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A B S T R A C T   

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worldwide spread of coronavirus 
disease 19 (COVID-19), and till now, it has caused death to more than 6.2 million people. Although various 
vaccines and drug candidates are being tested globally with limited to moderate success, a comprehensive 
therapeutic cure is yet to be achieved. In this study, we applied computational drug repurposing methods 
complemented with the analyses of the already existing gene expression data to find better therapeutics in 
treatment and recovery. Primarily, we identified the most crucial proteins of SARS-CoV-2 and host human cells 
responsible for viral infection and host response. An in-silico screening of the existing drugs was performed 
against the crucial proteins for SARS-CoV-2 infection, and a few existing drugs were shortlisted. Further, we 
analyzed the gene expression data of SARS-CoV-2 in human lung epithelial cells and investigated the molecules 
that can reverse the cellular mRNA expression profiles in the diseased state. LINCS L1000 and Comparative 
Toxicogenomics Database (CTD) were utilized to obtain two sets of compounds that can be used to counter SARS- 
CoV-2 infection from the gene expression perspective. Indomethacin, a nonsteroidal anti-inflammatory drug 
(NSAID), and Vitamin-A were found in two sets of compounds, and in the in-silico screening of existing drugs to 
treat SARS-CoV-2. Our in-silico findings on Indomethacin were further successfully validated by in-vitro testing in 
Vero CCL-81 cells with an IC50 of 12 μM. Along with these findings, we briefly discuss the possible roles of 
Indomethacin and Vitamin-A to counter the SARS-CoV-2 infection in humans.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) has so far infected more than 
525.2 million people worldwide and caused more than 6.2 million 
deaths (www.worldometers.info/coronavirus). Despite significant ad-
vancements in designing and dispersing multiple vaccines [18,49,80, 
109] against SARS-CoV-2, the arrival of newer strains [35,108] had 

prompted us finding more effective vaccines [110]. Using various 
methods of drug repurposing, many existing medicines had been tried 
and tested against SARS-CoV-2 with limited success [79,91,103]. Many 
vitamins and minerals were also suggested as immunity boosters to 
prevent or reduce the severity of SARS-CoV-2 infection [44]. Despite 
significant research, we are yet to achieve any widely accepted drug 
regimen to treat COVID-19 [67]. 

Abbreviations: COVID-19, Coronavirus disease 2019; SARS-CoV-2, Severe accute respiratory syndrome coronavirus 2; ORF, Open reading frame; NSP, 
Nonstructural protein; PDB, Protein Data Bank; RdRp, RNA-dependent RNA polymerase. 
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As per our present knowledge, SARS-CoV-2 viruses mediate host cell 
infection and viral replication through a few key proteins to invade and 
sabotage the host cell cellular machinery [111]. Among these proteins, 
four structural proteins, i.e., spike protein, membrane protein, nucleo-
capsid protein, and envelope protein are common to all coronaviruses 
and appeared to be attractive targets for therapeutic drug development. 
In addition, eleven accessory proteins (ORF- 3a, 3b, 3c, 3d, 6, 7a, 7b, 8, 
9b, 9c, and 10) and sixteen nonstructural proteins (NSPs 1-16) are also 
being investigated to understand their role in replicating SARS-CoV-2 
genome inside the host cell [75]. Among the nonstructural proteins, 
main protease (NSP5), papain-like protease (a domain of NSP3), 
RNA-dependent RNA polymerase (RdRp: NSP12 in complex with NSP7 
and NSP8), NSP15, and NSP16 had been targeted by many drug de-
velopers due to their critical roles in SARS-CoV-2 genome replication. 
Attempts to find effective inhibitors from already existing drugs [12,61], 
chemical analogs of antiviral drugs [68], bioactive molecules available 
from natural sources [2,13,14,45,82,87], and many other approaches 
resulted in limited success. It is interesting to note that few recent works 
have identified the interacting partners of these SARS-CoV-2 proteins in 
human host cells [33]. Identifying the viral protein targets and their 
interacting host partners are of grave importance to combat SARS-CoV-2 
infection. Computational screening is an in-silico method to identify 
potential lead compounds from a library of chemical compounds against 
a target molecule [50]. Various small molecule pharmaceutical com-
pound libraries are available, for example, TTD [48,104], IUPHAR/BPS 
guide to pharmacology [11], VARIDT [28], TCDB [78], INTEDE [114], 
and many more. Though the use of these diverse pharmaceutical data-
bases might increase the search space for identifying potential inhibitor 
compounds, drug repurposing strategy could be an interesting option to 
target the proteins crucial for SARS-CoV-2 infection. Among the various 
available libraries of chemical compounds, Drugbank [25] is a database 
often used to screen the chemical lead compounds of FDA-approved 
drugs against various target receptors. 

