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Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties

against stress condition. It is reported that resveratrol has beneficial functions in

various metabolic and central nervous system (CNS) diseases, such as obesity,

diabetes, depression, and dementia. Recently, many researchers have emphasized the

connection between the brain and gut, called the gut–brain axis, for treating both CNS

neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol

is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of

microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation.

Here, we review recent evidences concerning the relevance and regulatory function

of resveratrol in the gut–brain axis from various perspectives. Here, we highlight the

necessity for further study on resveratrol’s specific mechanism in the gut–brain axis. We

present the potential of resveratrol as a natural therapeutic substance for treating both

neuropathology and gastrointestinal dysfunction.
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INTRODUCTION

Resveratrol is a polyphenol that is secreted by grapes and berries (Wang et al., 2013) and could
regulate insulin action, lipid metabolism, and glucose homeostasis (Chen et al., 2017). Resveratrol
has been reported to have an anti-aging effect and to regulate inflammation in various organs
(Buhrmann et al., 2017; Malaguarnera, 2019).

Recent researchers have highlighted the connection between the gut and brain, called the “gut–
brain axis,” owing to the proven linkage between many factors related with the brain and the
intestine (Louwies et al., 2020; Parker C. G. et al., 2020). In addition, researchers have discussed the
connection between the gut and brain as key to finding therapeutic treatments for both neurological
dysfunction such as cognitive decline and impaired gastrointestinal homeostasis (Rhee et al., 2009).
Many cell types associated with the enteric nervous system including enteric epithelial cells, cells of
Cajal, and enterochromaffin cells are influenced by the gut–brain axis (Mayer et al., 2014b).

Numerous researchers have highlighted resveratrol as a multiple regulator in various organs
including the pancreas, liver, brain, and gut (Kumar et al., 2013; Movahed et al., 2013; Caron et al.,
2014). Based on previous studies, we assume that there is considerable potential for resveratrol
to regulate the gut–brain axis. Here, we review the significant evidences related to resveratrol’s
beneficial roles in the gut and brain.
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RESVERATROL

Resveratrol, a natural polyphenol, is secreted by specific plants
such as grapes and berries in response to stress conditions
including infection, sunlight, and climate (Singh et al., 2015; De
Sa Coutinho et al., 2018).

Resveratrol could boost glucose uptake in the absence of
insulin (Zhao et al., 2019). It also exerts an anti-diabetic property
via enhancingmitochondrial function and an anti-aging property
via promoting energy expenditure (Ren et al., 2017; Zou et al.,
2017). Resveratrol induces the expression of adiponectin (one
of the adipokines) and improves insulin resistance in adipocytes
and inhibits the inflammatory response (Sadruddin and Arora,
2009; Timmers et al., 2011). Resveratrol is specifically known
to activate mammalian nicotinamide adenosine dinucleotide-
dependent deacetylase SIRT1, which is involved in regulating
glucose homeostasis, lipid metabolism, and the activation of
mitochondrial function (Baur, 2010; Zhou et al., 2018). SIRT1
is a NAD+-dependent protein deacetylase that is a critical
regulator of energy homeostasis-dependent nutrient metabolism
(Vassilopoulos et al., 2011; Aguilar-Arnal et al., 2016).

Resveratrol activates mitochondrial function and enhances
insulin secretion by activating SIRT1 (Ahuja et al., 2007; Ma et al.,
2017). Resveratrol could also activate SIRT2, which subsequently
mimics calorie restriction and expands lifespan (Smith et al.,
2009; Gambini et al., 2015).

Several other studies demonstrated that resveratrol could
alleviate hyperglycemia in a diabetic mouse model and obese
mouse model (Ramadori et al., 2009; Rehman et al., 2018).

In the obese mouse model, some studies demonstrated that
resveratrol had improved motor dysfunction, reduced fat mass,
and induced positive changes in lipid profiles (Shang et al., 2008;
Rivera et al., 2009; Haley et al., 2017).

Clinically, resveratrol has been reported to improve
pathologies in type 2 diabetes, cardiovascular disease, and
cognitive dysfunction (Novelle et al., 2015). Moreover,
resveratrol could reduce fasting blood glucose and the level
of HbA1c under diabetic conditions (Bhatt et al., 2012; Movahed
et al., 2013).

