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Abstract Systematic toxicity tests are often waived for the

synthetic flavors as they are added in a very small amount

in foods. However, their safety for some endpoints such as

endocrine disruption should be concerned as they are likely

to be active in low levels. In this case, structure–activity-

relationship (SAR) models are good alternatives. In this

study, therefore, binary, ternary, and quaternary prediction

models were designed using simple or complex machine-

learning methods. Overall, hard-voting classifiers outper-

formed other methods. The test scores for the best binary,

ternary, and quaternary models were 0.6635, 0.5083, and

0.5217, respectively. Along with model development, some

substructures including primary aromatic amine, (eno-

l)ether, phenol, heterocyclic sulfur, and heterocyclic

nitrogen, dominantly occurred in the most highly active

compounds. The best predicting models were applied to

synthetic flavors, and 22 agents appeared to have a strong

inhibitory potential towards TPO activities.

Keywords Synthetic flavor � Quantitative structure–

activity relationship (QSAR) � Thyroid peroxidase inhibitor
(TPO) � Toxicity prediction � Machine learning

Introduction

Flavors are a type of food additives that are intentionally

added to foods in order to enhance or fortify their original

flavor. However, since flavors are used only in a small

amount and their toxicological data are usually scarce, their

safety is often assessed with an initial screening method

without properly conducting systematic toxicity tests

(MFDS, 2017). Among those methods, threshold of toxi-

cological concern (TTC) method evaluates the safety of

chemical compounds and sets an acceptable level of intake

based on their structure and exposure levels (World Health

Organization et al., 2016). The Joint FAO/WHO Expert

Committee on Food Additives (JECFA) categorizes the

flavors into three groups in accordance with Cramer class

and evaluates their safety based upon TTC method. Cramer

class was proposed by Cramer et al. in (1976), and it

classifies the compounds into three classes based upon their

potential of oral toxicity (Cramer et al., 1976). However,

concerning that some endpoints such as endocrine disrup-

tors could be active in low doses (Vandenberg et al., 2012;

Vandenberg, 2014) and hormonal modulation is becoming

a more important health issues nowadays, it is important to

deal with those flavors having hormone-modulating activ-

ities even if they are used only in small amount. Thyroid

hormones, for example, play an important role in many

developmental process and regulate metabolic homeostasis

(De Coster and van Larebeke, 2012), so the thyroid hor-

mone modulation during developmental stage can lead to

serious defect in neurogenesis as well as metabolic dis-

turbance (Gore et al., 2015). Therefore, this study has

attempted to conduct a quick screening of potential thyroid

peroxidase (TPO)-inhibiting synthetic flavors using in sil-

ico prediction models.
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Currently, many studies and programs on machine-

learning-based quantitative structure–activity relationship

(QSAR) and in silico toxicity prediction were conducted

(Fan et al., 2018; Idakwo et al., 2018; Jiang et al., 2019; Li

et al., 2017; Zhang et al., 2018; Zhang et al., 2020). Results

from high-throughput experiments may be employed to

build a model. They are available from various databases,

such as PubChem or EPA Chemistry Dashboard (Kim

et al., 2019; Williams et al., 2017). Tox21, one of these

databases, is a collaboration program of several federal

agencies in US that aims to improve pre-existing testing

strategies and develops many high-throughput screening

methods that can be applied to toxicity prediction models

(National Toxicology Program, 2020). In many QSAR

practices, however, too many features compared to the size

of the dataset, and class imbalance have been considered

troublesome. Many attempts were made to address these

problems, such as dimensionality reduction and under- or

over-sampling. A previous study showed that the class-

imbalance problem can be solved to some extent by the

application of the so-called synthetic minority over-sam-

pling technique (SMOTE) to low-dimensional models

(Blagus and Lusa, 2013). In addition, learning methods

also play a significant role in model performance. Simple

but powerful learning methods, such as support vector

machines (SVMs), random forests (RFs), and artificial

neural networks (ANNs), demonstrated good performance

and were used in many previous QSAR studies (Fan et al.,

2018; Fan et al., 2018; Jiang et al., 2019; Li et al., 2014; Li

et al., 2017). Recently, many ensemble-learning approa-

ches were also introduced to improve the performance of

models (Ai et al., 2019; Sheffield and Judson, 2019; Zhang

et al., 2018).