Data of differentially expressed genes of SARS-CoV-2 infected pri-
mary human lung epithelium (NHBE) cells [34] are available. In addi-
tion, LINCS L1000 contains gene expression data on the effect of 
thousands of molecules (http://www.lincsproject.org/). Many useful 
databases and resources are extracted from L1000-based LINCS data and 
the search engine ‘L1000 Characteristic Direction Signature’ is one of 
them. It is designed to search for gene expression signatures against 
LINCS data to detect and prioritize small molecules that reverse or 
mimic the input gene expression signature. Therefore, this tool can be 
used to check the reversibility of SARS-CoV-2 infected gene expression 
with the candidate drug molecules. Similarly, another database, 
Comparative Toxicogenomics Database (CTD) (http://ctdbase.org/), 
can be used to investigate the molecules that influence a list of genes and 
this analysis may be compared to the list of genes obtained from the 
NHBE cells. 

Our primary focus of this study was to identify the crucial host- 
pathogen interaction partners by extensive literature survey and data 
mining and to prepare a list of viral and host target proteins for virtual 
screening of the already existing drugs. We further aimed to apply 
computational screening methods of the existing FDA approved drug 
molecules to find out their interactions with these identified crucial 
proteins for SARS-CoV-2 infection. In order to investigate if any of the 
existing drug molecules can bind to important host and viral proteins of 
SARS-CoV-2 infection, we obtained the chemical structure files of the 
existing drugs from the DrugBank. Based on the available databases of 
various compounds and gene expression databases, we also wanted to 
investigate if any of the available compounds may reverse the genetic 
changes incurred by SARS-CoV-2. We found that two of the existing 
drugs, Indomethacin and Vitamin-A, might be effective to target the 
crucial host-viral interactions and compensate for the gene expression 
change caused by SARS-CoV-2. Between Indomethacin and Vitamin A, 
Indomethacin was found to be more involved with the changes in gene 
expression data in hosts. It motivated us to test the efficacy of 

Indomethacin against SARS-CoV-2 in-vitro and we observed a moderate 
efficacy (IC50 = 12 μm) of this drug against SARS-CoV-2. Our work 
corroborates the growing notion that Indomethacin has potential anti- 
viral properties against SARS-CoV-2 and may be considered in treating 
COVID-19. 

2. Methods 

2.1. Data mining 

Extensive literature surveys and text mining were performed with 
the help of the PubTator central tool [106]. The interactome dataset for 
Cov-2–Human proteins was obtained from the BioGRID database [88]. 
The interacting host-pathogen partners acquired from the literature as 
well as from the BioGRID repository were compiled together, and the 
interactions were shortlisted following various parameters (represented 
as a flowchart in Fig. 1). 

Initially, only the experimentally validated SARS-CoV-2-human in-
teractions were selected from the compiled dataset. Since the experi-
mental validation (from the literature) for majority of the interactions 
was performed by affinity purification and mass spectrometry (AP-MS), 
the shortlisting in this level was done by keeping the average spectral 
count as the deterministic parameter for high confidence interactions 
[53]. To determine an interaction to be of high confidence, the average 
spectral count cut-off was kept at 10. Next, the high confidence inter-
acting proteins were screened and selected according to the availability 
of three-dimensional structures deposited in the Protein Data Bank 
(PDB, www.rcsb.org). Finally, the active sites for the short-listed inter-
acting partners were identified with the help of UniProt [20] or pre-
dicted using PROSITE [86] server, for further analyses. 

2.2. Virtual screening 

For the Virtual screening, a total of 1918 FDA-approved drugs were 
obtained from the [25] (www.drugbank.ca) in 3D SDF format. The SDF 
files were processed to assign Gasteiger partial charge to each ligand 
atom and generate the corresponding PDBQT files using Open Babel 
[65]. Besides, all the target proteins were obtained from the Protein Data 
Bank (www.rcsb.org). The protein atoms were treated with Kollman 
partial charges using AutoDockTools [63]. All the virtual screenings 
were performed using AutoDock Vina [97]. The search space for each 
target protein was defined according to its active site by using a grid box 
with a spacing of 3.5 Å. 

2.3. Gene expression data analysis 

RNAseq data of primary human lung epithelium (NHBE) of control vs 
infected with SARS-CoV-2 (USA-WA1/2020) for 24 h were selected from 
GSE147507 [15]. The control and treated groups contained independent 
biological triplets of each kind. The GSE sample IDs are given below in 
Table 1. 

The expression dataset was analyzed using GREIN [55]: GEO 
RNA-seq Experiments Interactive Navigator. GREIN is an interactive 
web platform that offers easy-to-use solutions for GEO RNA-seq data 
exploration and analysis. GREIN is driven by a back-end code pipeline to 
process RNA-seq data reliably and a large number (>6000) of data sets 
already processed. There have been many algorithms which have per-
formed excellently in processing OMICS data [27,89,90,112,113]. 
GREIN automates all Quality Control checks and Data preparation for its 
users which included data normalization using the trimmed mean of 
M-values (TMM) approach, where M-values represent empirical fold 
changes between two samples. GREIN handles all the standard pipelines 
for identifying differentially expressed genes in RNAseq data. 