Mechanistically, resveratrol induces the secretion of insulin
through sulfonylurea receptors mediated by the adenosine
monophosphate (AMP)-activated protein kinase (AMPK)
pathway (Hubbard et al., 2013) and peroxisomal proliferator-
activated receptor α (PPARα) (Caron et al., 2014). Furthermore,
resveratrol-induced SIRT1 activation attenuates inflammatory
responses and pro-inflammatory cytokine secretion mainly
through NF-kB- and AP-1-dependent signal pathways (Deng
et al., 2008; Dao et al., 2011; Xu L. et al., 2018) (Figure 1).

In the CNS, resveratrol protects neurons which were damaged
under oxidative conditions and contributed to low levels
of antioxidant defense enzymes, which ultimately enhanced
memory function (Kumar et al., 2013).

Similarly, another study showed that resveratrol has a
neuroprotective effect via its anti-inflammatory action by
regulating various neurotransmitters such as brain-derived
neurotrophic factor (BDNF) and phosphodiesterases (PDEs)
(Chung, 2012) (Figure 1).

Additionally, resveratrol activates the SIRT1 gene, considered
an anti-aging related gene, in the duodenum and also rescues
insulin resistance and improves neuronal networks in the brain
(Cote et al., 2015).

Considering these findings, resveratrol has beneficial effects
against stress conditions such as inflammation, oxidative stress,
hyperglycemia, and dyslipidemia. Further, resveratrol influences
various organs including the brain and intestine through blood
and may act as a crucial mediator in the gut–brain axis.

RESVERATROL AND THE GUT–BRAIN AXIS

Resveratrol Contributes to the Gut–Brain
Axis by Regulating the Expression of GLP-1
Lately, the relationship between the gut and brain has emerged
as a critical issue for treatment of neuronal disorders, such as
depression and dementia, as well as gastrointestinal diseases, such
as diarrhea and irritable bowel syndrome (Haj Kheder et al., 2018;
Simren et al., 2018, 2019).

Based on recent researches, the pathogenesis of
gastrointestinal diseases is related to the connection between the
neuroendocrine network and gastrointestinal function (Koloski
et al., 2012; Browning and Travagli, 2014; Yarandi et al., 2016).

Glucagon-like peptide-1 (GLP-1), an incretin hormone and a
major hormone of the gut–brain axis, is linked to the control of
energy homeostasis and the development of obesity (Salehi and
Purnell, 2019).

GLP-1 is produced from intestinal L cells and stimulates
the secretion of insulin. It enhances impaired glucose and lipid
metabolism and also inhibits inflammation (Liu et al., 2013;
Shah et al., 2013; Mulvihill, 2018). The major role of GLP-
1 is to stimulate insulin secretion by inducing pancreatic beta
cell proliferation (Morris, 2017). GLP-1 crosses the blood–brain
barrier (BBB) and influences the brain as well as diverse organs
(Hunter and Holscher, 2012).

In the brain, GLP-1 is synthesized by specific neurons within
the nucleus of the solitary tract (Tauchi et al., 2008; Card et al.,
2018). Subsequently, these GLP-1 producing neurons project
to wide brain areas including the hypothalamus and cortex
(Llewellyn-Smith et al., 2011; Ghosal et al., 2013).

One study demonstrated that central administration of GLP-
1 leads to marked improvement of neuronal function in
several brain regions such as the paraventricular nucleus, area
postrema, supraoptic nucleus, arcuate nucleus, and nucleus
tractus solitarius (Tauchi et al., 2008).

Another study showed that GLP-1R agonist exendin-4 could
increase c-fos expression on neurons in various brain regions
including nucleus tractus solitarius (Sarkar et al., 2003; Baggio
et al., 2008).

GLP-1 could rapidly control glucose homeostasis after food
intake, because GLP-1 receptors are located in the intestine,
portal vein, pancreas, and brain, and also GLP-1 induces vagal
afferent neurons innervated into gut (Iwasaki et al., 2018).

