARS values in the

meat of turkeys fed SP), therefore vitamin E does not have to be accumulated at high concen-

trations in the body. In a previous study conducted by members of our research team [62],

blackcurrant extract inhibited lipid peroxidation induced by high dietary fat as evidenced by

lower concentrations of TBARS in the kidneys and serum of rabbits treated with the extract.

The suppression of lipid peroxidation observed in the kidneys of rabbits fed diets enriched

with the blackcurrant extract could result from the effects of polyphenolic compounds and

their metabolites, which could increase filtration in the kidneys and inactivate free radicals. As

demonstrated by Jurgonski et al. [62], the compounds present in blackcurrant extract were

expected to act beneficially at water–lipid interfaces.

In our study, diets containing fruit pomaces and, consequently, higher levels of polyphenols

generally did not increase vitamin A concentrations in turkey meat. Higher levels of vitamin A

in breast meat were found only in the group where turkey diets were supplemented with apple

pomace. Studies conducted by other authors have shown that the concentrations and metabo-

lism of vitamin A seem to be doubly linked to the antioxidant status of tissues: retinol is

involved in antioxidant cell protection [63] and retinol metabolism depends on cellular redox

status [64].

In our experiment, a significant (P = 0.001) decrease in TBARS levels was noted in raw, fro-

zen and cooked meat of turkeys whose diets were enriched with fruit pomaces. The decrease

was most pronounced in the meat of birds fed seedless strawberry pomace, which is character-

ized by the highest polyphenol concentrations and the highest antioxidant activity in vitro.

This result is consistent with previous research, which revealed that dietary antioxidants could

be absorbed in the gastrointestinal tract, thus affecting the antioxidant status of poultry [65].

Similar findings, confirmed by a decrease in TBARS concentrations in breast meat, were

reported in chickens whose diets were supplemented with grapeseed extract rich in polyphe-

nols [66]. Lower TBARS values in meat were also observed when chickens diets were enriched

with tea catechins [67] and a mixture of herbal extracts [56]. Jang et al. [56] noted that dietary

supplementation with herbal extracts increased the content of polyphenols and their metabo-

lites in chicken meat, which indicates that the analyzed compounds could also influence

peripheral tissues and organs. Many studies have shown that dietary polyphenols and products

of their metabolism may exert direct antioxidant effects, including radical scavenging activity

[68], and affect the gene expression of antioxidant enzymes [69]. Their indirect effects include

the activation of the Keap1/Nrf2/ARE pathway, resulting in transcriptional induction of a bat-

tery of cytoprotective proteins involved in the synthesis and/or regeneration of direct antioxi-

dants [70, 71]. Such an influence is due to the fact that polyphenols can interact with both lipid

and protein components of biological membranes [72] and many of them may “penetrate”

both hydrophobic areas (such as the lipid bilayers of cells) and hydrophilic areas (e.g. blood

serum). Manach et al. [52] stressed the fact that the hydrophobicity of polyphenols is between

that of vitamin C (highly hydrophilic) and that of vitamin E (highly hydrophobic). The hydro-

phobic properties of individual polyphenolic compounds vary, for instance kaempferol is

almost twice more hydrophobic than quercetin [72]. This fact could be responsible for the dif-

ferences in the antioxidant properties of polyphenols present in fruit pomaces.

In our experiment, a decrease in TBARS concentrations in turkey meat was accompanied

by a decrease in vitamin E content. This paradox could partially explain the fact that pomace

Dried Fruit Pomaces in Turkey Feeding

PLOS ONE | DOI:10.1371/journal.pone.0170074 January 11, 2017 14 / 19



polyphenols contributed mainly to the antioxidant potential of the hydrophilic fraction of tur-

key diets, and exerted a less profound effect on the lipophilic fraction which is a source of vita-

mins E and A. Another important consideration is that dietary polyphenols, in particular low-

molecular-weight compounds absorbed in the upper digestive tract, are typical xenobiotics

that are rapidly removed in metabolic processes [73]. Vitamin E acts as a lignan in the metabo-

lism of xenobiotics, and all forms of vitamin E are able to activate gene expression via the preg-

nane X receptor (PXR), a nuclear receptor regulating a variety of drug metabolizing enzyme

[74]. It has also been found that vitamin E is involved in xenobiotic clearance pathways, and

that xenobiotics affect vitamin E concentrations [75]. Polyphenolic compounds can also

reduce the synthesis of certain proteins involved in the regulation of vitamin E homeostasis

[76]. Therefore, it cannot be excluded that the decrease in vitamin E levels in turkey breast

meat, observed in our experiment, could be due to the involvement of this vitamin in the bio-

transformation (glucuronidation, methylation and sulfation) of polyphenols. Such a phenome-

non was not observed in dark thigh meat in any of the dietary treatments. The content of

vitamin E was maintained, probably because thigh muscles, compared with breast muscles, are

more metabolically active and have more than two-fold higher content of fat rich in PUFAs.

Turkeys selected for a fast growth rate have a higher risk for pale, soft and exudative (PSE)

meat. Some authors have suggested the use of color score measurements, particularly lightness

(L�) values, in the assessment of risk factors for meat becoming PSE, because L� is well corre-

lated with meat pH and water-holding capacity [77]. It has been reported that an undesired,

rapid drop in meat pH results from enhanced post-mortem glycolysis, which may lead to

increased protein denaturation and subsequently to a lighter meat color. Based on the values

obtained in our study, the analyzed breast muscles from turkeys fed diets containing different

fruit pomaces could be considered normal-quality turkey meat.

In conclusion, dried apple, blackcurrant, strawberry and seedless strawberry pomaces differ

in the content and composition of polyphenols and antioxidant activity in vitro. The highest

polyphenol levels and antioxidant activity in vitro were determined in seedless strawberry

pomace, and the above parameters were lowest in apple pomace. Relatively low inclusion levels

(5% of the diet) of fruit pomaces in turkey diets containing linseed oil increased the antioxi-

dant status of blood plasma and decreased TBARS concentrations in raw, frozen and cooked

meat in a polyphenol dose-dependent manner. In view of the improved antioxidant stability of

turkey meat, fruit pomaces should be considered a valuable delivery vehicle for ingredients

which may protect the body against the damaging effects of free radicals.
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