Simultaneously, the L1000 Fireworks Display database, L1000FWD 
[105] was used for searching and visualizing drug-induced gene signa-
tures. Signature similarity search is used to retrieve signatures that 
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mimic or oppose the queried up and down-regulated COVID-signature 
gene set through a trained unsupervised clustering algorithm called 
k-means on 16,000 small drug molecules induced gene signatures. The 
Comparative Toxicogenomics Database, CTD [22] was used to retrieve 
Chemical-Gene interactions and mapped with the COVID-signature gene 
set (graphically represented in Fig. 2). CTD is a repository, curated and 
manually verified from scientific literature, contains interaction data 
among genes, chemicals, diseases, phenotypes, and pathways. We have 
used “Calculate and draw custom Venn diagrams” tool available at 
https://bioinformatics.psb.ugent.be/webtools/Venn/to draw Fig. 5. 

2.4. Molecular docking 

Common hits from the virtual screening, compounds from L1000 
data that complement the gene signature of SARS-infected cells, and 
chemicals obtained from CTD linked with selected host genes were 
chosen for additional molecular docking investigations. AutoDock Tools 
1.5.6 for AutoDock 4.2 [63] was used to import each protein indepen-
dently. Afterward, water molecules and hetero-atoms were eliminated, 
followed by the addition of polar hydrogen and the computation of 
Gasteiger and Kollman charges. Finally, the proteins were saved in the 
pdbqt format. The grid size of the receptors was determined by selecting 
the active site amino acid residue data gathered from literature and 
Computed Atlas of Surface Topography of proteins (CASTp 3.0) [93]. 
The grid center and dimensions for each receptor are provided in sup-
plementary file 1. To continue with the Genetic Algorithm, we select 50 
runs, with a population size of 300, a number of evals of 2500000, and a 
number of generations of 27000. All other parameters were left at their 
default levels. 

2.5. In-vitro drug testing of Indomethacin 

The in-vitro testing and anti-viral assay for Indomethacin against 
SARS-CoV-2 (NIV2020-770 isolate) infected Vero CCL-81 cell line were 
performed at the ICMR-National Institute of Virology (ICMR-NIV), Pune- 
411001, India. 

2.5.1. Preparation of the drug 
A stock solution of Indomethacin (Sigma Aldrich, Israel; cat #17378) 

was prepared by dissolving in absolute ethanol at a concentration of 40 
mM. Further, it was diluted to the desired concentrations (0.1 μM, 1 μM, 
5 μM, 10 μM, 50 μM, 100 μM, 250 μM, 500 μM, 750 μM and 1000 μM) in 
Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Grand Island, 
USA) culture medium [8]. 

2.5.2. Cell culture 
Vero CCL-81 cell line (ATCC, CCL-81) were cultured at 37 ◦C in 

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 2% 
fetal bovine serum (FBS, Gibco) in the atmosphere with 5% CO2. Cells 
were digested with 0.25% trypsin and uniformly seeded in 96-well 
plates. 

2.5.3. Cytotoxicity assay 
Vero CCL-81 cells (100 μL per well) were seeded onto a 96-well plate 

at a density of 3 × 106 cells/mL and grown for 24 h before adding the 
drug. Vero CCL-81 cells were treated with different concentrations of the 
drug Indomethacin (0.1 μM, 1 μM, 5 μM, 10 μM, 50 μM, 100 μM, 250 μM, 
500 μM, 750 μM, and 1000 μM) for 72 h at 37 ◦C with 5% CO2. Vehicle 
controls were treated with an equal volume of the vehicle. Cell control 
(CC) was not treated with the drug. After 72 h, MTT (3-[4,5-dime-
thylthiazole-2-yl]-2,5-diphenyltetrazolium bromide, 2 mg/ml concen-
tration) was added to each well and incubated for 4 h at 37 ◦C in 5% CO2 
[59]. The cell supernatant was discarded and 200 μl of Dimethyl 
Sulphoxide (DMSO, Sigma) was added to each well. The plates were 
incubated for 30 min at room temperature and the OD was measured at 
570 nm using an ELISA plate reader. CC50 (Concentration showing 50% 

Fig. 1. Flow chart representing steps followed in shortlisting available SARS-Cov2-Human interacting partners.  

Table 1 
GSE sample IDs for control and infected sets.  

Mock Treated/ 
Control 

Infected with SARS-CoV-2 (USA-WA1/2020) for 24 h 
treatment 

GSM4432378 GSM4432381 
GSM4432379 GSM4432382 
GSM4432380 GSM4432383  

Fig. 2. CTD-Gene set data mapping pipeline.  
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viability) was calculated using the Graph Pad Prism software version 9. 