One study showed that GLP-1R antagonist’s administration
damages glucose tolerance and aggravates insulin resistance
(Vahl et al., 2007).
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FIGURE 1 | Schematic image of the action of resveratrol in cell. Resveratrol triggers the NF-κB, AMPK, and PPAR-α and subsequently regulates AP-1 and SIRT1

genes. Therefore, the action of resveratrol in the cell leads to the increase of antioxidant cytokine secretion and neurotrophic factor BDNF.

In addition, another study demonstrated that the inhibition
of GLP-1R in brain aggravates glucose homeostasis and insulin
sensitivity (Knauf et al., 2008). Taken together, GLP-1 and GLP-
1R agonist act as the important regulators of glucose homeostasis
and insulin action both in systemic circulation and in CNS.

Some studies have suggested that GLP-1 has neuroprotective
roles (Martin et al., 2009;Wang et al., 2018) in neurodegenerative
diseases, such as Alzheimer’s disease (Holscher, 2014),
Parkinson’s disease (Li et al., 2009), and stroke (Darsalia
et al., 2012, 2018).

One study demonstrated that GLP-1 receptor signaling is
considerably related to the connection between diabetes and
the brain (Duarte et al., 2013). Other studies have reported
that GLP-1 and its analogs including exendin-4 could protect
neurons against oxidative stress in brain with dementia and
dementia mimic in vitro cell models (An et al., 2015; Chen et al.,
2016; Wang et al., 2018). Based on these findings, GLP-1 is a
major gut hormone that circulates in the body and influences
brain function.

One study also reported that treatment with GLP-1 receptor
agonist could enhance both glycemic control and memory
function (Berezin, 2016).

The positive correlation between impaired glycemic control
like hyperglycemia and memory loss caused by neuronal cell
damage have been proved as previous significant data (Biessels
and Gispen, 2005; Carvalho et al., 2012).

Previous study mentioned that GLP-1 could be used as a
controller for diabetes and ultimately GLP-1 mimic and GLP-1R
agonists such as liraglutide clinically could be used for patients

with diabetes in the present time (Vilsboll andHolst, 2004; Amori
et al., 2007; Campbell and White, 2008; Gallwitz, 2011; Duarte
et al., 2013).

Furthermore, GLP-1 may contribute to memory loss as well
as improved systemic body function in diabetes by enhancing
glucose tolerance and insulin resistance, suggesting that impaired
glucose metabolism and poor insulin sensitivity aggravates
memory loss and neuroinflammation (Rom et al., 2019).

A recent study mentioned that GLP-1R agonists improve
synaptic dysfunction, strengthen long-term potentiation (LTP),
and finally lead to improved cognitive function (Isacson et al.,
2011).

Several studies reported that GLP-1R agonists and GLP-1
analogs could promote learning and memory function (During
et al., 2003; Abbas et al., 2009), attenuate neuroinflammation
against brain damage (Hattori et al., 2010), and promote neurite
outgrowth, leading to stable neural connectivity (Perry et al.,
2002).

One study demonstrated that GLP-1 receptor agonist
exenatide could ameliorate cell stress response through SIRT1
(Xu et al., 2014).

These functions of GLP-1 receptor agonist are strongly
linked to the activation of SIRT1, which could be promoted by
resveratrol (Samson and Bajaj, 2013; Xu et al., 2014).

Another in vitro study reported that GLP-1 protects cellular
apoptosis through the activation of SIRT1 in in vitro system (Shi
and Huang, 2018).

Several studies have reported that GLP-1 and the GLP-1
receptor stimulate the activity of FoxO1 that plays a crucial

Frontiers in Aging Neuroscience | www.frontiersin.org 3 November 2020 | Volume 12 | Article 588044

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chung et al. The Role of Resveratrol in the Gut-Brain Axis

role in cellular metabolism through SIRT-1-dependent FoxO1
deacetylation and Akt-dependent FoxO1 phosphorylation
(Bastien-Dionne et al., 2011; Daitoku et al., 2011; Lee et al.,
2012). Other studies demonstrated that SIRT1 activation by
the GLP-1 agonist exendin-4 treatment protects mice under
a high fat diet condition (Lee et al., 2012) and attenuates
palmitate-induced ER stress and mitochondrial dysfunction
(Lee et al., 2014). Resveratrol increases the release of GLP-1
in a high-fat-fed diabetes mouse model (Dao et al., 2011) and
improves the epithelial cells of the intestine (Zhuang et al., 2019).