Hence, in this study, prediction models for TPO inhi-

bition were designed using various learning and dimen-

sionality-reduction methods, and SMOTE. In addition,

along with the over-sampling technique, multi-categoriza-

tion of the dataset was attempted to improve the classifi-

cation performance for minor classes, and their

performance was compared with those of binary models.

As well as the prediction model development, typical

substructures frequently found in highly active compounds

were analyzed using substructure frequency analysis (Jen-

sen et al., 2007) and food-related compounds such as food

additives or contact materials that feature active substruc-

tures were identified. The best models for each grouping

method selected according to their test scores were applied

to synthetic flavors currently used in South Korea. The

flavors predicted by the models in this study to have strong

inhibition effects towards TPO were then compared with

their Cramer classes.

Materials and methods

Data curation and categorization

AC50 and IC50 values of various TPO inhibitors were

collected from The Simmons Lab at the EPA National

Center for Computational Toxicology’s Amplex� Ultra-

Red (AUR) assay data, and existing articles (Carvalho

et al., 2000; Divi and Doerge, 1996; Habza-Kowalska

et al., 2019; Lee, 2015). After removing salts, mixtures,

and duplicated ones, 587 data items, including drugs, nat-

ural compounds, and environmental chemicals, were used

to build machine-learning models. Given that AC50 is a

relative value that is calculated from each chemical’s

maximum inhibition rate, it had to be converted to the

absolute IC50 value, which is the concentration at which the

chemicals inhibit TPO activities to 50% of maximal

activity. The conversion is conducted via the following

expression (Sebaugh, 2011):

log IC50 ¼ logAC50 �
a� 50% response

50% response� b

� �1=c

ð1Þ

a: min response; b: max response; c: slope factor.

Based on their maximum inhibition and the converted

IC50 values, the collected and purified data were catego-

rized into two (binary), three (ternary), or four (quaternary)

groups. For the binary model, the chemicals that inhibited

TPO activities more than or equal to 20% at the highest

concentration were defined as group ‘A’ (active) as main-

tained by EPA (Friedman et al., 2016), and the remaining

chemicals whose maximum inhibition rate was less than

20% were labeled as group ‘C’ (inactive). For the ternary

model, the chemicals with maximum inhibition rate higher

than 50%—in which their IC50 could be calculated,

between 20 and 50%, and less than 20% were labeled as

group ‘A’, ‘B’, and ‘C’, respectively. The chemicals in

group ‘A’ in the ternary model were subdivided into group

‘A1’ and ‘A2’ in the quaternary model based on their IC50

values; the chemicals whose IC50 values were lower than or

equal to 10 lM were defined as group ‘A1’, and those with

IC50 higher than 10 lM as group ‘A2’, which was based

upon previous studies on enzyme inhibition (Auld et al.,

2008; MFDS, 2013; Lindström et al., 2019).

Feature generation and structure

Molecular descriptors and fingerprints (FPs) were used as

features in the machine-learning models. In this study, a

‘topology-substructure concatenated FP’ was employed to

consider various features and prevent underfitting. It con-

sists of a concatenation of each topological FP with a

substructure key-based FP to consider the atomic
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connectivity, substructures, and their interactions within a

molecule. RDKit, Morgan, and Atom Pair Count (APC)

FPs were selected for topological FP, and the substructure

count and ToxPrint FP were selected for the substructure

key-based FP. RDKit and Morgan FPs were calculated

using the RDKit library (Landrum, 2020), and APC, sub-

structure count FP, and descriptors were calculated with the

PaDEL-Descriptor software (Yap, 2011). ToxPrint FP was

generated using the ChemoTyper program (Mn-Am, 2020).

Simple and complex ensemble learning methods

Both simple learning methods (SLMs) and complex

ensemble learning methods (ELMs) were used to predict

TPO inhibitors. As SLMs, a RF, a SVM, and an ANN were

used given that they demonstrated to perform well on

QSAR tasks in previous studies. Boosting and voting were

utilized for the ELMs; adaptive boosting (AdaB) and

extreme gradient boosting (XGB) were employed for

boosting; and hard- and soft-voting were used as voting

models. In the case of voting classifiers, the four best

models among RF, SVM, ANN, AdaB, and XGB were

selected for each feature and grouping method. The com-

binations of the four best models selected for the voting

classifiers for each feature and grouping method are listed

in Table S1.