2.5.4. Antiviral assay post drug-treatment 
All experiments involving handling of infectious materials were 

performed in the Biosafety Level-3 (BSL-3) laboratory with appropriate 
biosafety practices. The Vero CCL-81 cells were seeded in 96 well plates 
at a density of 2 × 104 cells/well and then grown for 24 h before adding 
the drug. Vero CCL-81 cells were infected with SARS-CoV-2 strain at an 
MOI (Multiplicity of Infection) of 0.001 for 2 h at 37 ◦C. The cells were 
washed with 1XPBS and treated with the drug (1 μM, 10 μM, 50 μM, 100 
μM, 250 μM, and 500 μM concentration based on the CC50) in triplicates 
and incubated for 72 h. Vehicle control had an equal concentration of 
the vehicle, drug controls had only the respective concentration of the 
drug without the virus, and cell control (CC) had no virus and drugs. 
Cells were observed at 48 h and 72 h for CPE (Cytopathic effect). The 
supernatant was collected after 72 h of treatment of Indomethacin. 

Viral RNA was extracted from the supernatants of infected cells using 
the automated nucleic acid extraction system (Magmax, Thermo Sci-
entific), following the manufacturer’s recommendations. The extracted 
viral RNA was analyzed by relative quantification of the RdRp-2 gene by 
real-time RT-PCR using the SSIII qRT-PCR kit (Invitrogen) on the ABI 
7300 Real-Time PCR system. A standard curve was generated by 
determining the copy numbers from serial dilutions (103-109 copies) of 
in-vitro transcribed RNA for RdRp-2 gene [19]. IC50 (Concentration 
showing 50% inhibition) was calculated by using Graph Pad Prism 
software version 9. 

3. Results 

3.1. Data mining/Literature survey 

The compiled SARS-CoV-2-Human interaction data set from litera-
ture and the BioGRID repository consisted of more than 700 protein- 
protein interactions with more than 300 experimentally validated in-
teractions (AP-MS validation). On further screening for high confidence 
interactions, 57 host-viral interactions were identified, among which 6 
viral and 12 host proteins were identified (Table 2) based on the 
available 3D structural data (RCSB PDB). 

3.2. Virtual screening 

From the virtual screening (VS) results, we focused to identify the set 
of drug molecules that exhibited binding affinity less than − 5 kcal/mol 
with possible interaction with selected viral and host targets. Such 
common drug molecules were much of interest as they could be po-
tential candidates for multi-target interaction. The list of drug molecules 

along with their binding affinity with the corresponding targets are 
provided in supplementary files 2 and 3, and represented in Fig. 3. The 
total number of such common drug molecules were 1287 and 1381 for 
the host proteins and viral proteins respectively (Supplementary files 2 
and 3). As we obtained a large number of hits, we investigated if any of 
these drug molecules could perturb the gene expression pattern on the 
SARS-CoV-2 infected cells, thereby cross-validating the potential of the 
identified drugs. 

3.3. Gene expression data analysis 

3.3.1. Analysis of GSE147507 GEO dataset 
A total of 317 genes with p-values < 0.05 were found to be differ-

entially expressed (Supplementary file 4). Of these, 90 mRNAs were 
down-regulated and 227 mRNAs were up-regulated, contributing as a 
signature of gene expression named ‘COVID-signature’, represented in 
Fig. 4. This expression signature was fed to the L1000 Firework Display 
(L1000FWD) to scan for the reverse gene expression signatures associ-
ated with small drug molecules. Through this step, 670 potential small 
drug molecules were identified (Supplementary file 5), which can 
significantly reverse the gene expression signature of the control vs 
SARS-CoV-2 infected gene set. 

Mapping was done to retrieve chemicals that have a known inter-
action with the COVID signature gene set. Fisher’s exact test was then 
applied to each chemical, as it was found that the chemical may interact 
with multiple genes from the signature gene set. The Fisher’s exact test 
was used to detect non-significant chemical and gene associations. Two 
hundred and thirty-one chemicals were found to have significant in-
teractions with the COVID signature gene set (Supplementary file 5). 
Finally, three molecular data sets were created (graphically represented 
in Fig. 5):  

1. Approved drug molecules were retrieved from the Drugbank and 
screened through virtual screening. One thousand two hundred fifty- 
one approved drug molecules were analyzed based on the free energy 
values described in the above sections.  

2. Six hundred and seventy drug molecules that have a significantly 
reversed signature expression compared to the COVID signature gene 
set in cell lines were considered.  

3. Two hundred and thirty-one molecules with significant interactions 
with the COVID signature gene set were retrieved from CTD. 

All the three data sets were subjected to the Venn diagram (Fig. 5) to 
find the common molecules among them. Two molecules, Indomethacin 
and Vitamin-A, were found common in all the three data sets. Indo-
methacin showed interactions with 85 genes of the COVID signature 
gene set, which were mapped from CTD data, whereas Vitamin-A had 
interactions with 4 genes form the COVID signature gene set, and a total 
number of reported Vitamin-A and gene interactions was 6. Docking 
analyses of Indomethacin revealed potential binding mechanisms in the 
active sites of the target proteins. The total docked energy/binding en-
ergy of the ligand and protein considered both intramolecular and 
intermolecular energy. In Tables 3 and 4, the host and the viral receptors 
are presented in ascending order of binding energies with their possible 
interaction types between the receptors and Indomethacin respectively. 
Figs. 6 and 7 illustrate the estimated postures of Indomethacin in the 
active site of the host and viral receptors with amino acids involved in 
interaction respectively. These figures show that Indomethacin can bind 
favorably to these target proteins which can modulate SARS-CoV-2 in-
teractions with the host cells. In addition, as Indomethacin was shown to 
be involved with a significantly greater number of genes in the COVID 
signature gene set, it was further tested in-vitro. 