Another study demonstrated resveratrol does not directly
affect the release of GLP-1 (Knop et al., 2013; Thazhath et al.,
2016). Thus, the mechanism of resveratrol on the release of GLP-
1 is controversial until now; we need to investigate more directly
to understand the mechanism of resveratrol about the release
of GLP-1.

Based on these previous studies, we assume that resveratrol
could promote the effect of GLP-1 in the intestine and CNS
through the activation of diverse genes such as SIRT1 and Foxo
genes. Further studies on the genetic and cellular mechanisms
elicited by resveratrol via GLP-1 may be helpful to understand
the correlation between resveratrol and the gut–brain axis.

Resveratrol Contributes to the Gut–Brain
Axis by Involving 5-HT
Resveratrol has regulatory functions in the gut–brain axis
through another hormone pathway as well as the GLP-1 pathway.
Serotonin 5-hydroxytryptamine (5-HT) is expressed in both the
CNS and gastrointestinal tracts, and currently 5-HT has been
considered as an important target in the gut–brain axis.

5-HT is a growth factor, a paracrine factor, and an enteric
neurotransmitter (Gershon and Tack, 2007), which is mainly
found in the gut enterochromaffin cells. It is directly linked to
depressive behavior, sleep pattern, food appetite, sexual behavior,
or the control of temperature (Li et al., 2011; Yohn et al., 2017).
5-HT influences maintenance of the gastrointestinal mucosa and
modulates the enteric nervous system (Gross et al., 2012).

Enterochromaffine cells in gut produce intrinsic afferent
neurons of myenteric plexus in gut and are influenced by
5-HT3 antagonist and 5-HT4 agonist’s inhibition (Bertrand
et al., 2000; Bertrand and Bertrand, 2010; Hoffman et al.,
2012). Previous studies mentioned that 5-HT produced from
enterochromaffin cells in gut could promote sensory nerve
activation and finally contribute to neuronal electrical activity
evoked in CNS (Johanson, 2004; Chey and Cash, 2005).

Furthermore, 5-HT derived from gut protects gastrointestinal
cells against neuroinflammation (Linden et al., 2005; Spohn et al.,
2016).

A previous study demonstrated that the 5-HT
neurotransmitter derived from brain promotes cyclic AMP
(cAMP) synthesis through 5-HT receptors (Prasad et al.,
2019). The change in cAMP signaling could affect both the
neuropathology of major depressive disorder in CNS and
gastrointestinal epithelial dysfunction in gut (Reierson et al.,
2011; Cheung et al., 2019). Thus, the regulation of cAMP
signaling by 5-HT should be studied further because cAMP

signaling in gut and in brain contributes to various neuronal
functions. Moreover, an impaired 5-HT system in gut triggers
irritable bowel syndrome, and the gastrointestinal motility is
increased (Grenham et al., 2011). In addition, the receptors of
5-HT have been reported to be directly involved in depression
(Celada et al., 2004), anxiety, and stress-induced dyspeptic ulcers
(O’mahony et al., 2006).

Considering previous data, 5-HT derived from gut and brain
contributes to nervous systems globally, and the circulation of
5-HT in the body mediates the gut–brain axis (Yano et al., 2015).

A current study proved that resveratrol regulates the
gut–brain axis by controlling the 5-HT-dependent pathway
in an irritable bowel syndrome rat model and specifically
that resveratrol influences various organs including brain
hippocampus, ileum, and colon through 5-HT axis (Yu et al.,
2019). One recent study highlighted that resveratrol contributes
to many pathological responses through 5-HT2C receptor-
dependent signaling (Peng et al., 2018).

Another recent study demonstrated that resveratrol could
increase the expression of 5-HT, leading to the improvement
of brain function (Nabavi et al., 2017). Furthermore, the
neuroprotective function of resveratrol in the depressive brain
hippocampus was proved to be exerted via 5-HT (Xu et al., 2010).
Most of the released 5-HT is stored in enteroendocrine cells in the
intestine, and therefore gut homeostasis is important to maintain
the 5-HT level in the body (Enck et al., 2016).