Model selection and evaluation

Through the overall process conducted in this study, the

Scikit-Learn library was used for feature processing and

machine-learning modeling (Pedregosa et al., 2011). The

entire dataset was randomly split into an 80:20 ratio, and

the 20% subset was used as a test set subsequently. The

‘stratify’ parameter was applied to retain the compositional

consistency of each category in both training and test sets.

The number of compounds in each category is presented in

Table 1.

A grid search with fivefold cross-validation on the

training dataset was conducted for hyperparameter tuning

and model validation and to prevent overfitting. The

hyperparameter grid of each learning method is given in

Table S2. Min–max feature normalization, variance

thresholder, feature extraction for dimensionality reduc-

tion, SMOTE, and model training steps were implemented

for each iteration of the fivefold cross-validation. Dimen-

sionality reduction was conducted to solve the overfitting

problem that may occur due to the large number of fea-

tures. The features whose variance was less than 0.01 were

removed. Either principal component analysis (PCA) or

linear discriminant analysis (LDA) were applied, and their

performance was compared. To address the class-imbal-

ance problem, SMOTE was applied to each model.

Through this process, the best combination of hyperpa-

rameters for each model was selected, and cross-validation

scores (CV scores) were calculated as a F1-score value. F1

score, i.e., the harmonic mean of precision and recall, was

employed owing to the class-imbalance problem. The

formulae of precision, recall, and F1 score are as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score ¼ 2� Precision� Recall

Precisionþ Recall
ð2Þ

[TP: True positive; FP: False positive; FN: False

negative]

The best models for each grouping and FP were selected

based on the CV score, and their performance was evalu-

ated by applying the models on the test sets. Then, the best

models that produced the highest F1 score on the test set

was singled out from each grouping as the final best-per-

forming models. All combinations of models, FPs, and

dimensionality-reduction methods (or voting methods) for

each grouping method are listed in Table S3. After carrying

Table 1 Number of compounds in each subset and their classification criteria

Max inhibition IC50 Binary Number of compounds Ternary Number of compounds Quaternary Number of compounds

Higher than 50% B 10 lM A Train 388 A Train 283 A1 Train 100

Test 25

[ 10 lM Test 71 A2 Train 183

Test 97 Test 46

Between 20 and 50% B Train 105 B Train 105

Test 26 Test 26

Less than 20% C Train 81 C Train 81 C Train 81

Test 21 Test 21 Test 21
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out model selection and evaluation, the effects of the type

of features, feature extraction method, and learning method

on model performance were evaluated and compared.

Analysis of active substructures in TPO inhibitors

The substructures that were frequently seen in the most

active groups were analyzed using the substructure fre-

quency analysis method previously introduced by Jensen

et al. (2002). The frequency of a substructure in group A1

(the most highly active) and C (inactive) in the quaternary

grouping was calculated as
fx
Cx
f
C

¼ fx�C
f�Cx

, where fx and Cx refer

to the number of fragments and compounds in group x,

respectively, and f and C refer to the number of fragments

and compounds in the whole dataset, respectively. A sub-

structure with a frequency greater than 1.2 in group A1,

and simultaneously with a ratio of the frequency of group

A1 to that of group C greater than 1.2, was defined as an

active substructure.

Application to flavors

Among 2465 synthetic flavors listed in the Ministry of

Food and Drug Safety (MFDS)’s Food Additive Code,

1774 compounds available in the EPA’s CompTox

Chemistry Dashboard database were obtained, excluding

salts and mixtures. The best classification models selected

were applied to these flavoring agents for screening. The

Toxtree software (Patlewicz et al., 2008) was employed to

classify selected flavor compounds which showed high

TPO inhibitory activity, according to Cramer.

Results and discussion

Model evaluation and selection

All the models were evaluated in terms of their test scores.

The APC_Sub FP was the best-performing FP, whereas the

best-performing models in the binary, ternary, and qua-

ternary models were hard-voting, XGB with LDA, and

soft-voting classifier, respectively. The test scores for the

aforementioned best models were 0.6635, 0.5083, and

0.5217, respectively (Fig. 1).