3.4. In-vitro drug testing of Indomethacin 

To check the efficacy of the computationally predicted drugs in-vitro, 

Table 2 
List of selected host and viral proteins.  

SARS-CoV-2 
Targets (PDB 
ID) 

Host Targets (PDB ID) 

Main Protease 
(6YB7) [74] 

Angiotensin-converting 
enzyme 2 (6M0J: Chain A) 
[47] 

Kinase and Ubiquitin- 
associated domains of 
MARK3/Par-1 (2QNJ) [116] 

Spike S1 
(6W41) [115] 

Human glutathione peroxidase 
1 (2F8A) [70] 

Catalytic and ubiquitin- 
associated domains of 
MARK1/PAR-1 (2HAK) [56] 

Papain like 
protease 
(6W9C) [73] 

NTF2 domain of Ras GTPase- 
activating protein-binding 
protein (3Q90) [72] 

Human Heme Oxygenase-1 
(1N45) [117] 

NSP-16/10 
(6W4H) [76] 

G3BP2 NTF2-like domain 
(5DRV) [41] 

SmgGDS-558 (5XGC) [85] 

NSP-15 
(6VWW) [39] 

Human plakophilin 2 (3TT9) 
[40] 

Human insulin-degrading 
enzyme (2G47) [84] 

NSP12-7-8/ 
RDRP (7BTF) 
[29] 

Ubiquitin-protein ligase MIB1 
(4XI6) [58] 

Human Sirtuin homolog 5 
(2B4Y) [71]  
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we tested Indomethacin on Vero CCL-81 cells infected with SARS-CoV-2. 
Indomethacin showed dose-dependent cytotoxicity in Vero CCL-81 cells 
when tested at the following concentrations - 1 μM, 5 μM, 10 μM, 50 μM, 
100 μM, 250 μM, and 500 μM (Fig. 8). The CC50 of Indomethacin was 
found to be ~490 μM. The IC50 of 12 μM was observed from the anti- 
viral efficacy assay. The selectivity index of Indomethacin was calcu-
lated to be ~40. One of the widely used drugs used against SARS-CoV-2 
is Remdesivir and its IC50 was found to be 11.41 μM in previous in-vitro 
studies in Vero cells [42]. This result suggests that Indomethacin has 
antiviral activity against SARS-CoV-2 as shown by reduced RdRp-2 gene 
copy numbers. 

4. Discussion 

In the present study, using in-silico screening of the already existing 
drugs against crucial viral and host proteins, we have identified Indo-
methacin and Vitamin-A as potential drug candidates against SARS-CoV- 
2. Vitamin-A, an important molecule that supports human life, is 
required for cell growth, differentiation, immune response, and 
epithelial integrity. A lower level of Vitamin-A was previously observed 
in the TB patients compared to the healthy patients, indicating the as-
sociation between lack of Vitamin-A and the occurrence of TB [4,64]. 
We have observed that Vitamin-A can also be effective in binding both 
the viral and the host proteins crucial for SARS-CoV-2 infection. It has 
also been speculated that the epithelial cells lacking Vitamin-A may be 
more prone to pathogen infection than others [77]. Vitamin-A is also 
important for the development and regulation of macrophages and 
neutrophils, migration and homeostasis of T-cells, immunoglobulin 
production, and B-cell activity [37]. Vitamin-A plays an important role 
in the formation of epithelial and mucous cells, whereas, coughing had 
long back been associated with the loss of epithelial cells [107]. In the 
case of COVID-19, 71.7% of patients were detected with low levels of 
Vitamin A [95]. Decreased levels of Vitamin-A were associated with 
increased severity of COVID-19 infection [92]. Analyses of deficiency in 
micronutrients showed that Vitamin-A was an important element 
missing from the COVID-19 patients and a lower risk of disease pro-
gression was observed with a higher level of Vitamin-A [102]. In another 
study, it was shown that 37% of COVID-19 patients were Vitamin-A 
deficient, whereas a high level of Vitamin-A was associated with 
asymptomatic COVID-19 cases [7]. The same study also showed that 
23% decrease in the levels of Vitamin-A in severe cases compared to the 
asymptomatic COVID-19 patients [7]. Low levels of Vitamin- A in serum 
is often associated with liver damage, a marker of COVID-19 [57]. It has 
been speculated that Vitamin-A plays a crucial role in immunomodu-
latory functions by secreting IgA, which might be crucial in preventing 
SARS-CoV-2 infection [98]. In another hypothesis, retinol depletion and 
retinoid signaling pathway have been considered to play a critical role in 
the COVID-19 pathogenesis [81]. All-trans retinoic acid, a derivative of 
Vitamin-A, was shown to have an antiviral effect by inhibiting the main 
protease of SARS-CoV-2 [62]. There is a growing discussion if Vitamin-A 
can be used as a potential therapeutic/supplement [30,96] or as a 
nutrient supplementation [44,101]. Our study supports this notion 

Fig. 3. The number of total drug molecules with binding energy < − 5 kcal/mol for (a) Host targets and (b) Viral targets.  