Several studies have mentioned the neurological role of
resveratrol in depression and anxiety (Yu et al., 2013; Li et al.,
2017) and the gut homeostasis-related role of resveratrol in
stress-induced irritable bowel syndrome (Xu Y. et al., 2018).

One current study reported that the inhibition of 5-HT
release attenuates the activation of GLP-1 receptor signaling and
highlighted the relationship between GLP-1 and 5-HT serotonin
system (Anderberg et al., 2017).

Another study mentioned that GLP-1 receptor agonist
liraglutide could reduce the expression of 5-HT2A receptor
and subsequently reduces body weight and inhibits serotonin
synthesis in mice model (Nonogaki and Kaji, 2018).

TABLE 1 | The relationship between resveratrol and gut–brain axis.

Relevance between

resveratrol and

gut-brain axis

References

Resveratrol and gut–brain axis

Resveratrol and GLP-1 Bastien-Dionne et al., 2011; Daitoku et al., 2011;

Dao et al., 2011; Lee et al., 2012, 2014; Samson

and Bajaj, 2013; Xu et al., 2014; Shi and Huang,

2018; Zhuang et al., 2019

Resveratrol and 5-HT Xu et al., 2010; Yu et al., 2013, 2019; Enck et al.,

2016; Li et al., 2017; Nabavi et al., 2017; Peng

et al., 2018; Xu L. et al., 2018

Resveratrol and gut

microbiota

Dao et al., 2011; Wu et al., 2011; Amri et al., 2012;

Rotches-Ribalta et al., 2012; Bode et al., 2013;

Qiao et al., 2014; Hsieh et al., 2015; Basholli-Salihu

et al., 2016; Ling et al., 2016; Bird et al., 2017;

Carrera-Quintanar et al., 2018; Hu et al., 2019

Frontiers in Aging Neuroscience | www.frontiersin.org 4 November 2020 | Volume 12 | Article 588044

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Chung et al. The Role of Resveratrol in the Gut-Brain Axis

Ripken et al. suggested that serotonin treatment could boost
GLP-1 release, and the blocking of 5-HT receptor could affect the
production of GLP-1 (Ripken et al., 2016).

A recent study proved that 5-HT enterochrnomaffin cells in
gut regulates gut microbial metabolism and homeostasis and is
affected by the activation of GLP-1 (Lund et al., 2018).

Further, ghrelin, known as a hormone for regulation of
motivation and reward system among brain function, has been
interacted with GLP-1 and the monoamine transmitter 5-HT
(Currie et al., 2010; Abtahi et al., 2019).

GLP-1 derived from brain mainly is produced by the nucleus
tractus solitarius in brain (Alhadeff et al., 2012). GLP-1 receptors
are expressed in various brain areas including the hypothalamus,
and GLP-1 projects to neurons in the ventral tegmental area,

nucleus accumbens, and 5-HT-producing neurons in the dorsal
raphe (Anderberg et al., 2017). Based on previous studies, the
activation of GLP-1 leads to the release of 5-HT in brain, which is
related with neurological behavior pattern.

Given previous evidences, resveratrol can control 5-HT
and its receptor and also modulate release of 5-HT through
GLP-1 regulation. Ultimately, resveratrol could control the
neuropathology of neurological diseases such as depression
and stress-induced anxiety. Also, resveratrol can regulate
gut dysfunction in irritable bowel syndrome via 5-HT.
Thus, we emphasize the necessity for further study of the
specific mechanism and cellular pathways regulated by
resveratrol and mediated by 5-HT to fully understand the
gut–brain axis.

FIGURE 2 | Schematic image of the role of resveratrol in gut–brain axis. Resveratrol could control gut–brain axis through three ways. Firstly, resveratrol regulates gut

homeostasis and brain homeostasis by GLP-1 pathway. Secondly, resveratrol modulates gut microbiota diversity and subsequently is involved in gut–brain axis.

Finally, resveratrol is related with the 5-HT system and ultimately contributes to the regulation between gut homeostasis and brain function.
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Resveratrol Modulates the Gut–Brain Axis
by Involving Gut Microbiota
Resveratrol is involved in the gut–brain axis through another
mode in addition to the GLP-1 pathway and 5-HT system.