In previous studies, Morgan FP is generally known to be

one of the best-performing FPs (Idakwo et al., 2018;

Riniker and Landrum, 2013). Morgan FP, however, hardly

recognizes comprehensive characteristics such as molecu-

lar shape or size, and fails to perceive constitutional dif-

ferences between isomers in large molecules. By contrast,

Atom Pair FPs demonstrated to recognize the molecular

shape and distinguish the constitutional differences better

(Capecchi et al., 2020). Therefore, in this study, APC_Sub

FP performed well for molecular shape, substructures and

their interactions were better recognized in APC_Sub FP

than in Morgan_Sub FP.

To compare the performance of the models by feature

extraction (PCA or LDA) or learning methods (RF, SVM,

ANN, AdaB, XGB, or Voting), the CV and test scores of

each feature extraction or learning methods were pooled

and averaged to evaluate each method. For the feature

extraction methods, there was no remarkable difference in

the performance between the models using PCA and LDA,

which is contrary to the expectation that LDA would out-

perform PCA when it comes to the classification model

(Figure S1). Although LDA is generally considered to be a

better feature extraction method for classification tasks,

PCA may outperform LDA when the dataset is small

(Martinez and Kak, 2001). Additionally, it can be inferred

that LDA did not perform much better than PCA, given

that the categorization of toxicity in this study was done

from continuous maximum inhibition (%) and IC50 values.

Therefore, it seems that no significant difference in per-

formance between LDA and PCA was observed because of

the small size of the dataset and the linear characteristic of

toxicity class data.

Meanwhile, learning methods were shown to have a

relatively greater impact on model performance than fea-

ture extraction methods (Figure S2).

For all groupings, hard-voting classifiers remarkably

improved the model performance, especially in the ternary

and quaternary models. In the case of the ternary model,

the hard-voting classifier showed approximately 16, 15,

and 14% enhancements in average model performance

compared to SLMs–RF, SVM, and ANN–respectively. For

quaternary models, the hard-voting classifiers showed 15,

13, and 14% improvement with respect to the aforemen-

tioned SLMs–RF, SVM, and ANN–respectively. Among

all the models, the worst-performing learning method was

the AdaB classifier. For the binary, ternary, and quaternary

models, the model performance of the hard-voting classi-

fier was 13, 23, and 31% greater than that of AdaB,

respectively. Compared to a previous study that has

developed binary models for TPO inhibitors (Rosenberg

et al., 2017), the result shows that the binary models in this

study have similar levels of F1 scores to those of previous

study by employing hard voting classifiers, in spite of

smaller dataset.

Along with F1 scores, confusion matrices for the best-

performing models indicated in Fig. 1 were generated to

evaluate the classification performance in detail (Fig. 2).

Based on confusion matrices, negative data were better

classified in the ternary and quaternary models, even

though the test score was the highest in the binary model.

The specificities of the best binary, ternary, and quaternary
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models were 0.3810, 0.5238, and 0.6190, respectively.

Furthermore, continuous toxicity data such as IC50 would

allow more precise prediction of toxicity strength of sub-

stances, but they are more difficult to be obtained in large

numbers. Therefore, this work is significant in that multi-

classification models were developed with small numbers

of IC50 data by adopting ensemble learning methods.

Fig. 1 Cross-validation (CV) and test scores for each feature,

learning method, and grouping method (binary, ternary, or quater-

nary). For each grouping method, the black bar marked above with an

asterisk indicates the test scores of the best-performing model. Each

label is shown in ‘‘model name_feature extraction method (or voting

methods in voting classifier)’’ form. [RF: Random forest; SVM:

Support vector machine; ANN: Artificial neural network; AdaB:

Adaptive boosting; XGB: Extreme gradient boosting; PCA: Principal

component analysis; LDA: Linear discriminant analysis]
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Active substructure analysis

An active substructure analysis was conducted using the

substructure frequency analysis method. The active sub-

structures included amines (especially primary aromatic

amines and heterocyclic nitrogen), sulfur-containing com-

pounds (carbothioic S-ester, thioenolether, thiocyanate,

sulfenic derivatives, carbodithioic ester, heterocyclic sul-

fur, etc.), phenols, ethers (enolether and thioenolether), and

vinylogous compounds. The most frequent and dominant

substructure was primary aromatic amine with a frequency

ratio of 35.90, meaning that it appears 35.90 times more

frequently in group A1 than in group C. The inhibition

mechanism of aromatic amines towards TPO was previ-

ously demonstrated by Doerge et al. (1994) The aromatic

amines inhibit TPO activity by interacting with the com-

pound I (an oxyferryl cation radical of iron-containing

heme cofactor) instead of iodine, i.e., an endogenous sub-

strate of TPO (Doerge and Decker, 1994).