Fig. 4. Differentially expressed genes in NHBE cell lines.  

Fig. 5. Number of molecules retrieved from various data sets.  
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Table 3 
This table lists the binding energies and inhibition constants calculated during docking with types of interactions involved between host receptors and Indomethacin.  

Host Receptors Binding Energy 
(kcal/mol) 

Inhibition 
Constant (KI) 

Interactions 

No. of Hydrogen 
Bonds 

No. of hydrophobic 
Interactions 

Salt 
Bridges 

Pi- 
Stacking 

Pi-Cation 
Interaction 

Human Insulin-Degrading Enzyme − 11.98 1.64 nM 5 4  3  
MZM-REP Domains of Mind bomb 1 − 10.57 17.87 nM 1 7 1 1 1 
Human Glutathione Peroxidase 1 − 9.65 84.17 nM 4 3    
Catalytic and Ubiqutin-associated 

domains of MARK1/PAR-1 
− 9.53 103.34 nM 3 6  1  

Angiotensin Converting Enzyme-2 − 9.22 173.61 nM 3 4 1 3  
Human Sirtuin homolog 5 − 9.2 173.09 nM 2 7 2   
Kinase and Ubiquitin-associated 

domains of MARK3/Par-1 
− 9.18 187.71 nM 2 8 1   

NTF2 domain of Ras GTPase-activating 
protein-binding protein 1 

− 8.67 440.55 nM 3 5    

Human plakophilin 2 isoform a (PKP2a) − 8.32 792.90 nM 1 6 1  1 
SmgGDS-558 − 8.2 971.48 nM 2 8    
Human Heme Oxygenase-1 − 8.1 1.16 uM 5 5    
G3BP2 NTF2-like domain in complex 

with a peptide 
− 4.18 4.82 mM 2 4     

Table 4 
This table lists the binding energies and inhibition constants calculated during docking with types of interactions involved between viral receptors and Indomethacin.  

Viral receptors Binding Energy 
(kcal/mol) 

Inhibition 
Constant (KI) 

Interactions 

No. of Hydrogen 
Bonds 

No. of hydrophobic 
Interactions 

Salt 
Bridges 

Pi- 
Stacking 

Pi-Cation 
Interaction 

SARS-CoV-2 main protease − 11.52 3.62 nM 3 7 1   
SARS-CoV-2 RNA-dependent RNA 

polymerase 
− 10.9 10.18 nM 4 7    

SARS-CoV-2 receptor binding 
domain 

− 9.44 121.24 nM 3 2    

Papain-like Protease of SARS-CoV- 
2 

− 8.4 701.79 nM 5 1    

NSP16 from SARS-CoV-2 − 8.36 740.66 nM 2 10  2  
NSP15 Endoribonuclease from 

SARS-CoV-2 
− 8.05 1.13 uM 3 4 1    

Fig. 6. Host targets human heme oxygenase-1, human sirtuin homolog 5, human glutathione peroxidase-1, human insulin degrading enzyme, catalytic and ubiquitin- 
associated domains of MARK-1/PAR-1, kinase and ubiquitin-associated domains of MARK3/PAR-1, NTF2 domains of Ras GTPase activating protein-binding domain, 
human plakophilin-2, Ubiquitin-protein ligase Mib1, G3BP2 NTF2-like domain, SmgGDS-558, and Angiotensin-converting enzyme 2 are docked with Indomethacin 
and their interactive residues at the active sites are shown in the images. Detailed interactions are listed in supplementary file 6. 
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further by showing that Vitamin-A has the potential to bind the crucial 
proteins and slight ability to reverse the genetic changes brought upon 
by SARS-CoV-2. 

As can be observed from Table 3, Indomethacin formed strong in-
teractions with human insulin-degrading enzyme, MZM-REP Domains of 
Mind bomb 1, human glutathione peroxidase and the other host proteins 
studied here. Indomethacin showed strong hydrophobic interactions 
and significant H-bond formations with the host proteins. It can be 
observed (Fig. 6) that the residues His112, Phe115, Leu116, Ser128, 
Phe820, Asn821, and Arg824 of the Human insulin-degrading enzyme 
made crucial interactions with Indomethacin. Among these residues, 
only His112 is not included as it is slightly distant from the active site 
pocket as analyzed by CASTp 3.0 [93]. Similarly, residues Arg17, Leu71, 
Asp72, His114, Phe152, Ile181, and His190 from the active site of 
MZM-REP domains of Mind bomb 1 formed both hydrophobic and 
H-bonding interactions with Indomethacin. The other host receptors, 
such as Human Glutathione Peroxidase 1, Catalytic and 
Ubiquitin-associated domains of MARK1/PAR-1, Angiotensin-convert-
ing Enzyme-2, Human Sirtuin homolog 5, Kinase and 
Ubiquitin-associated domains of MARK3/Par-1, NTF2 domain of Ras 
GTPase-activating protein-binding protein 1, human plakophilin 2 