Recently, gut microbiota is emerging as an important node
in the gut–brain axis (Louwies et al., 2020). A previous
study suggested that there is an interaction between intestinal
microbes and the brain and proved that intestinal microbes
could dramatically enhance encephalopathy (Parker A. et al.,
2020). Significant data from other studies support the function
of microbiota in neurological disorders such as anxiety, autism,
and depression (Mayer et al., 2014a; Sharon et al., 2019; Sun et al.,
2019; Du et al., 2020).

Resveratrol administration could be metabolized by the liver,
intestinal tract, and gut microbiota (Walle, 2011). A recent study
demonstrated that gut microbiota contributes to metabolization
of resveratrol precursors to resveratrol and also could increase
resveratrol’s bioavailability (Rotches-Ribalta et al., 2012; Basholli-
Salihu et al., 2016). Dihydroresveratrol, 3,4′-dihydroxybibenzyl,
and 3,4′-dihydroxy-trans-stilbene have been reported to be the
major microbiota-derived metabolites made from resveratrol
(Juan et al., 2010; Bird et al., 2017; Brandt et al., 2018).

Specifically, dihydroresveratrol as ametabolite of resveratrol is
produced in the intestines such as the cecum, colon, and rectum
through fermentation by the gut microbiota (Amri et al., 2012;
Hu et al., 2019).Moreover, resveratrol was also glycosylated in the
intestine to produce piceid (Rotches-Ribalta et al., 2012). Given
that resveratrol was metabolized by gut microbiota (Bode et al.,
2013; Carrera-Quintanar et al., 2018), resveratrol could influence
the composition and diversity of gut bacteria (Carrera-Quintanar
et al., 2018). Likewise, resveratrol and gut microbiota could
influence each other. Specifically, Bifidobacteria infantis and
Lactobacillus acidophilus are strongly linked to piceid production
from resveratrol (Basholli-Salihu et al., 2016). Interestingly, a
study demonstrated that resveratrol promotes gut microbiota
diversity by suppressing the growth of Enterococcus faecalis and
increasing the Lactobacillus and Bifidobacterium populations
(Qiao et al., 2014).

Recently, resveratrol has been reported to improve gut
microbiota in bowel diseases under harsh oxidative stress (Hu
et al., 2019). One study suggested that resveratrol attenuated
inflammation and improved effects of GLP-1 such as the
secretion of insulin and ultimately induced a prebiotic effect to
control gut microbiota in a diabetic mouse model (Dao et al.,
2011).

A clinical study has reported that resveratrol treatment
exerts cardiovascular and anti-obesity effects by ameliorating gut

microbiota diversity (Bird et al., 2017). Resveratrol enhances the
improvement of gut permeability and the integrity of intestinal
tight junction proteins by controlling gut microbiota diversity
(Hsieh et al., 2015; Ling et al., 2016). It has also been reported that
resveratrol influences the glucuronidation and sulfation reactions
in the duodenum (Wu et al., 2011).

These previous findings demonstrate that resveratrol and
gut microbiota influence each other. Furthermore, resveratrol
could enhance the gut microbiota diversity and the gut barrier’s
homeostasis. These effects of resveratrol should be investigated
further to determine the specific gut bacteria that affect the
gut–brain axis.

CONCLUSIONS

Here, we reviewed previous significant evidence of the effect
of resveratrol on the gut–brain axis (Table 1). We summarized
three regulatory nodes of resveratrol in the gut–brain axis
including the regulation of GLP-1, the involvement of the 5-HT
system, and the control of gut microbiota diversity (Figure 2).
Resveratrol modulates various cellular responses such as lipid
droplet accumulation and insulin resistance and regulates diverse
cellular signalings including AMPK, cAMP, and NF-κB signaling
and also controls the balance of neurotransmitters such as BDNF
and 5-HT, involved in both the progression of neuropathology
and gut homeostasis. Hence, we emphasize the necessity for
further experimental study about the specific mechanism of
resveratrol in gut and brain. Taken together, we suggest that the
application of resveratrol as a natural polyphenol for treatment
of both neurological disorders and intestinal dysfunction may be
a safe and effective therapeutic solution for CNS and intestinal
diseases simultaneously.
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