Other frequent substructures were enol (enolether),

sulfenic derivatives, and phenols, for which the frequency

ratios were 9.79 (8.16), 8.16, and 4.45, respectively. Some

examples of active compounds in group A1 and their

corresponding active substructures are listed in Table 2.

Among these highly potential compounds, food-related

chemicals can be pointed out, including natural food sub-

stances, food additives or contact materials, and pesticides.

L-ascorbic acid, L-tryptophan, and polyphenols such as

quercetin and genistein are typical examples of natural

food substances that inhibit TPO activities. Food additives

or contact materials such as indole (synthetic flavor) or

4,4’-methylenedianiline (food contact material) were also

found to be highly active. In addition, some sulfur-con-

taining or organophosphorus pesticides were included in

the A1 group. While the frequency of phosphate sub-

structures in group A1 was less than 1.2, their frequency in

group A2 was 1.34. Furthermore, the frequency ratios of

groups A1 and A2 to group C were 2.72 and 3.14,

respectively. Hence, it can be stated that phosphate sub-

structures in organophosphorus pesticides could also be

considered as active substructures.

Application to flavors

In addition to the substructure analysis, 1774 synthetic

flavors currently listed in South Korean Food Code were

applied to the three best performing models. Before the

application, the chemical spaces of these synthetic flavors

and of the dataset used for model development were ana-

lyzed with three principal components extracted from their

molecular descriptors (Fig. 3). Most flavor compounds

showed a comparable chemical space with that of the

dataset employed in this study.

Fig. 2 Confusion matrices for the best-performing models of each grouping. The color intensity of each cell represents the proportion of the

number of compounds predicted to be a class with respect to the actual number of compounds in a class
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Table 2 Examples of compounds in the highest activity group (group A1) shown with active substructures studied by means of substructure

frequency analysis (depicted in red)

Name of compounds Structures of compounds and

corresponding active substructure

Purpose of use or

distribution in nature

Ref

4040-methylenedianiline Food contact material (U.S. Food and Drug Administration,

2020a)

Quercetin A flavonoid (flavonol) in

edible plants (e.g., onion)

(Chandra, 2010)

Genistein A flavonoid (isoflavone) in

edible plants (e.g., soybean)

(Chandra, 2010)

L-ascorbic acid Natural food substance;

food additive

(U.S. Food and Drug Administration,

2020b)

L-Tryptophan Natural food substance

(amino acid)

(U.S. Food and Drug Administration,

2020c)

Isoproterenol Drug; b-adrenergic

receptor agonist

(analogue of epinephrine)

(U.S. National Library of Medicine,

2020)

Indole Food additive

(flavoring agent)

(Food and Agriculture Organization of

the United States (FAO), 2020)

2-

Mercaptobenzothioazole

Pesticide (United States Environmental

Protection Agency (EPA), 2020)

Phenmedipham Pesticide (European Commission, 2020)

Azinphos-methyl Pesticide (European Commission, 2020)

Dimethoate Pesticide (European Commission, 2020)

123

In silico prediction models for TPO inhibitors 489



As a result, 22 out of 1774 were found to be in the most

active group both in the ternary (group A) and quaternary

(group A1) models and active in the binary model (group

A). The molecular structures of these 22 compounds

include primary aromatic amines, vinylogous carbonyls,

and sulfur-containing substances (Table 3). These synthetic

flavors, predicted to be highly active by the models, were

compared with their Cramer classes predicted by the

Toxtree software.

As synthetic flavors are added to foods only in a small

amount, they are often regulated with threshold of toxi-

cological concern (TTC) method, which is based on the

chemical structures of substances. In JECFA, synthetic

flavors are categorized into one of the structural classes

proposed by Cramer et al. (1976) and their structures,

metabolic fate and intake levels are assessed (Joint FAO/

WHO Expert Committee on Food Additives, 2002). Cra-

mer decision tree classifies compounds into three groups–

Class I (low concern of oral toxicity), Class II (moderate

concern of oral toxicity), and Class III (high concern of

oral toxicity), according to the predicted intensity of their

oral toxicity (Cramer et al., 1976; Roberts et al., 2015).