isoform a (PKP2a), SmgGDS-558 and Human Heme Oxygenase-1 also 
showed strong affinity towards Indomethacin. Thus, Indomethacin can 
play a strong role in binding crucial host proteins involved in 
SARS-CoV-2 infection. Similarly, from Table 4, it can be observed that 
Indomethacin formed strong interactions with main protease, 
RNA-dependent RNA polymerase, receptor binding domain of the spike 
protein, Papain-like Protease, NSP16, and NSP15 Endoribonuclease of 
SARS-CoV-2 by employing both hydrophobic interactions and 
H-bonding interactions. Fig. 7 demonstrates that the residues Val104, 
Ile106, Gln107, Asn151, Thr292, Asp295, and Arg298 of the main 
protease interact with Indomethacin. His41 and Cys145 are the two 
main residues important for the proteolytic activity of this main protease 
[12,45,61]. However, it should be noted that the other potential in-
hibitors of the main protease interact with different sets of residues [12, 
45,61]. It can be further inspected if the interactions mentioned may 
cause any allosteric changes in the main protease of SARS-CoV-2. The 
residues Phe368, Leu371, Leu372, Ala375, Trp509, Leu514, Tyr515, 
and Ser518 of RNA dependent RNA polymerase (RdRp) help in binding 
Indomethacin. Previous studies showed that the residues important for 
binding Remdesivir and Favipiravir are K551, R553, and R555, and 
K545, K551, and R553, respectively [14]. The interacting residues with 
other potential inhibitors also vary slightly in a few other studies [14, 
68]. Similarly, detailed analyses should be performed for each host and 
viral protein to decipher the anti-viral mechanism of Indomethacin 
against SARS-CoV-2. 

Indomethacin is a non-steroidal anti-inflammatory medication 
(NSAID) that is frequently used in the treatment of rheumatoid arthritis 
and gout. Indomethacin acts similarly to other NSAIDs, such as aspirin 
and ibuprofen, by decreasing the activity of cyclooxygenase-1 and 2 
(COXs) and inhibiting pro-inflammatory prostaglandin formation [99, 
100]. In comparison to steroidal drugs such as betamethasone and hy-
drocortisone, NSAID Indomethacin inhibited phospholipase A2 signifi-
cantly and more effectively [54]. The host’s active response to viral 
infection, such as SARS-CoV-2, results in the accumulation of mucus and 
inflammation, particularly in the lungs, where patients frequently 
exhibit profuse phlegm, resulting in severe dyspnea [36]. NSAIDs such 
as Indomethacin can suppress such responses and alleviate respiratory 
distress in the patient [17]. Indomethacin had also been demonstrated to 
activate eIF2 double-stranded RNA (dsRNA) dependent protein kinase R 
(eIF2 kinase PKR) and limit viral multiplication and translation directly, 
without impairing the host cell translation machinery [9]. Various 
previous studies had shown that Indomethacin possesses potential 
anti-viral effects against viruses such as Epstein-Barr virus [21], HIV 

Fig. 7. Viral targets NSP-15, NSP-16/10, Papain like protease, Spike S1, Main protease, and RNA dependent RNA polymerase (RdRp) are docked with Indomethacin 
and their interactive residues at the active sites are shown in the images. Detailed interactions are listed in supplementary file 7. 

Fig. 8. Effect of Indomethacin treatment on Vero CCL-81 cells infected with 
SARS-CoV-2. Vero CCL-81 cells were infected with SARS-CoV-2 and treated 
with different concentrations of Indomethacin for 72 h. Virus control (VC) was 
not treated with the drug. RNA isolated from the respective cells after 72 h were 
subjected to qRT-PCR for the RdRp-2 gene target. All data are expressed as 
mean ± SD (standard deviation) for n = 3. 
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[16], SARS-CoV [8], HSV-1 [51], and vesicular stomatitis virus [9]. 
Apart from its anti-inflammatory properties, Indomethacin had been 
shown in-vitro and in-vivo to decrease viral replication in SARS-CoV [8] 
and SARS-CoV-2 [94]. Notably, in this study, we have observed Indo-
methacin influences 85 genes (Supplementary file 4) associated with the 
COVID signature, indicating a significant role it may play in host re-
sponses. We also identified many host and viral proteins that Indo-
methacin can bind. Our analyses of gene expression data indicate that 
Indomethacin may be critical in reversing the effects of SARS-CoV-2. 
Our in-vitro data on antiviral studies suggested that dose-dependent 
administration of Indomethacin has an anti-SARS-CoV-2 impact, as 
determined by RdRp-2 gene copy numbers. Various possible mecha-
nisms explaining how Indomethacin can be effective against COVID-19 
had been hypothesized [83]. One such hypothesis involves the biosyn-
thesis pathway of prostaglandin. Indomethacin had been known to 
interact with PGES2 (human prostaglandin E synthase type 2) [5], 
which had been shown to interact with the NSP-7 protein of SARS-CoV-2 
[33]. A study of various NSAIDs using a network pharmacology 
approach revealed a potential role of Indomethacin by inhibiting crucial 
hub proteins of the RAS signaling pathways, thus reducing SARS-CoV-2 
induced excessive inflammation [66]. In our study, we observed that 
Indomethacin could bind to the NTF2 domain of Ras GTPase-activating 
protein-binding protein 1 (Table 3, Fig. 6), which calls for further 
investigation in this direction. 

The combination of Indomethacin with other lead molecules showed 
to enhance the antiviral efficacy significantly in another in-vitro study 
[38]. Indomethacin showed a prominent binding affinity with the main 
protease of SARS-CoV-2 and had better binding than many other NSAIDs 
[3]. Derivatives of Indomethacin had been shown to inhibit the main 
protease of SARS-CoV-2 [31]. It had also been hypothesized whether the 
use of Indomethacin helps in the recovery from SARS-CoV-2 induced dry 
cough [6]. A few proteolysis targeting chimeras (PROTAC) derived from 
Indomethacin were shown to possess better antiviral efficacy than 
Indomethacin against some coronavirus strains [23]. Our findings 
collectively support the hypothesis that Indomethacin may be consid-
ered as a possible treatment for SARS-CoV-2. When there are no con-
traindications for its use, Indomethacin may be beneficial to the patient. 
Clinically, Indomethacin treatment had been shown to alleviate head-
ache in SARS-CoV-2 patients in a recent study [43]. In another clinical 
study, it had been suggested to treat mild and moderate COVID-19 with 
Indomethacin [69]. Another in-vitro, animal and model-based simula-
tion study showed Indomethacin can be used against SARS-CoV-2 [32]. 

Hydroxychloroquine, Remdesivir, and Lopinavir were initially tested 
against SARS-CoV-2 infection in Vero cells. Antiviral efficacy of Indo-
methacin (IC50 = 12 μM) was observed to be in the similar ranges of 
Remdesivir (IC50 = 11.41 μm), Hydroxychloroquine (IC50 = 7.28 μm), 
and Lopinavir (IC50 = 9.12 μm) [42]. It was also shown that Remdesivir 
was more effective in a human cell line (IC50 = 1.3 μm) and the selec-
tivity index was 38.5, which is also in the similar range of Indomethacin 
in this present study (~40). In another study, PF-00835231 showed 
better antiviral efficacy than Remdesivir in two different cell lines after 
24 and 48 h, and had been hypothesized to be a more effective drug 
against SARS-CoV-2 [24]. IC50 values of the drugs Remdesivir, Lopina-
vir, and Chloroquine varied in different cell lines [42]. Additional 
in-vitro studies in other relevant cell lines could be performed to further 
confirm the antiviral efficacy of Indomethacin. In this study, we showed 
how Indomethacin may bind to the critical receptor proteins. However, 
whether these bindings are stable or not could be further checked by 
molecular dynamics simulations. Our study shows Indomethacin and 
Vitamin-A can bind to crucial host and viral proteins for the SARS-CoV-2 
interaction. However, which precise interaction these drugs are effec-
tively targeting should be further investigated in future studies. Despite 
the limitations, our study shows that Indomethacin contains antiviral 
efficacy probably by either blocking the viral receptors/host proteins, 
and/or altering the gene expression of the infected host cells. New 
Indomethacin analogs were shown to exhibit better inhibition against 

cyclooxygenase enzymes to reduce prostaglandin synthesis, which in 
turn would reduce inflammation [1]. Similarly, antiviral efficacy of 
various Indomethacin analogs should be tested against SARS-CoV-2 
infection. 

5. Conclusion 

Our initial research focused on finding out the viral and host proteins 
critical for SARS-CoV-2 infection by conducting a review of the litera-
ture. We attempted a computational drug repurposing study to discover 
which existing drugs can target these essential proteins. In addition, 
based on the existing gene expression data, we evaluated whether 
certain compounds may reverse the genetic alteration brought about by 
SARS-CoV-2 infection in the host cells. Combining these two research 
analyses revealed that Indomethacin and Vitamin-A are two major 
existing medications that possess the ability to counter and reverse the 
genetic alterations caused by SARS-CoV-2. As Indomethacin demon-
strated more encouraging results in reversing the effects of SARS-CoV-2, 
we conducted additional in-vitro tests with moderate success. We 
describe briefly why Vitamin-A may be considered as a supplement in 
the event of SARS-CoV-2 infection. We also discuss recent findings on 
Indomethacin against SARS-CoV-2. More in-vitro studies of various 
Indomethacin analogs in combination with Vitamin-A may be per-
formed in the future to find out better therapeutics against SARS-CoV-2. 
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