When the Cramer class of these 22 active flavor com-

pounds was determined using the Toxtree software, 16 of

them were classified into Class III, while 6 were classified

into Class I. These six substances were butyl anthranilate,

linalyl anthranilate, geranly tiglate, allyl ionone, cedr-

8(15)-en-4-ol, and 2’-aminoacetophenone. Aniline sub-

structures stand out among the compounds that show high

TPO inhibitory potential but low overall oral toxicity

potential. The TPO-inhibiting effect and mechanism of

action of substances with aromatic amines are clearly

reported (Doerge et al., 1994). Moreover, as it is known

that endogenous hormones work at very low concentrations

in the body, even a slight modulation in the endocrine

system in their low-dose range might significantly change

the hormonal effect (Vandenberg et al., 2012).

Although the prediction models in this study are based

on in vitro experimental data, it may be necessary to

ameliorate Cramer’s decision tree with recent toxicity

result in light of the current situation that hormonal mod-

ulation is becoming a more important health issue. Further,

in order to support the findings of this study, a follow-up

study is necessary that determines whether the 22 flavors

actually have TPO-inhibition activity through a laboratory

experiment.

Summing up, the present study raises the possibility that

some synthetic flavors may have a health effect on TPO

activities through in silico toxicity prediction models.

Binary, ternary, and quaternary prediction models were

designed using various machine-learning methods. The

best models for the binary, ternary, and quaternary models

were ‘hard-voting classifier with APC_Sub FP’, ‘XGB with

APC_Sub FP and LDA’, and ‘soft-voting classifier with

APC_Sub FP’, respectively, and the F1 scores on the test

set for each best model were 0.6635, 0.5083, and 0.5217,

respectively. Although the test score was the highest in the

binary model, the minor class (group C) was better pre-

dicted in the ternary and quaternary models. However, it

should be concerned that these prediction models are based

Fig. 3 Chemical space analysis between the input data for model

development and synthetic flavors (red dots: synthetic flavors; green

dots: input data for model development)

Table 2 continued

Name of compounds Structures of compounds and

corresponding active substructure

Purpose of use or

distribution in nature

Ref

Malathion Pesticide (European Commission, 2020)
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Table 3 Synthetic flavors found to be active in the predictive models and their corresponding Cramer classes predicted by the Toxtree software

Name of compound Structure Cramer classa

Class I Class II Class III

Indole 4

Pyrrole 4

Butyl anthranilate 4

Linalyl anthranilate 4

(?)-Cedrol 4

Geranyl tiglate 4

Allyl Ionone 4

Bis(2-methyl-3-furyl)disulfide 4

(3aR)-(?)-Sclareolide 4

Maltol isobutyrate 4

Cedr-8(15)-en-4-ol 4
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Table 3 continued

Name of compound Structure Cramer classa

Class I Class II Class III

2’-Aminoacetophenone 4

Patchouli alcohol 4

Elemol 4

Dibenzyl disulfide 4

Difurfuryl disulfide 4

2-Furfurylthio-3-methylpyrazine 4

Furfuryl-2-methyl-3-furyl disulfide 4

8,8-diethoxy-2,6-dimethyl-2-Octanol 4

Viridiflorol 4

Caryolan-1-ol 4
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on in vitro experimental data, which hardly considers

toxicokinetics of chemicals in the body.

The most frequent and dominant substructures within

the highly active compounds (group A1) were primary

aromatic amines, sulfur-containing, phenols, vinylogous

compounds, and phosphates. When the best models selec-

ted from each grouping method were applied to 1774

synthetic flavors listed in South Korea, 22 out of 1774

agents were predicted to show inhibitory activity toward

TPO. Sixteen out of 22 substances belonged to Cramer

Class III, while six were Class I. Among these 6 com-

pounds, which were predicted to have high TPO inhibitory

activity but classified as low oral toxicity in Cramer class,

three compounds had aniline substructures, butyl

anthranilate, linalyl anthranilate, and 2’-aminoacetophe-

none, suggesting a revision of Cramer class to encompass

hormonal modulation.

To suggest, follow-up study on the prediction model that

involves the toxicokinetics of the TPO-inhibiting sub-

stances and on the determination of the 22 active flavors

through actual laboratory experiments will support the

major findings in this study.
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holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.
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